

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

FUNCTIONAL SERVICING REPORT

FOR

CAIVAN COMMUNITIES

BRAZEAU LANDS

3809 BORRISOKANE ROAD

CITY OF OTTAWA

PROJECT NO.: 18-1030

SEPTEMBER 11, 2019 3RD SUBMISSION © DSEL

FUNCTIONAL SERVICING REPORT FOR CAIVAN COMMUNITIES

BRAZEAU LANDS

PROJECT NO: 18-1030

TABLE OF CONTENTS

TAB	LES	2
1.0		
1.1	Existing Conditions	1
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	2
2.1	Existing Studies, Guidelines, and Reports	2
3.0	WATER SUPPLY SERVICING	4
3.1	Existing Water Supply Services	4
3.2	Water Supply Servicing Design	4
3.3	Water Supply Conclusion	7
4.0	WASTEWATER SERVICING	7
4.1	Existing Wastewater Services	7
4.2	Wastewater Design	7
	4.2.1 Brazeau Lands 4.2.2 Tamarack Development (The Meadows)	
	4.2.3 Wastewater Design Criteria	
4.3	Wastewater Servicing Conclusion	10
5.0	STORMWATER CONVEYANCE	11
5.1	Existing Stormwater Drainage	11
5.2	Proposed Stormwater Management Strategy	
	5.2.1 Infiltration	
5.3	Stormwater Pond Location	
5.4	Post-Development Stormwater Management Targets	
	5.4.1 Quality Control 5.4.2 Quantity Control	
5.5	Stormwater Management Design	
	5.5.1 Borrisokane Road – Ministry of Transportation Requirements	

5.6	Proposed Minor System	16
5.7	Hydraulic Grade Line Analysis	18
5.8	Proposed Major System	18
5.9	Proposed Grading	18
5.10	Stormwater Servicing Conclusions	18

6.0 CONCLUSION AND RECOMMENDATIONS 19

TABLES

Table 1A	Water Supply Design Criteria (System Level Demands)
Tabla 1D	Water Supply Decign Criteria (Typical)

- Table 1BWater Supply Design Criteria (Typical)
- Table 1CEstimated Water Demands Brazeau Land Updates
- Table 2Wastewater Design Criteria
- Table 3Storm Sewer Design Criteria

APPENDICES

- Appendix A Figure 1 Key Plan Figure 2 - Proposed Development Concept
- Appendix BExcerpts from JLR Master Servicing StudyFigure 3 Brazeau Watermain Servicing Plan
- Appendix C Excerpts from JLR Master Servicing Study
 - Master Sanitary Drainage Area (MSAN)
 - Table 6-3 & 6-4

Excerpts from Tamarack's "The Meadow" development servicing report

- Sanitary Drainage Plan (Meadows) Drawing 43
- Meadows Sanitary Design Sheets
- Delphinus Ave Plan and Profile Drawing 14
- BSUEA Sanitary Sewer Design Sheet

Drummond Sanitary Constraints Figure Drawing No 3 – Brazeau - Sanitary Servicing Plan Sanitary Design Sheet (DSEL, August 2019)

- Appendix D Excerpts from JLR Master Servicing Study
 - Figure 3-1
 - Table 5-2 & 5-5

- Master Storm Drainage Plan (MST-2) Paterson – Groundwater Infiltration Review (Memo) Drawing No. 1 – Brazeau - Storm Servicing Plan Storm Design Sheet (DSEL, September 2019) Excerpts from **BSUEA MSS** (Section 5 excerpts)

Appendix E Drawing No. 2 – Brazeau - Preliminary Grading Plan

18-1030

FUNCTIONAL SERVICING REPORT FOR CAIVAN COMMUNITIES

BRAZEAU LANDS

CITY OF OTTAWA PROJECT NO: 18-1030

1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained to prepare a Functional Servicing Report (FSR) in support of the Brazeau Lands development area on behalf of Caivan Communities (CC).

The proposed Brazeau Lands development area is located at 3809 Borrisokane Road within the Barrhaven South Urban Expansion Area (**BSUEA**). As illustrated in **Figure 1** (see **Appendix A**) the site is located north of Barnsdale Road, east of Highway 416 (and Borrisokane Road), south of Cambrian Road and west of the future New Greenbank Road alignment. The current zoning is Mineral Extraction (ME) and is proposed to be amended to permit low-rise residential uses. The western portion of the property is outside of the urban boundary and will remain at the current zoning while the eastern side (approximately 24.5 ha) is within the urban boundary and will be rezoned as noted above. The lands are planned to be developed with a mix of detached single homes, townhomes, park blocks, SWM blocks, open space and a road network (see **Figure 2** for the preliminary lotted Concept Plan SK-17 in **Appendix A**).

The objective of this report is to provide sufficient detail to demonstrate that the proposed development area can be supported by municipal services.

1.1 Existing Conditions

The Brazeau Lands property is currently an aggregate extraction pit and is operated in accordance with the Ontario Aggregate Resources Act and Regulations.

The property ground surface is significantly disturbed as a result of the mineral extraction activities that have occurred over the years with stockpiles of materials at various locations and elevations. The eastern portion of the site adjacent to the New Greenbank Road future alignment range in elevations from approximately 108.0m to 104.5m. On-site elevations vary due to the various stockpiles of materials but are general averaging about 99.0m. Drainage is generally conveyed westward towards Borrisokane Road which is owned by, and under the jurisdiction of, the Ministry of Transportation.

18-1030

The property is within the Jock River watershed and is under the jurisdiction of the Rideau Valley Conservation Authority (RVCA).

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report.

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (City Standards)
 - Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines
 Sewer
 City of Ottawa, February 5, 2014.
 (ISDTB-2014-01)
 - Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines – Sewer City of Ottawa, September 6, 2016. (PIEDTB-2016-01)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISDTB-2010-2)
 - Technical Bulletin ISDTB-2014-02 City of Ottawa, May 27, 2014. (ISDTB-2014-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, Conservation and Parks, 2008. (formerly MOECC) (MECP Design Guidelines)
- Highway Drainage Design Standards (MTO 2008)
- Drainage Management Manual (MTO 1997), Ministry of Transportation. (MTO Manuals)

18-1030

- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- City of Ottawa Official Plan, adopted by Council 2003. (Official Plan)
- South Nepean Collector: Phase 2 Hydraulics Review / Assessment Technical Memorandum Novatech, August 2015 (Novatech SNC Memo)
- Master Servicing Study Barrhaven South Urban Expansion Area, J.L. Richards & Associates Limited, Revision 2, May 2018 (BSUEA MSS)
- Servicing Brief Quinn's Pointe Residential Stages 2, 3 & 4, J.L. Richards & Associates Limited, Revision 1, October 2018 (File No. 26610-001.1) (Quinn's Pointe Brief)
- Jock River Reach One Subwatershed Study Stantec, 2007 (Jock River SWS)

18-1030

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The **BSUEA MSS** provided an overview of the existing watermain infrastructure associated with the BSUEA. An assessment of the water supply for the area was completed to examine the feasibility of the extension of existing infrastructure that would meet the required City and MECP criteria for the whole of the development area.

The 'Master Watermain" plan (Drawing MWM) from the **BSUEA MSS** is provided in **Appendix B** and illustrates the existing watermains in proximity to the Brazeau Lands. In addition, a conceptual watermain plan (Drawing CWM) from the preliminary Servicing Brief for Minto's Quinn's Pointe (Stages 2, 3 & 4) residential area is provided for reference. The anticipated watermain servicing connections points for the Brazeau Lands are as follows:

- Existing 300mm diameter watermain terminating at Dundonald Drive and the future New Greenbank Road alignment
- Existing 300mm diameter watermain on Kilbirnie Drive at Alex Polowin Avenue
- Existing 250mm diameter watermain at the current south termination of Fameflower Street

3.2 Water Supply Servicing Design

The **BSUEA MSS** presents overall watermain infrastructure details for the BSUEA. The subject property was deemed serviceable and the **MSS** reviewed a number of servicing scenarios (i.e. existing and built-out conditions) that confirmed that the area could be adequately serviced conforming to relevant City and MECP Guidelines and Policies. At the time of detailed design any required easements or land crossing permissions will be obtained to support the water supply infrastructure.

The proposed water servicing is presented in *Figure 3* in *Appendix B*. The Brazeau Lands development will require a minimum of two watermain feeds to the service the property. The advancement of adjacent development areas and their associated watermain networks/sizing will ultimately dictate the preferred connection locations based on where those future terminations will be.

Based on the nearby existing infrastructure, and surrounding development plans, it is proposed that an interim extension of the existing Dundonald Drive 300mm watermain will provide service to the northeast portion of the property. In addition, the second proposed feed to service Brazeau will be through the Drummond Lands from the proposed 300mm watermain that is being advanced for the Tamarack Meadows development north of the property (Note: Servicing through the Drummond Lands is

18-1030

being advanced based on an agreement with that landowner. A permission letter from Drummond will be provided at detailed design once the alignments are finalized). Other future connections will be via an extension of the existing 300mm watermain along Kilbirnie Drive (proposed in Stage 2 of Quinn's Pointe) which will provide service to the site through the Minto property to provide service to the south portion of the property (if required). If necessary, an additional interim feed could be provided from the 250mm watermain from Fameflower Street. This requirement would be assessed at detailed design for the development area. Coordination with the adjacent landowners/designers at the time of detailed design will be undertaken in order to minimize throwaway interim infrastructure where possible.

The **BSUEA MSS** detailed various scenarios for the watermain network and at the time of detailed design, detailed hydraulic modelling will be undertaken to verify that the proposed on-site, and any off-site, watermains are in conformance with all relevant criteria for the development area as a whole or based on any phased development. This would include consideration given to the advancement of the Minto Quinn's Pointe development to the south of the Brazeau Lands based on the current submission to the City of the "Servicing Brief – Quinn's Pointe Residential Stages 2, 3 & 4" prepared by J.L. Richards (October 2018) in support of the proposed Minto draft plan. The proposed phasing and watermain layout are found in the "BSUEA Conceptual Watermain" Drawing CWM found in **Appendix B**.

The water analysis contained in the **BSUEA MSS** and the Quinn's Pointe design report utilized system level water demands as developed by the City due to the fact that the number of units and densities resulted in an overall population that would exceed 3,000. The system level demands listed in Table 7-1 of the **MSS** can be found in **Appendix B** and are summarized as follows:

Land Use Type	Consumption Rate				
JLR BSUEA MSS, May 2018 for Population Exceeding 3000 Persons					
Single Family Residential	180 L/cap/day				
Multi-unit Residential (Townhouse / Back to Back)	198 L/cap/day				
Apartment Residential	219 L/cap/day				
Commercial	50,000 L/ha/day				
Institutional	50,000 L/ha/day				
Outdoor Water Demand	1049 L/unit/day (single detached)				

Table 1A:	Water Supply Design	Criteria (System	Level Demands)
-----------	---------------------	------------------	----------------

At the detailed design stage, if desired by the City, the typical Water Supply Design Criteria to be used is as summarized in the following table:

18-1030

Design Parameter	Value
Extracted from Section 4: Ottawa Design Guidelines, Wate	er Distribution (July 2010)
Residential – Detached Single	3.4 p/unit
Residential – Townhome/ Semi	2.7 p/unit
Residential – Apartment	1.8 p/unit
Minimum Watermain Size	150 mm diameter
Minimum Depth of Cover	2.4 m top of watermain to finished grade
Normal operating conditions desired operating pressures	350 kPa and 480kPa
During fire flow operating pressure must not drop below	140 kPa

Table 1B: Water Supply Design Criteria (Typical)

Alternatively, the MECP Design Criteria will be used to calculate water demands during detailed design.

The estimated water demands within the **BSUEA MSS** were summarized in Table 7-2 (excerpt found in **Appendix B**). The table summarized a total population of 1,194 for the Brazeau Lands development area along with some commercial and institutional components. Based on the current development concept the water demand table would need to be refined to reflect a revised residential unit count and the removal of the commercial, institutional and high density components. Based on the current development area is proposed to have approximately 381 single family homes and 170 towns with associated populations of 1,296 and 459 respectively. The adjusted water demands are summarized in the following table:

Table 1C:	Estimated	water	Demands	- Brazeau	Land	Updates	

Design Parameter	Area (ha)	Units	Pop.	ADD SFH 1	ADD MLT ²	ADD APT ³	ADD COM ⁴	ADD INS ⁵	Total BSDY	OWD ⁶	Total MXDY
From Table 7-2 of MSS	12.72	398	1194	1.56	0.87	0.17	0.39	0.85	3.84	2.67	6.51
Revised per Updated Concept Plan	24.39	551 ⁷	1755	2.70	1.05	0	0	0	3.75	4.63	8.38
		+153	+561						+0.09	+1.96	+1.87

1 Daily Demand, Single Family Homes, L/s (see Table 1A for Consumption Rate)

2 Average Daily Demand, Multi-Units (Townhouses and Back to Back Unit) L/s

3 Average Daily Demand, Apartment Units, L/s

4 Average Daily Demand, Commercial, L/s

5 Average Daily Demand, Institutional, L/s

6 Outdoor Water Demand, L/s, calculated as 1,049 L per SFH unit per day per MSS

7 Comprised of 381 Singles Family Homes and 170 Townhouses (maximum yield based on roadway frontages)

From Table 7-2 the overall Total BSDY increased by 0.09 L/s (to 18.75 L/s) which is a 0.5% increase over the previous 18.66 L/s. The total MXDY increases by 1.87 L/s which is a 5.9% increase over the previous 31.48 L/s.

18-1030

Fire Flow requirements are to be confirmed in accordance with Local Guidelines (Fire Underwriters Survey), City of Ottawa Water Supply Guidelines, and the Ontario Building Code, upon development of detailed concepts for the detached singles, townhomes, and the parks.

3.3 Water Supply Conclusion

The subject lands have been reviewed within the **BSUEA MSS** for the BSUEA development areas. It is anticipated that in the interim condition the Brazeau Lands can be serviced by City of Ottawa infrastructure by the extension of existing watermains that are east of the property and a future connection north of the property. At the time of detailed design the site will be subject to detailed watermain analysis that will consider any adjacent system expansions (i.e. Quinn's Pointe development area) and confirmation of any staged/interim infrastructure that may be required to facilitate development of the Brazeau Lands. The proposed water supply design will conform to all relevant City and MECP Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

Sanitary flows from the BSUEA were proposed to outlet to the existing 900mm diameter Greenbank Road sanitary trunk sewer. The existing South Nepean Collector (SNC) will provide the sanitary outlet for the entire Barrhaven South Community, which includes the BSUEA development area.

Trunk sanitary sewers exist north of the Brazeau Lands area and are located along Cambrian Road (see JLR's *Master Sanitary Drainage Area* plan 'MSAN' in *Appendix C*). The outlet connection point to existing for the Brazeau Lands is as follows:

Existing 500 mm / 600 mm / 750 mm diameter sanitary trunk running east on Cambrian Road then extending north along existing Greenbank Road and east to the South Nepean Collector (SNC). The current sewer termination is at the New Greenbank Road alignment.

As per the **BSUEA MSS**, the subject property is tributary to the existing sanitary trunk sewer along Cambrian Road.

4.2 Wastewater Design

The subject property is planned to be serviced by an internal gravity sanitary sewer system that will generally follow the local road network with select servicing easements and land crossing permissions as required to achieve efficiencies in servicing and

grading designs. The wastewater servicing plan (*Drawing 3*), design sheets and background BSUEA MSS information can all be found in *Appendix C*.

The **BSUEA MSS** had proposed that the wastewater outlet from the Brazeau Lands would tie into the off-site Cambrian Road trunk sewer at existing sanitary 'EX MH57A' via the Future Greenbank Road alignment. The *Master Sanitary Drainage Area* plan 'MSAN' from the **BSUEA MSS** is provided in **Appendix C** for reference. Also shown in the 'MSAN' drawing is the proposed sanitary routing for the Drummond Lands immediately north of the Brazeau Lands. The Drummond lands are proposed to be conveyed to Cambrian Road (MA11 to MA10) through Tamarack's "The Meadows Phase 7 & 8" (**Meadows**) development area at 3640 Greenbank Road (D07-16-18-0011). Given the advancement of the Tamarack development (also being designed by DSEL – Project No. 19-1089) this alignment is now also the preferred routing option being proposed for the Brazeau Lands. Discussions have been advanced with both of the landowners to the north and permissions will ultimately be obtained to facilitate this routing.

4.2.1 Brazeau Lands

In the **BSUEA MSS**, Table 6-3 (provided in **Appendix C**) summarized the anticipated flows from the Brazeau Lands. With a more detailed development concept, the site statistics are refined and the sanitary design sheet found in **Appendix C** more accurately reflects the anticipated sanitary flows. As per Section 3.2 of this report, the anticipated unit count is 381 single family homes and 170 townhouse units. Applying the City of Ottawa wastewater design criteria to the development area, the estimated peak sanitary flows from the Brazeau property are projected to be approximately 25.78L/s versus the 21.50L/s (+4.28/s) previously summarized in the JLR's Table 6-3.

Table 6-4 in the **BSUEA MSS** identified critical residual capacities in existing trunk sanitary sewers associated with the BSUEA area. Specifically, the Cambrian Road sewer is the outlet for the Brazeau Lands property and has a limiting pipe reach from existing MH13A to MH15A with a residual capacity of approximately 52.9L/s. The additional 4.28L/s of anticipated sanitary flows uses approximately 8% of the residual capacity leaving 48.62L/s. Review of the **BSUEA MSS** sanitary design sheet indicates that there are no other sanitary sewer constraints up to the SNC.

4.2.2 Tamarack Development (The Meadows)

Detailed design submissions for Tamarack's *Meadows* development have been submitted to the City of Ottawa. The design and reporting for the development incorporated the inclusion of future flows from both the Drummond and Brazeau properties. Various excerpts from that report (external drainage area plans, design sheets and report discussion) are provided in *Appendix C* for reference.

18-1030

The proposed invert for the 375 mm sanitary sewer at the southern property limit of The Meadows has been established based on preliminary design for the future Drummond development, as illustrated in the attached '*Drummond Pond – Sanitary Constraints Figure*' in *Appendix C*. The design of the Drummond sanitary sewer system is based on constraints associated with:

- a) crossing under the future Drummond storm sewer, resulting in a maximum sanitary sewer obvert elevation of 94.94 m at the southern boundary of The Meadows; and
- b) providing minimum cover (2.5 m) over the future Drummond sanitary sewer at the eastern boundary of the Drummond drainage area identified in the BSUEA MSS, adjacent to future Greenbank Rd, resulting in a minimum sanitary sewer obvert elevation of 94.33 m at the southern boundary of The Meadows.

Based on the above constraints, and factoring in an additional 0.35 m factor of safety to account for the preliminary nature of the future Drummond development servicing design, a minimum sewer invert of 93.60 m is required at the southern boundary of The Meadows in order to provide a gravity service outlet for the future Drummond Lands development as per the BSUEA MSS. The proposed 375 mm diameter sanitary sewer within Delphinus Avenue has been designed with an invert of 93.60 m at the southern boundary of The Meadows. This invert could also service the Brazeau Lands.

- The excerpted Wastewater portion of the DSEL *Meadows* report, along with appendix exhibits, demonstrate the available capacity in the downstream system(s);
- The *Meadows* Sanitary Drainage Plan No. 43 illustrates the external drainage areas accounted for in the design of the sewers and profile plan No. 14 shows the connection;
- The *Meadows* Sanitary Design Sheet (August 2019) demonstrates the system residual capacity with external Brazeau Land areas incorporated.

The submitted Meadows report summarizes that the proposed routing can accommodate the Brazeau Lands development area.

4.2.3 Wastewater Design Criteria

The following Table summarizes the City design guidelines and criteria applied in the preliminary sanitary design information above and detailed in *Appendix C*.

Design Parameter	Value			
Current Desig	gn Guidelines			
Residential - Single Family / Townhome	3.4 p/unit & 2.7 p/unit respectively			
Residential – Apartment	1.8 p/unit			
Average Daily Demand	280 L/d/person			

FUNCTIONAL SERVICING REPORT CAIVAN COMMUNITIES

BRAZEAU LANDS

18-1030

Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0		
Commercial / Institutional Flows	28,000 L/ha/day		
Commercial / Institutional Peak Factor	1.5		
Infiltration and Inflow Allowance	0.33 L/s/ha		
Park Flows	28,000 L/ha/d		
Park Peaking Factor	1.0		
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$		
Minimum Sewer Size	200mm diameter		
Minimum Manning's 'n'	0.013		
Minimum Depth of Cover	2.5m from crown of sewer to grade		
Minimum Full Flowing Velocity	0.6m/s		
Maximum Full Flowing Velocity	3.0m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Desubdivisions in City of Ottawa.	sign Guidelines, October 2012, and recent residential		

4.3 Wastewater Servicing Conclusion

The subject property will be serviced by local sanitary sewers which will outlet northward to future sanitary sewers within the Drummond Lands and Tamarack *Meadows* development areas. The sewers connect to existing sewers along Cambrian Road as demonstrated in the *BSUEA MSS*. There is residual capacity in the downstream sewers providing sufficient capacity for the peak sanitary flows for the subject property.

18-1030

5.0 STORMWATER CONVEYANCE

5.1 Existing Stormwater Drainage

The BSUEA is tributary to three sub-watersheds as depicted in the 'Figure 3-1' excerpt from the **BSUEA MSS** provided in **Appendix D**. The Brazeau Lands are within the Jock River Subwatershed.

Due to the current land use for mineral extraction the majority of the land area is lower than the surrounding topography. As identified in the **BSUEA MSS**, the BSUEA *Existing Condition Report* identified that the original drainage pattern for the development area was northwards via overland flow paths with no defined channels. Per the existing topography characterized within available City of Ottawa base mapping, flows from the subject property will now be ultimately conveyed to the Jock River by storm systems (pipes and ditches as required) along Borrisokane Road.

5.2 Proposed Stormwater Management Strategy

The future flows from the land area are planned to meet the following criteria per the **BSUEA MSS**:

- Meet the existing flow in the downstream system;
- Meet the quality control target of 80% TSS removal as per the Jock River Reach One Subwatershed Study (Stantec, 2007); and,
- > Preserve pre-infiltration condition levels (Section 5.3.4 of **BSUEA MSS**)

In order to provide drainage conveyance to a Borrisokane Road storm outlet, the site grading will be adjusted to convey flows westward. As noted in the **BSUEA MSS**, the *Existing Conditions Report* for the BSUEA identified that the culvert downstream of the aggregate properties receives a pre-development flow of 1,300 L/s during the 1:100 year event (see Figure 3-1, and Tables 5-2 and 5-5 in **Appendix D** from the ECR noting the constrained culvert CVR-C1). During detailed design, servicing of both properties will be developed such that the downstream pre-development flow is not exceeded. Any downstream systems should have sufficient capacity for the pre-development flow.

The **BSUEA MSS** conceptualized the following requirements for the development areas:

- The design of the storm drainage system has been undertaken using the dualdrainage approach. The **BSUEA MSS** sets out the design criteria for future draft plan and site plan applications for the BSUEA.
- Two (2) separate storm servicing solutions were developed; one conventional servicing strategy and one that incorporates the Etobicoke Exfiltration System

(EES) or alternative, which was recommended (see **BSUEA MSS** Drawing MST-2 for details and Section 5.2.1 of this report for discussion).

- The downstream boundary conditions or flow criteria to achieve are developed in the **BSUEA MSS** and are used in the design constraints.
- Allowable minor system release rates were set at the required storm event and future design should maintain the same release rate criteria.
- Stormwater management facilities have been identified in the stormwater management solution for the aggregate extraction areas.

The stormwater management designs will consist of:

- A storm sewer system designed to capture at least the minimum design capture events required under PIETB-2016-01;
- One Stormwater Management (SWM) Pond designed to provide Enhanced Level of Protection (80% total suspended solids (TSS) removal) per MECP guidelines, via treatment of the stormwater captured by the storm sewer network. The SWM pond will provide controls to levels which respect any downstream predevelopment levels;
- An on-site road network designed to maximize the available storage in the onsite road network for the 100-year design event, where possible, with controlled release of stormwater to the minor storm system; and
- An overland flow route designed to safely convey stormwater runoff flows in excess of the on-site road storage.

5.2.1 Infiltration

Within the **BSUEA MSS**, Section 5.4.4 discussed the recommendation of distributed infiltration for development areas. An analysis was carried out and summarized in the *Existing Conditions Report* which determined the various contributions of the water budget based on long-term simulation.

The section also notes that the overall pre-development infiltration from the **BSUEA MSS** area was determined but that the aggregate extraction areas were excluded in that determination. Ongoing investigations for both the Brazeau and Drummond properties have been completed and are summarized in the attached "Groundwater Infiltration Review" memorandum completed by Paterson Group (see **Appendix D** for reference). The memorandum summarizes the estimate infiltration rates that could be anticipated throughout the sites for various soil type conditions that were found during their investigations. These values will be used during the detailed design determinations.

Section 5.5 of the **BSUEA MSS** discusses the various storm servicing strategies for the development areas. The section went through the various options to achieve the required infiltration targets with the preferred arrangement being the Etobicoke

18-1030

Exfiltration System (EES) Infiltration Strategy. Other alternatives were reviewed, however the EES system is the most suitable for the site.

A key point of note, as required by the **MSS**, is that capture of stormwater by the exfiltration system is to be strategically considered insofar as the system is to be installed on local roads where the surface runoff is less impacted by the City's winter road salting program. Therefore collector and arterial roads will have conventional storm sewer installations that will convey flows to the proposed downstream OGS unit and end-of-line facility.

5.3 Stormwater Pond Location

The **BSUEA MSS** currently shows a stormwater pond servicing scenario on each of the Drummond and Brazeau Lands outside of the urban development area (Refer to attached 'Barrhaven South Urban Expansion Area – Master Storm Drainage Plan EES') drawing from the **BSUEA MSS** for illustration). However, this concept was proposed in the **BSUEA MSS** due to the desire at that time to not have the two properties 'linked' and dependent upon one another in order to advance development.

As noted in prior sections of this report, the two properties are now coordinating servicing strategies to the benefit of both landowners, and the City, as follows (refer to the Drawing 1 – Storm Servicing Plan in *Appendix D*):

- The single pond option will be a dry facility with an oil-grit separator unit to treat any stormwater requiring treatment. This is in line with the **MSS**;
- If a pond was proposed within the Brazeau Lands location shown in the **MSS**, it would have required a large box culvert outlet in order to convey emergency flow out to Borrisokane Road due to topography constraints. Based on an increase in elevation downstream of that outlet, the emergency flows could not be conveyed overland. With the single pond concept on the Drummond Lands, a box culvert would no longer be required due to the more suitable topography at the Drummond outlet and the associated availability of emergency relief;
- A single pond option keeps more infrastructure within the new development areas and minimizes infrastructure proposed within the Borrisokane Road right-of-way (ROW);
- In accordance with the City's typical preference, there will be a reduction in maintenance costs with one less facility to manage.

Similar to the changes associated with the sanitary outlet revision, the only impacted properties are those proponents that are directly benefitting from the changes and would be considered a Minor Change per Section 11.1.1 of the **BSUEA MSS**.

18-1030

5.4 Post-Development Stormwater Management Targets

Stormwater management requirements for the proposed alternative Stormwater management scheme have been adopted from the *Jock River SWS*, *City Standards*, and the *MECP SWMP Manual*.

Given the general criteria mentioned above, the following specific standards are expected to be required for stormwater management within the subject property:

- Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average TSS removal efficiency of 80%, as defined by the MECP prescribed treatment levels;
- Downstream receiving drainage features, culverts, and sewers will be assessed for responses to planned stormwater management outflows, and infrastructure rehabilitation or capacity improvement measures will be planned, as required;
- Storm sewers on local roads are to be designed to provide at least a 2-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01;
- Storm sewers on collector roads are to be designed to provide at least a 5-year level of service without any ponding per the City's latest Technical Bulletin PIEDTB-2016-01;
- For less frequent storms (i.e. larger than 2-year or 5-year), the minor system sewer capture will be restricted with the use of inlet control devices to prevent excessive hydraulic surcharges;
- Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s;
- For the 100-year storm and for all roads, the maximum depth of water (static and/or dynamic) on streets, rearyards, public space and parking areas shall not exceed 0.35 m at the gutter;
- The major system shall be designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public right-of-way ROW, or adjacent to the ROW, provided the water level does not touch any part of the building envelope; must remain below all building openings during the stress test event (100-year + 20%); and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope;
- Flow across road intersections shall not be permitted for minor storms (generally 5-year or less);
- When catchbasins are installed in rear yards, safe overland flow routes are to be provided to allow the release of excess flows from such areas. A minimum of 30

18-1030

cm of vertical clearance is required between the rear yard spill elevation and the ground elevation at the adjacent building envelope; and

The product of the maximum flow depths on streets and maximum flow velocity must be less than 0.60 m²/s on all roads.

5.4.1 Quality Control

Per the *Jock River SWS,* Enhanced quality treatment will be provided for stormwater runoff from the subject property, corresponding to a long-term average Total Suspended Solid removal efficiency of 80%, as described by the MECP prescribed treatment levels. This will be achieved via the proposed EES system installations and oil-grit separator unit(s).

5.4.2 Quantity Control

As noted in the *Jock River SWS*, quantity control is not required for the Jock River; however, based on past reports (*BSUEA MSS* and Existing Condition Report), the limited capacity of the infrastructure along Borrisokane Road will require that the stormwater management facilities provide a storage volume for quantity control. Any infrastructure upgrades or adjustments relating to the Borrisokane Road ROW will require appropriate permits and approvals from the Ministry of Transportation.

5.5 Stormwater Management Design

As shown on **Drawing 1**, the proposed stormwater management design consists of a proposed stormwater management (SWM) pond to treat stormwater prior to discharge along Borrisokane Road. The pond will be located within the portion of the quarry land that is between the residential area to be developed (within the urban boundary) and Borrisokane Road. The facility will be sized to meet the MECP Enhanced Level of Protection criteria with 80% total suspended solids removal.

The SWM pond will outlet to the Borrisokane Road roadside ditch. It is proposed that there will be a new 900mm/1200mm storm sewer installation along Borrisokane Road which extends north of Cambrian Road where it discharges to the western roadside ditch.

5.5.1 Borrisokane Road – Ministry of Transportation Requirements

Borrisokane Road, along the frontage of the Brazeau Lands development area and northwards to Cambrian Road, is owned by, and under the jurisdiction of, the Ministry of Transportation. As such, any proposed underground stormwater infrastructure or grading/landscaping will require permits to facilitate the design and implementation of those works. At detailed design the appropriate permit applications will be submitted along with the required level of detail after further pre-consultation is held with appropriate staff within the Corridor Management Section.

18-1030

Culverts:

For any stormwater flows outletting to any existing, or new, Borrisokane Road ROW culverts the stormwater management reporting will evaluate peak flow rates, velocities and headwater levels at pre- and post-development conditions for design and regulatory storms.

Ditches:

For any stormwater flows outletting to existing Borrisokane Road ROW ditches, the stormwater management reporting will evaluate peak flow rates, velocities and depth of flow at pre- and post-development conditions for design and regulatory storms.

Inlet Control Devices:

Insofar as the Ministry has indicated that they do not recognize any benefit from the attenuation of storm water runoff from inlet control devices, the SWM reporting will review conditions in the circumstance where on-site SWM measures do not operate as intended in order to evaluate potential impacts and summarize design contingencies as required.

5.6 Proposed Minor System

The subject property is expected to be serviced by an internal gravity storm sewer system that is to generally follow the local road network and servicing easements as required. The drainage will be conveyed within the underground piped sewer system to the proposed SWM pond with select areas of local streets that will have the EES installed to achieve infiltration targets.

Street catchbasins will collect drainage from the streets and front yards, while rear yard catchbasins will capture drainage from backyards. Perforated catch basin leads will be provided in rear yards, except the last segment where it connects to the right-of-way which will be solid pipe, per City standards.

The preliminary rational method design of the minor system captures drainage for storm events up to and including the 2-year (local) and 5-year (collector) event assuming the use of inlet control devices (ICD) for all catchbasins within the subject property. The peak design flows are calculated based on an average predicted runoff coefficient (C-value) of 0.72 for the development areas and 0.25 for the grassed areas. As detailed design progresses, the runoff coefficients will be refined to reflect the proposed building envelopes, driveways and other details.

The following Table summarizes the standards that will be employed in the detailed design of the storm sewer network. The preliminary drainage area information can be found in *Drawing 1* and rational method design sheets are provided in *Appendix D*.

18-1030

Design Parameter	Value					
	1:2 yr (PIEDTB-2016-01) for local roads, without ponding					
Minor System Design Return Period	1:5 yr for collector roads, without ponding					
Major System Design Return Period	1:100 year					
Intensity Duration Frequency Curve (IDF) 2-	. A					
year storm event:	$i = \frac{A}{\left(t_c + B\right)^C}$					
A=732.951 B=6.199 C=0.810	$(l_c + D)$					
5-year storm event: A = 998.071 B = 6.053 C = 0.814						
Minimum Time of Concentration	10 minutes					
Rational Method	Q = CiA					
	~					
Storm sewers are to be sized employing the	$Q = \frac{1}{2}AR^{\frac{2}{3}}S^{\frac{1}{2}}$					
Manning's Equation	$\mathcal{Q} = \frac{n}{n}$					
Runoff coefficient for paved and roof areas	0.9					
Runoff coefficient for landscaped areas	0.2					
Minimum Sewer Size	250 mm diameter					
Minimum Manning's 'n' for pipe flow	0.013					
Minimum Depth of Cover	1.5 m from crown of sewer to grade					
Minimum Full Flowing Velocity	0.8 m/s					
Maximum Full Flowing Velocity	6.0 m/s					
Clearance from 100-Year Hydraulic Grade	0.30 m					
Line to Building Opening						
Max. Allowable Flow Depth on Municipal Roads	35 cm above gutter (PIEDTB-2016-01)					
Extent of Major System	Contained within the ROW, or adjacent to the ROW, provided that the water level not touch any part of the building envelope and remains below the lowest building opening during the stress test event (100-year + 20%) and 15cm vertical clearance is maintained between spill elevation on the street and the ground elevation at the building envelope (PIEDTB-2016-01)					
Stormwater Management Model	DDSWMM (release 2.1), SWMHYMO (v. 5.02) and XPSWMM (v. 10)					
Design Parameter	Value					
Model Parameters	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr, DCAY = 4.14/hr, D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm					
Imperviousness	Based on runoff coefficient (C) where Percent Imperviousness = (C - 0.2) / 0.7 x 100%.					
Design Storms	Chicago 3-hour Design Storms and 24-hour SCS Type II Design Storms. Max. Intensity averaged over 10 minutes.					
Historical Events	July 1st, 1979, August 4th, 1988 and August 8th, 1996					
Climate Change Street Test	20% increase in the 100-year, 3-hour Chicago storm					
Extracted from City of Ottawa Sewer Design Guidelines,	October 2012, and ISSU,					

Table 3: Storm Sewer Design Criteria

18-1030

5.7 Hydraulic Grade Line Analysis

A detailed hydraulic grade line (HGL) modelling analysis will be completed for the proposed system at the detailed design level, based on the 100-year 3-hour Chicago, 12-hour SCS, and 24-hour SCS design storms, including historical design storms and climate change stress test as required. Detailed grading design and storm sewer design will be modified as required to achieve the freeboard requirements set out in Section 5.3 (per PIEDTB-2016-01).

5.8 Proposed Major System

Major system conveyance, or overland flow (OLF), will be provided to accommodate flows in excess of the minor system capacity. OLF is accommodated by generally storing stormwater up to the 100-year design event in road sags then routing additional surface flow along the road network and service easements towards the proposed drainage features to the Jock River, as shown in **Drawing 1**. Stormwater discharges to the Borrisokane Road ROW which will require appropriate permits and approvals from the Ministry of Transportation.

5.9 Proposed Grading

The grading design described in Section 5.9, and shown in **Drawing 2 (Appendix E)**, includes a saw-toothed-road design with 0.15% minimum grade from highpoint to highpoint in order to maximize available surface storage for management of flows up to the 100-year design event where possible.

The proposed site grading has been developed to optimize earthworks and provide major system conveyance to the end-of-line facility, which eventually outlets to the Borrisokane Road ROW and then to the Jock River. Roadway connections to the future New Greenbank Road will be coordinated with that future design based on the EA profile for that roadway. The proposed grading plan can be seen in **Drawing 2** and will conform to City of Ottawa guidelines.

The geotechnical review of the site will provide additional information about the suitability of the site for the proposed services and grading scheme. At the time of detailed design, detailed review and signoff by a licensed Geotechnical Engineer will be required. Any grading onto adjacent properties will be coordinated with adjacent landowners for permissions and retaining walls will be implemented where required.

5.10 Stormwater Servicing Conclusions

The stormwater runoff is designed to be captured by an internal gravity sewer system that is to convey flows to an end-of-line dry SWM pond facility and OGS unit for quality control treatment. An Enhanced Level of Protection will be provided for stormwater runoff from the subject property before being discharged to the Jock River. Quantity

18-1030

control is not required for the Jock River. Notwithstanding, some quantity control by onsite and SWM pond storage will be provided due to downstream infrastructure constraints.

Infiltration targets noted in the MSS will be achieved via the installation of the EES system within local ROWs.

6.0 CONCLUSION AND RECOMMENDATIONS

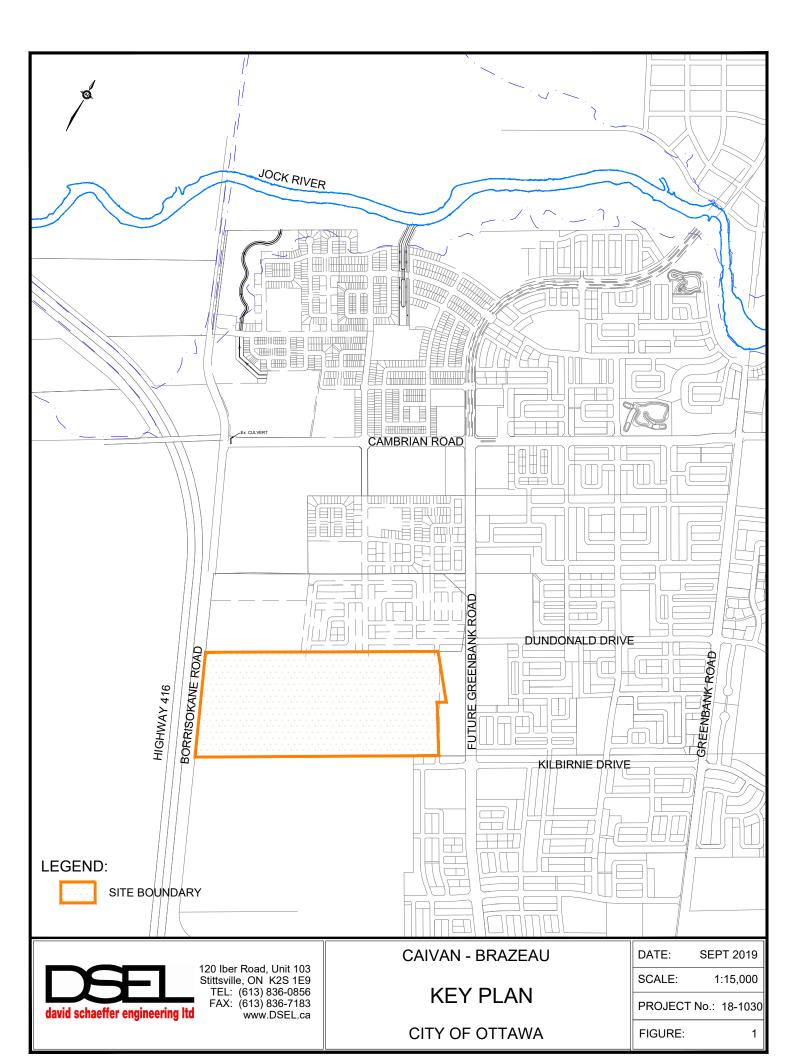
This report provides details on the planned on-site municipal services for the subject property and demonstrates that adequate municipal infrastructure capacity is expected to be available for the planned development of the subject property:

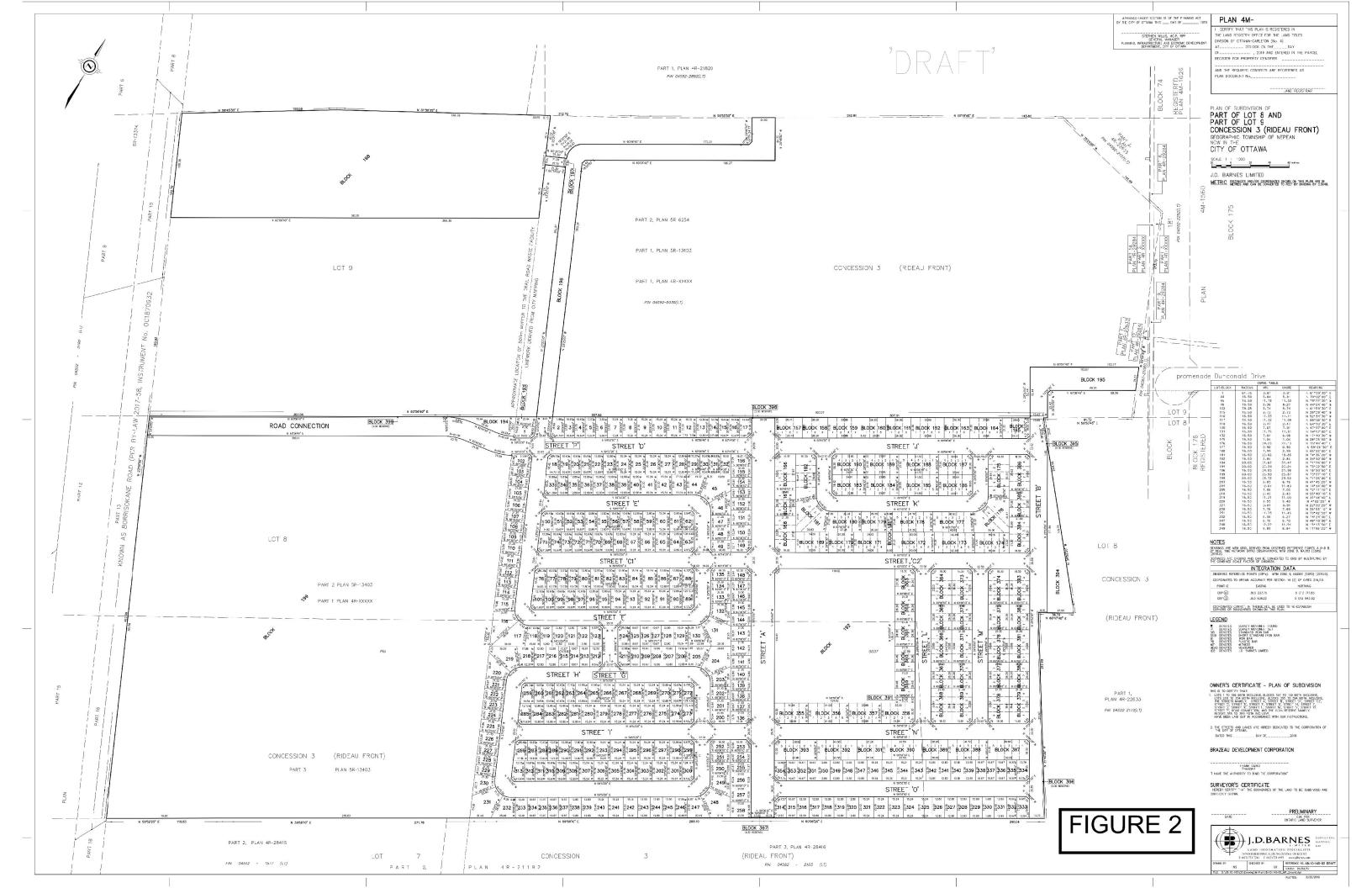
- The subject lands have been reviewed by the BSUEA MSS and has shown that water supply to the property can be provided. The water supply network will be expanded through neighboring properties to meet the water demands of the proposed concept plan via the trunk watermain network and local watermains identified. Detailed modelling will confirm the phasing of the extensions of trunk watermains and sizing of the local watermain network to meet the required level of service. Any interim connection points to the system will be evaluated in the model.
- Sanitary service is to be provided to the subject property via connection to the sanitary sewer located along Cambrian Road through the Drummond and Tamarack lands north of the Brazeau Lands development area. With the inclusion of the subject property, the existing downstream sewers have sufficient capacity to accommodate the subject property's proposed sanitary flows.
- Stormwater service is to be provided by capturing stormwater runoff via an internal gravity sewer system that is to convey flows to a proposed end-of-line dry SWM pond facility for quantity control and OGS unit for quality control treatment. An Enhanced Level of Protection (80% TSS removal) will be provided for stormwater runoff from the subject property before being discharged to the Jock River. Quantity control is not required for the Jock River, however, some quantity control by on-site and SWM pond storage will be provided due to downstream infrastructure constraints. As suggested in the **BSUEA MSS** the infiltration will be achieved via use of the preferred EES system. The ultimate extents of the system is contingent upon site conditions and the composition of fill material used within the site. Paterson has provided guidance with respect to anticipated infiltration rates (based on site investigations) that will be used for guidance in establishing the system extents.
- A detailed Hydraulic Grade Line (HGL) modelling analysis will be completed for the proposed system at the detailed design level.

FUNCTIONAL SERVICING REPORT CAIVAN COMMUNITIES

BRAZEAU LANDS

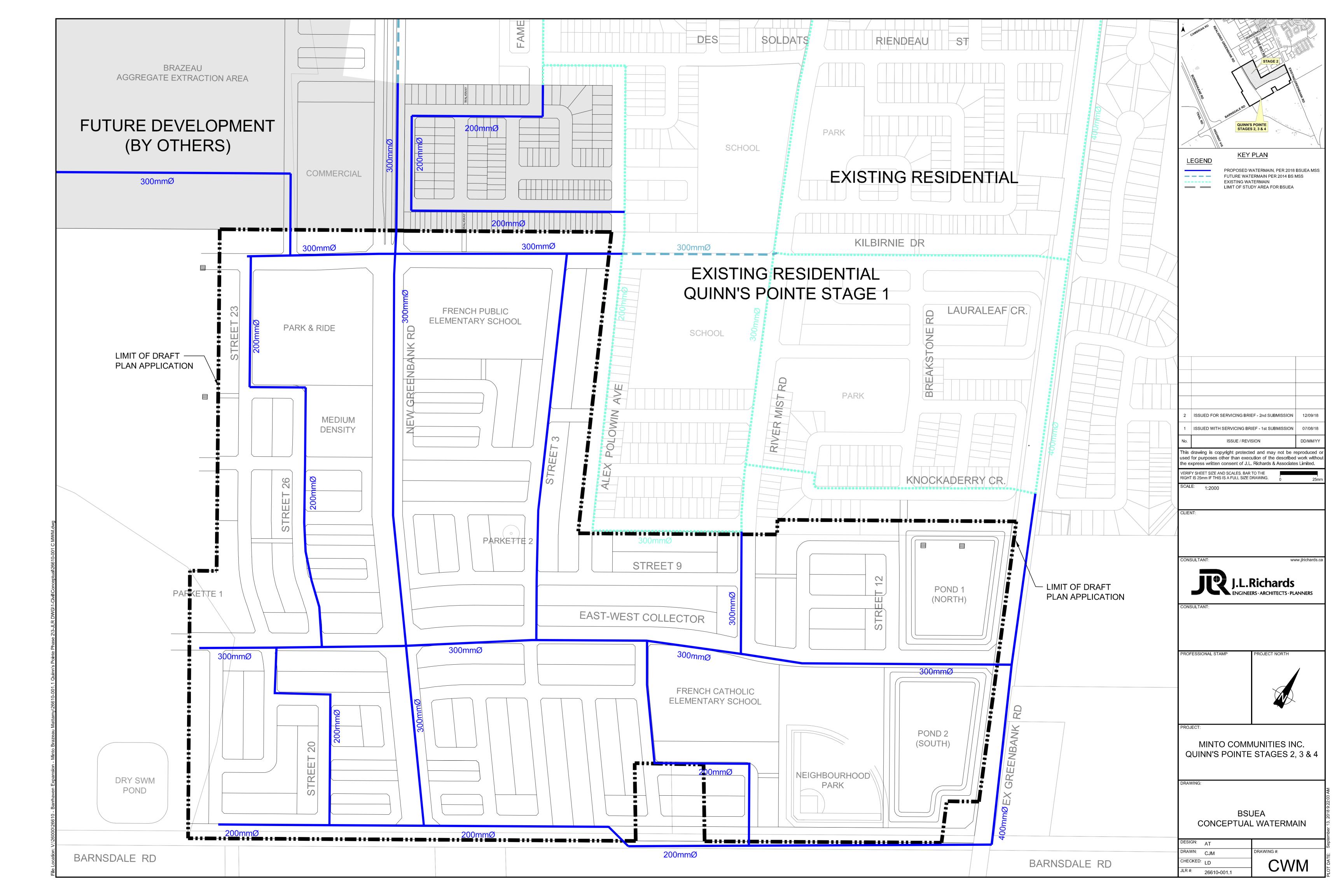
18-1030


Prior to detailed design of the infrastructure presented in this report, this report will require approval under the Planning Act as supporting information for the Plan of Subdivision application. Future project-specific approvals are also expected to be required for the infrastructure presented in this report from the City of Ottawa, MTO, MECP, and Rideau Valley Conservation Authority, among other agencies.


Prepared by David SchaettersEng ingeering Ltd. TOUNNCE OF Per: Kevin L. Murphy, P.Eng.

© DSEL 2019-09-11_FSR_3rd_Submission.doc

DAVID SCHAEFFER ENGINEERING LTD.


APPENDIX A

APPENDIX B

• Feedermains, which have been provided primarily for the purpose of redundancy, shall meet, at a minimum, the basic day plus fire flow demand.

In addition to the above targets, servicing should be carried out to minimize deadends.

7.2.2 Domestic Water Demand

The water demands presented in this section are based on the same unit and population estimates as per the wastewater servicing flows described in Section 6.2.1, which reflects the CDP unit count. The zone/system level criteria for water demands are based on land use type and are in Table 7-1 below. The water demand criteria are consistent with those used in Stantec's Revised Potable Water Servicing Analysis (October 19, 2016). Calculations are summarized below.

Basic Day (BSDY) demands are calculated from the system level water demands for residential, commercial and institutional land uses. Maximum Day (MXDY) demands are calculated by adding an Outdoor Water Demand (OWD) also shown in Table 7-1 below. Peak hour demands result from applying the 72-hour diurnal patterns developed by the City to each type of MXDY demand. The 72-hour diurnal patterns are unique to each type of land use to reflect the different use patterns. The maximum hourly demand observed within the 72-hour patterns is the Peak Hour (PKHR) demand.

The review of the Demonstration Plan (Figure 4-2) has revealed that the number of units and associated densities will result in an overall population that will exceed 3,000. As a result, the water supply analysis presented herein is to be conducted using system level water demands as developed by the City. These system level demands are summarized in Table 7-2.

Land Use Type	Consumption Rate	Units		
Single Family Residential	180			
Multi-unit Residential (Townhouse / Back to Back)	198	L/cap/day		
Apartment Residential	219			
Commercial	50,000	l /ba/day/		
Institutional	50,000	L/ha/day		
Outside Water Demand	1,049	L/SFH/day		

Table 7-1: Theoretical Water Consump	tion Rate
--------------------------------------	-----------

The above system level demands were applied to each of the blocks depicted on the Demonstration Plan. As previously noted, the Brazeau and Drummond aggregate properties have now been accounted as residential usage. It was assumed that residential densities for both properties would be consistent with those for the BSUEA. Based on this exercise, overall water demands of 18.66 L/s and 31.48 L/s were calculated for the basic day (BSDY) and maximum day (MXDY), respectively. It should be noted that MXDY of 31.48 L/s includes an outside water usage of 10.15 L/s.

Table 7-2: Estimate	d Water Demands
---------------------	-----------------

											1	
Land Us	se	Area (ha)	Units	Pop.	ADD SFH⁴	ADD MLT ⁵	ADD APT ⁶	ADD COM ⁷	ADD INS [®]	Total BSDY	OWD ⁹	Total MXDY
Minto ar	nd Ma	attamy	Lands	5								
Schools		4.55							2.63	2.63		2.63
Commer	cial	2.13						1.23		1.23		1.23
Medium- Low Den Resident	nsity	32.90	1080	3378	4.68	2.60				7.27	8.01	15.29
High Density Resident	tial	0.90	120	216			0.55			0.55		0.55
Total		40.48	1200	3594	4.68	2.60	0.55	1.23	2.63	11.69	8.01	19.71
→ Brazeau	ı Agg	regate	Extra	ction A	rea	L	L	L	L			
Schools		1.47							0.85	0.85		0.85
Commer	cial	0.67						0.39		0.39		0.39
Medium- Low Den Resident	nsity	10.30	360	1126	1.56	0.87				2.42	2.67	5.10
High Density Resident	tial	0.28	38	68			0.17			0.17		0.17
Total		12.72	398	1194	1.56	0.87	0.17	0.39	0.85	3.84		6.51
Drummo	ond A	lggreg	ate Ex	tractio	n Area							
		1.25							0.72	0.72		0.72
Schools		TILO										

⁴ Daily Demand, Single Family Homes, L/s

 ⁵ Average Daily Demand, Multi-Units (Townhouses and Back to Back Unit) L/s
 ⁶ Average Daily Demand, Apartment Units, L/s

⁷ Average Daily Demand, Commercial, L/s

⁸ Average Daily Demand, Institutional, L/s

Medium- Low Density Residential	8.72	288	900	1.25	0.69				1.94	2.14	4.07
High Density Residential	0.24	32	58			0.15			0.15		0.15
Total	10.78	320	958	1.25	0.69	0.15	0.33	0.72	3.14	2.14	5.28
Barrhaven South Urban Expansion Area Totals											
<u>Total</u>	63.98	1918	5746	7.48	4.16	0.87	1.95	4.21	18.66	10.15	31.48

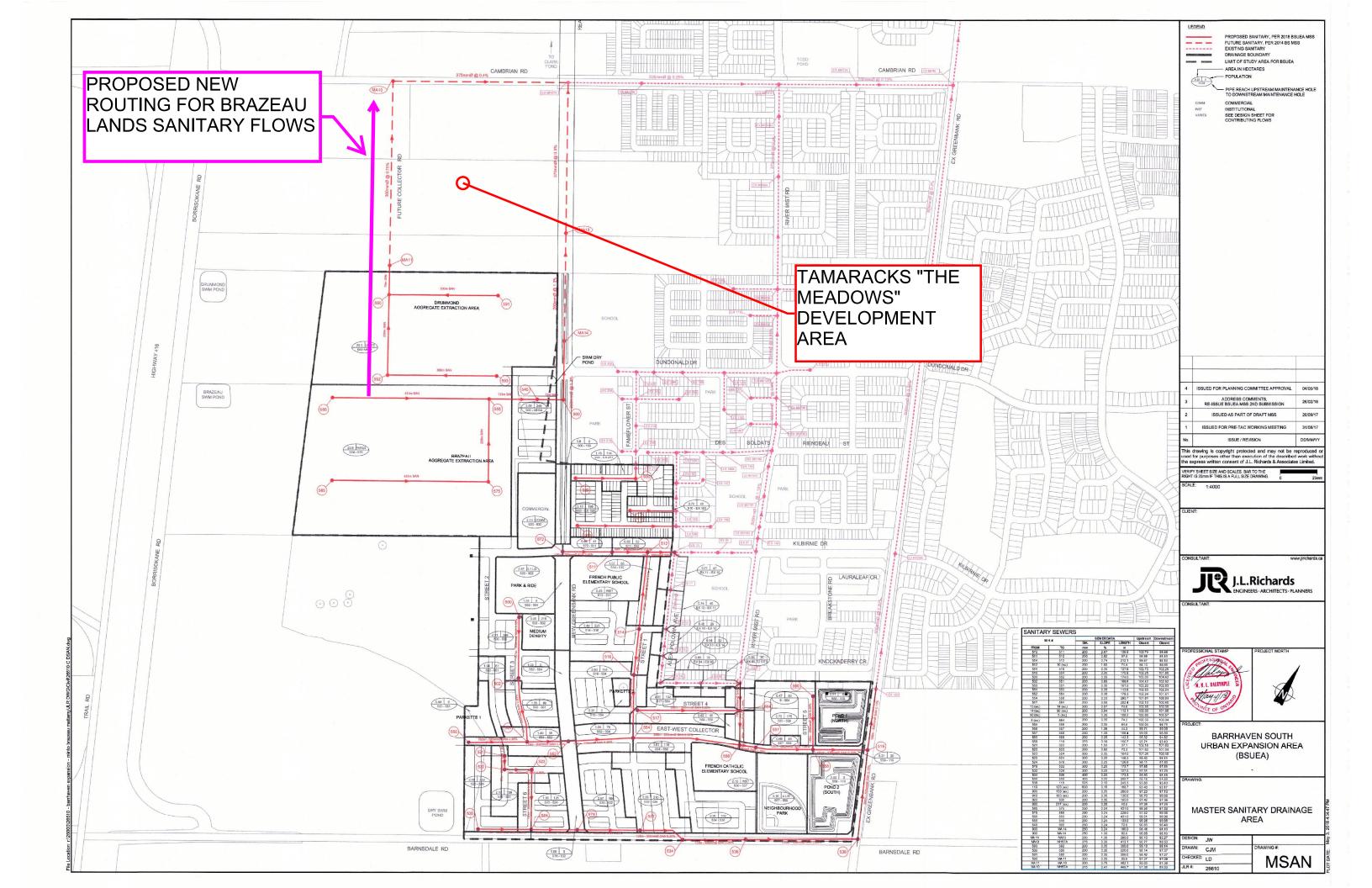
7.2.3 Watermain Sizing and Roughness

The overall watermain layout for the BSUEA is shown on Drawing MWM. Watermain roughness coefficients were determined using the friction factors presented in Section 4.2.12 of the Design Guidelines and summarized in Table 7-3 below. The internal pipe diameters were modelled based on Section 4.3.5 of the Design Guidelines, as summarized in Table 7-4 below.


Watermain Diameter	C-Factor
150 mm	100
200 to 250 mm	110
300 to 600 mm	120
Over 600 mm	130

Table 7-4: PVC Watermain Internal Diameters

Nominal Diameter	Inside Diameter
150 mm	155 mm
200 mm	204 mm
300 mm	297 mm
400 mm	393 mm


7.2.4 Fire Flow

The City standard in regard to fire protection is the Fire Underwriters Survey and Technical Bulletin ISDTB-2014-02. To evaluate the proposed water distribution system, a fire flow of 13,000 L/min (217 L/s) was used in this system level analysis in accordance with the recommendations of the 2013 Water Master Plan.

OCT ZITUT TO TO	SITE BOUNDARY EXISTING WATERMAIN FUTURE WATERMAIN LOCAL WATERMAIN URBAN BOUNDARY
PROJECT No.:	18-1030
SCALE: DATE:	1:10,000 AUGUST 2019
FIGURE:	3

APPENDIX C

was assumed to have 4 washbasins that deliver 375 L/d and four (4) water closets that generate 150 L/hr for 10 hr/day resulting in a total flow of 7500 L/day.

Land Use	Flow Rate	Area (ha)	Units	Pop.	Average Flow (L/S)	Peak Factor	Infiltrati on	Total Flows (L/s)
					Α̈́Ξ,		or	
Minto and Mattamy Land	ls							
Schools	28,000 L/ha/d	4.55			1.50	1.5	1.50	3.8
Park Block	4 L/s	4.39			4.0	1	1.45	5.5
Commercial	28,000 L/ha/d	2.13			0.70	1.5	0.70	1.8
Low-Medium density Residential	280 l/c/d	35.26	1080	3378	11.0	2.92	11.64	43.6
High Density Residential	280 l/c/d	0.90	120	216	0.7	3.51	0.30	2.8
Roads	-	27.00				1	8.91	8.9
Park and Ride		2.57			0.1	1	0.85	1.0
Total		76.8	1200	3594	17.95		25.35	67.4
Brazeau Aggregate Extra	action Area			•			•	•
Schools	28,000 L/ha/d	1.47			0.48	1.5	0.49	1.2
Commercial	28,000 L/ha/d	0.67			0.22	1.5	0.22	0.6
Low-Medium Density Residential	280 l/c/d	10.27	360	1126	3.65	3.21	3.39	15.1
High Density Residential	280 l/c/d	0.28	38	68	0.22	3.63	0.09	0.9
Roads	-	7.95				1	2.62	2.6
Park Block	-	1.48				1	0.49	0.5
Pond Blocks	-	1.78				1	0.59	0.6
Total		23.9		1194	4.57		7.89	21.5
Drummond Aggregate E	xtraction Area							
Schools	28,000 L/ha/d	1.25			0.41	1.5	0.41	1.0
Commercial	28,000 L/ha/d	0.57			0.18	1.5	0.19	0.5
Low-Medium Density Residential	280 l/c/d	8.72	288	900	2.92	3.26	2.88	12.4
High Density Residential	280 l/c/d	0.24	32	58	0.19	3.64	0.08	0.8
Roads	-	6.75				1	2.23	2.2
	•	•			•	•	•	

Land Use	Flow Rate	Area (ha)	Units	Pop.	Average Flow (L/S)	Peak Factor	Infiltrati on	Total Flows (L/s)
Park Blocks	-	1.26				1	0.42	0.4
Pond Blocks	-	1.51				1	0.50	0.5
<u>Total</u>		20.3		958	3.70		6.71	17.8
Barrhaven South Urban I	Expansion Area	a Totals						
Total		121.0		5746	26.22		40.0	106.7

Based on the land uses presented on the Demonstration Plan (Figure 4-2), the BSUEA would generate a peak wastewater flow of approximately 106.7 L/s.

6.3 Wastewater Collection System Strategy

6.3.1 Proposed Sewer System Layout and Sizing

A trunk sanitary sewer system layout was developed based on the ROW corridors identified on the BSUEA Demonstration Plan for the purposes of demonstrating the feasibility of providing wastewater servicing for the BSUEA lands, refer to the Key Servicing Plans. Proposed trunk sanitary sewers were sized based on the aforementioned design criteria and the drainage areas depicted on the Master Sanitary Drainage Area Drawing MSAN, refer to the BSUEA Sanitary Sewer Design Sheet (Appendix J) for detailed calculations. Final configuration and sizing of the wastewater collection system will be confirmed at detailed design of each subdivision stage. At such time, refinements may be implemented.

The proposed BSUEA trunk sanitary sewers will discharge to existing/planned sanitary sewers at the following six (6) locations, as shown on Figure 6-2:

- 1. The Future Collector Road
- 2. New Greenbank Road
- 3. Flameflower Street
- 4. Alex Polowin Avenue
- 5. Kilbirnie Drive
- 6. Greenbank Road

It is noted that the residual capacity in the River Mist Road trunk sanitary sewer has in fact increased with the addition of the BSUEA peak flows. This is the result of adding a relatively small tributary area while reducing the average daily residential flow from 350 L/cap to 280 L/cap combined with diverting some existing drainage areas, located in Quinn's Pointe, away from the outlet.

Existing Trunk Sanitary Sewer	Limiting Pipe reach	Current Minimum Residual Capacity	Proposed BSUEA Tributary Lands	Proposed BSUEA Tributary Area	Revised Minimum Residual Capacity with inclusion of BSUEA Peak Flow
Cambrian Road	MH 13A to MH15A	51.4 L/s	Drummond, Brazeau, Mattamy West (Residential only)	48 ha	52.9 L/s 🗲
River Mist Road	MH 102A to MH 17A	14.4 L/s	Mattamy East, Mattamy West (Commercial only), Northwest corner of Minto	12 ha	30.5 L/s
River Mist Road	MH 1 to MH 163	5.58 L/s	Minto	5 ha	4.63 L/s
Greenbank Road	MH 45 to MH 435A	295.4 L/s	Minto	60 ha	283.2 L/s

 Table 6-4: Residual Capacity Comparison in the BSC Trunk Sanitary Sewers

With the addition of the BSUEA lands, a total theoretical peak wastewater flow of 403.7 L/s was calculated at the most downstream maintenance hole in the BSC (MH 501A on Greenbank Road), as indicated in the Sanitary Sewer Design Sheet in Appendix J. This calculated theoretical peak flow is less than the 590 L/s allocated for all of the BSC in Stantec's City-wide 2013 Wastewater Collection System Assessment. In this assessment, Stantec created a hydrodynamic model of trunk sanitary sewers (450 mm in diameter and greater) which demonstrated that the existing downstream trunk system could accommodate the theoretical flow of 590 L/s generated by the BSC with no risk of surcharging or basement flooding. Consequently, Stantec concluded that system upgrades were not required to accommodate the anticipated growth in the BSC. Since the Stantec assessment considered a peak flow that was 186 L/s greater than that calculated for the BSC and the BSUEA combined, it is understood that the existing trunk sanitary sewers located downstream of the BSC can accommodate the additional flows generated by the BSUEA.

								SHIPPP SHIPPP	OFES	SION	X FEE																		
SANITARY SEWER CA	LCULATION	SHEET		ned			S) ~]	Ŵ. L 10016		E.															6	Han		
Manning's n=0.013									Au		DA I	/															uuv	VU.	
STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	RESIDENTI, UNITS Singles	UNITS Townhouse	POPULATION POP.	ARCAL	POP	PEAK FACT	ASS A	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PA AREA (ha)	RK ACCU. AREA (ha)	C+I+I PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	ON INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DIST (m)	DIA (mm)	SLOPE	PIPE CAP. (FULL) (I/s)	RATIO Q act/Q cap	(FULL) (m/s)	L. (ACT.) (m/s)
ruelle Echinacea Lane	817A	818A	0.71	12	12		41	0.71	41	3.67			0.00		0.00		0.00	0.00	0.71	0.71	0.23	0.72	87.0	200	3.40	60.48	0.01	1.93	0.64
To rue Cressida Street, Pipe 819A - 820	818A	819A	0.34	6	6		21	1.05 1.05		3.64			0.00		0.00		0.00	0.00	0.34	1.05	0.35	1.08	48.0		1.45	39.49	0.03	1.26	0.54
voie Crested Lark Way	808A	809A	0.24	7		7	19	0.24		3.71	0.23		0.00		0.00		0.00	0.00	0.24	0.24	0.08	0.31	49.0	200	1.80	44.00	0.01	1.40	0.38
To croissant Amarnath Crescent, Pipe 8	09A - 815A 805A	806A	0.33	5	5		17	0.24	19 17	3.71	0.20		0.00		0.00		0.00	0.00	0.33	0.24	0.11	0.31	51.0	200	1.60	41.49	0.01	1.32	0.38
To croissant Amamath Crescent, Pipe 8	806A 807A 09A - 815A	807A 809A	0.13 0.57	1	1 11		4 38	0.46 1.03 1.03	21 59 59	3.70 3.64			0.00 0.00 0.00		0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00	0.13 0.57	0.46 1.03 1.03	0.15 0.34	0.40	11.5 72.0		1.55 0.35	40.83 19.40	0.01 0.05	1.30 0.62	0.42 0.33
croissant Amarnath Crescent Contribution From voie Crested Lark Wa								0.24	19				0.00		0.00		0.00		0.24	0.24									
Contribution From voie Crested Lark Wa To rue Cressida Street, Pipe 815A - 816.	809A	815A	0.22	9		9	25	1.03 1.49 1.49	59 87 87	3.61	1.02		0.00 0.00 0.00		0.00 0.00 0.00		0.00 0.00 0.00	0.00	1.03 0.22	1.27 1.49 1.49	0.49	1.51	77.5	200	0.35	19.40	0.08	0.62	0.36
	810A 811A	811A 812A	0.27	12		12	<u>33</u> 0	0.27	<u>33</u> 33	3.68 3.68	0.39 0.39		0.00		0.00		0.00	0.00	0.27	0.27 0.29	0.09	0.48 0.49	90.0		0.65	26.44 19.40	0.02	0.84	0.32
	812A 813A 814A	813A 814A 815A	0.04 0.02 0.07	3		3	0 0 9	0.33 0.35 0.42	33 33 42	3.68 3.68 3.66	0.39 0.39 0.50		0.00 0.00 0.00		0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00 0.00	0.04 0.02 0.07	0.33 0.35 0.42	0.11 0.12 0.14	0.50 0.51 0.64	30.5 11.0 26.5	200	0.35 0.35 1.25	19.40 19.40 36.67	0.03 0.03 0.02	0.62 0.62 1.17	0.26 0.26 0.44
To rue Cressida Street, Pipe 815A - 816.	A				<u> </u>			0.42	42				0.00		0.00		0.00			0.42									
rue Cressida Street Contribution From croissant Amamath C Contribution From croissant Amamath C								1.49 0.42	87 42				0.00		0.00		0.00		1.49 0.42	1.49 1.91								<u> </u>]	
Contribution From ruelle Echinacea Lane	815A 816A e, Pipe 818A - 819A	816A 819A	0.57	12 9	12 9		41 31	2.48 2.96 1.05		3.54 3.52			0.00 0.00		0.00 0.00 0.00		0.00 0.00 0.00	0.00 0.00	0.57 0.48 1.05	2.48 2.96 4.01	0.82	2.77 3.27	79.5 79.5		0.35 0.35	19.40 19.40	0.14 0.17	0.62	0.44 0.46
PARK	819A CTRL MH 830A 820A	820A 820A 720A	0.60	10 4	10		34 14	4.61 4.88		3.46 3.46	3.33		0.00		0.00	1.19	0.00 1.19 1.19	0.00 0.13 0.13	0.60 1.19 0.27	4.61 1.19 6.07	1.52 0.39 2.00	4.86 0.52 5.62	120.0 10.5 65.5	200	0.35 1.00 0.35	19.40 32.80 19.40	0.25 0.02 0.29	0.62 1.04 0.62	0.51 0.38 0.53
To avenue Delphinus Avenue, Pipe 720,	A - 721A							4.88	311				0.00		0.00		1.19			6.07									
	709A 713A 714A	713A 714A 716A	0.21 0.57 0.42	2 10 8	2 10 8		7 34 28	0.21	41	3.74 3.67 3.63	0.08 0.49 0.81		0.00		0.00		0.00	0.00	0.21	0.21	0.26	0.15	12.5	200		28.40 55.85	0.01	0.90	0.23
To avenue Jackdaw Avenue, Pipe 716A		710A	0.42				20	1.20	69 69	3.03	0.01		0.00		0.00		0.00	0.00	0.42	1.20 1.20	0.40	1.21	60.5	200	2.15	48.09	0.03	1.53	0.63
	709A 710A 711A	710A 711A 712A	0.48 0.19 0.37	8 2 7	8 2 7		28 7 24	0.48 0.67 1.04	35	3.69 3.67 3.64			0.00 0.00 0.00		0.00 0.00 0.00			0.00	0.48 0.19 0.37	0.48 0.67 1.04	0.22	0.49 0.64 1.04	12.5	200 200 200	2.20	59.13 48.65 30.24	0.01	1.88 1.55 0.96	0.54
To avenue Jackdaw Avenue, Pipe 717A	712A	717A	0.65	12	12		41	1.69 1.69	100	3.59		 	0.00		0.00		0.00		0.65	1.69		1.72	80.5		0.65			0.84	
voie Pine Warbler Way	801A	802A	0.44	14		14	38	0.44			0.45		0.00		0.00			0.00		0.44		0.60		200				1.57	
	802A	803A		25 N PARAME		25	68	1.18	106	3.59	1.23	<u> </u>	0.00		0.00 Designe		0.00	0.00	0.74	1.18 PROJEC	1	1.62	1	200	0.35			0.62	0.37
Designed: PROJECT: Park Flow = 930 L/ha/da 0.10764 1/s/Ha Average Daily Flow = 280 l/p/day Industrial Peak Factor = as per MOE Graph A.M. THE MEDDOWS IN HALF MOON BAY PH7 AND 8 Comm/Inst Flow = 2800 L/ha/da 0.3241 l/s/Ha Extraneous Flow = 0.330 L/s/ha Checked: LOCATION:													3																
Industrial Flow = Max Res. Peak Factor = Commercial/Inst./Park Peak Factor =	35000 4.00 1.00	L/ha/da	0.40509		I/s/Ha				Velocity = s n =	(Conc)	0.600	m/s (Pvc)	0.013	3	W,L.	eference:				File Ref:		- <u></u>		Date:	City of	Ottawa	Sher	et No.	1
Institutional =		:/Ha						Single ho			3.4					Drainage P	an, Dwgs.	No. 43,44				19-1089			Aug 2019	l		of	

SANITARY SEWER CALCULATION SHEET

Manning's n=0.013

Manning's n=0.013																											unn	Л	
······	LOCATION						POPULATION						OMM		STIT	PA	1	C+I+I		INFILTRATIC			T			PIPE			
STREET	FROM M.H.	TO M.H.	AREA	UNITS	UNITS Singles	UNITS Townhouse	POP.	AREA	POP.	FACT.	PEAK FLOW	AREA	ACCU. AREA	AREA	ACCU. AREA	AREA	ACCU. AREA	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VEL	
	MLD.	MLC3.	(ha)		Sillyles	rowanouse		(ha)	POP.	FACT.	(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	FLOW (I/s)	AREA (ha)	AREA (ha)	FLOW (I/s)	FLOW (I/S)	(m)	(mm)	(%)	(FULL) (I/S)	Q act/Q cap	(FULL) (m/s)	(AC (m/
								(1.4)			(#0)	- (<u>u</u> /	- (1)4/	<u>(114)</u>	(114)	(114)	(na)	(03)	(112)		(#3)	(#3)			(70)	- (03)		(11/3)	(iii
	803A	804A	0.18	3		3	9	1.36	115	3.58	1.33		0.00		0.00		0.00	0.00	0.18	1.36	0.45	1.78	12.5	200	0.35	19.40	0.09	0.62	0.3
	804A	706A	0.56	18		18	49	1.92	164	3.54	1.88	1	0.00		0.00		0.00	0.00	0.56	1.92	0.63	2.52	75.0		0.35	19.40	0.13	0.62	0.4
To avenue Jackdaw Avenue, Pipe 706	A - 707A							1.92	164				0.00		0.00		0.00			1.92			1			1			
																							1						
				4					_				1																
cercle Lapwing Circle								_	ļ			Ļ																	
	700A	7002A	0.18	6		6	17	0.18	17	3.71	0.20	1	0.00		0.00		0.00	0.00	0.18	0.18	0.06	0.26	45.0	200	0.65	26.44	0.01	0.84	0.2
	7002A	701A	0.09	4		4	11	0.27	28	3.69	0.33		0.00		0.00		0.00	0.00	0.09	0.27	0.09	0.42	35.5	200	0.35	19.40	0.02	0.62	0.2
	701A	7010A	0.06					0.33	28	3.69	0.33		0.00		0.00		0.00	0.00	0.06	0.33	0.11	0.44	46.0	200	0.35	19.40	0.02	0.62	0.2
To avenue Jackdaw Avenue, Pipe 701	0A - 703A							0.33	28				0.00	ļ	0.00		0.00			0.33						'			
	7004	70004								1			+													'			
	702A 7020A	7020A	0.40	13		13	36	0.40	36	3.67	0.43		0.00		0.00		0.00	0.00	0.40	0.40	0.13	0.56	45.0	200	0.65	26.44	0.02	0.84	0.3
To avenue Jackdaw Avenue, Pipe 701		703A	0.21	9		9	25	0.61	61	3.64	0.72		0.00		0.00		0.00	0.00	0.21	0.61	0.20	0.92	36.5	200	0.35	19.40	0.05	0.62	0.3
To avenue Jackdaw Avenue, Pipe 701	UA - 703A					<u> </u>	<u> </u>	0.61	61				0.00	 	0.00		0.00			0.61						·'			
ruelle Pipit Lane	+					<u> </u>	<u> </u>		1	+		+		<u> </u>										 	 	'		Ll	
	704A	705A					70	+ 0.07	+		- 0.00	+	+ 0.00	 	0.00			0.00	0.07	- 0.07	0.00		+	<u> </u>		+	<u> </u>	<u> </u>	
To avenue Jackdaw Avenue, Pipe 705		/05A	0.87	27		27	73	0.87	73	3.62	0.86	+	0.00	<u> </u>	0.00		0.00	0.00	0.87	0.87	0.29	1.14	114.5	200	0.95	31.97	0.04	1.02	0.4
To avenue Jackdaw Avenue, Pipe 705	A - 706A							0.87	13				0.00		0.00		0.00			0.87								ļļ	
avenue Jackdaw Avenue						<u> </u>				+		+											+	<u>+</u>		+		<u>+</u>	
				-				0.00	0			+	0.00		0.00		0.00		0.00	0.00				+		'	+	<u> </u>	
	715A	716A	0.07				0	0.00	0		<u> </u>		0.00		0.00		0.00	0.00	0.00	0.00	0.02	0.02	38.0	250	0.05	29.73	0.00	0.61	0.0
Contribution From croissant Sonmarg			0.07					1.20	69		<u> </u>		0.00		0.00		0.00	0.00	1.20	1.27	0.02	0.02		250	0.25	29.13	0.00	0.61	0.0
Contribution From Croissant Commany	716A	717A	0.27	2	2	+	7	1.54	76	3.62	0.89		0.00	<u> </u>	0.00		0.00	0.00	0.27	1.54	0.51	1.40	102 5	250	0.25	29.73	0.05	0.61	0.3
Contribution From croissant Sonmarg			0.21	+		+	<u> </u>	1.69	100	1 0.02	0.00		0.00		0.00		0.00	0.00	1.69	3.23	0.51	1.40	103.5	200	0.25	29.13		0.01	0.3
SCHOOL	CTRL MH 840A	717A		+			+	1.00	100	+	I	-	0.00	2.80	2.80		0.00	0.91	2.80	2.80	0.92	1.83	11.0	200	1.00	32.80	0.06	1.04	0.5
	717A	718A	0.13				0	3.36	176	3 53	2.02		0.00	2.00	2.80		0.00	0.91	0.13	6.16	2.03	4.96	85.5		1.00	65.14	0.08	1.04	0.7
To avenue Delphinus Avenue, Pipe 71		110/1					<u> </u>	3.36	176		2.02	-	0.00		2.80		0.00	0.01	0.10	6.16	2.00	4.50	00.0	200	1.20	00.14	0.00	1.00	0.1
	T					-			1			+	0.00		2.00		0.00			1-0.10			+	+			+	+	
Contribution From cercle Lapwing Circ	le, Pipe 701A - 7010A							0.33	28			1	0.00	1	0.00		0.00		0.00	0.33			+	+			+	+	
Contribution From cercle Lapwing Circ								0.61	61				0.00		0.00		0.00		0.00	0.61			+				+	+	
	7010A	703A	0.04	1		1	3	0.98	92	3.60	1.07	+	0.00		0.00		0.00	0.00	0.04	0.98	0.32	1.40	17.0	200	0.35	19.40	0.07	0.62	0.3
	703A	705A	0.35	10		10	27	1.33					0.00		0.00		0.00	0.00	0.35	1.33	0.44	1.82	80.5		0.35	19.40	0.09	0.62	0.3
Contribution From ruelle Pipit Lane, Pi	be 704A - 705A					1	1	0.87	73	-			0.00		0.00		0.00		0.87	2.20			+	<u> </u>	1 0.00	10110			
T T	705A	706A	0.13				0	2.33	192	3.52	2.19	-	0.00	1	0.00		0.00	0.00	0.13	2.33	0.77	2.96	79.0	200	0.35	19.40	0.15	0.62	0.4
Contribution From voie Pine Warbler V	Vay, Pipe 804A - 706A					1	1	1.92	164		1	1	0.00	1	0.00		0.00		1.92	4.25					1	1	1		
	T		0.18	3	3		11	4.43	367	-			0.00		0.00		0.00		0.18	4.43				t	1		1		
	706A	707A	0.20	5		5	14	4.63	381	3.43	4.23		0.00		0.00		0.00	0.00	0.20	4.63	1.53	5.76	77.5	200	0.35	19.40	0.30	0.62	0.5
			0.35	7	7		24	4.98	405				0.00		0.00		0.00		0.35	4.98			1	1		-	1		
	707A	708A	0.37	10		10	27	5.35	432	3.40	4.77	1	0.00	1	0.00		0.00	0.00	0.37	5.35	1.77	6.53	79.5	200	0.35	19.40	0.34	0.62	0.5
	708A	718A	0.08	1	1		4	5.43	436	3.40	4.81		0.00	1	0.00		0.00	0.00	0.08	5.43	1.79	6.60	30.0	200	0.35	19.40	0.34	0.62	0.5
To avenue Delphinus Avenue, Pipe 71	8A - 719A						1	5.43	436				0.00		0.00		0.00			5.43			1	1		T	1	1	
																								1	1		1	1	
	703A	902A	0.25	7		7	19	0.25		3.71	0.23		0.00		0.00			0.00	0.25	0.25	0.08	0.31	72.0	200	4.20	67.22	0.00	2.14	0.5
To Future Greenbank Road, Pipe 902/	A - 903A							0.25	19		ļ		0.00	ļ	0.00		0.00			0.25									
									1		1		_	<u></u>	<u></u>										<u> </u>	1		!	
Dark Flows	0222	1 8 1.1 -		GN PARAM				,							Designe	0 :				PROJECT	1:							•	
Park Flow =	9300	L/ha/da	0.10764		l/s/Ha										A.M.							TH	IE MEDD	OWS IN	HALF MC	JON BAY	PH7 AND 8	\$	
Average Daily Flow =	280	l/p/day			STATISTICS OF ST	Card and Card				tor = as p	er MOE Gra																		
Comm/Inst Flow =	28000	L/ha/da	0.3241	and the second	OF ES	SION.		Extraneo				L/s/ha			Checked					LOCATIO	N:								
Industrial Flow =	35000	L/ha/da	0.40509	Po Po	V I/S/Pla	SIONAL	ALC: NOT		Velocity =		0.600				W.L.										City of	f Ottawa			
Max Res. Peak Factor =	4.00			1 N.	S. Land Street S	750		Manning		(Conc)		(Pvc)	0.013																
Commercial/Inst./Park Peak Factor = Institutional =	1.00 0.32 I/	/s/Ha	A	51	A	$/\Lambda$	%N		se coeff= use coeff=	-	2.7 3.4				Dwg. Re		on Duran 1	10 42 44		File Ref:		19-1089		Date:	Au- 00	a	Shee	et No.	2
	0.02 1/	0111Q	<i>(</i>	St	64	$\leq \gamma \gamma$	131	Single no	use coen-	_	3.4	•			Isanitary I	лаinage Pl	an, Dwgs. I	10. 43,44	****						Aug 2019			to	4
					W. I 10016	.IU 7932	NEER																						

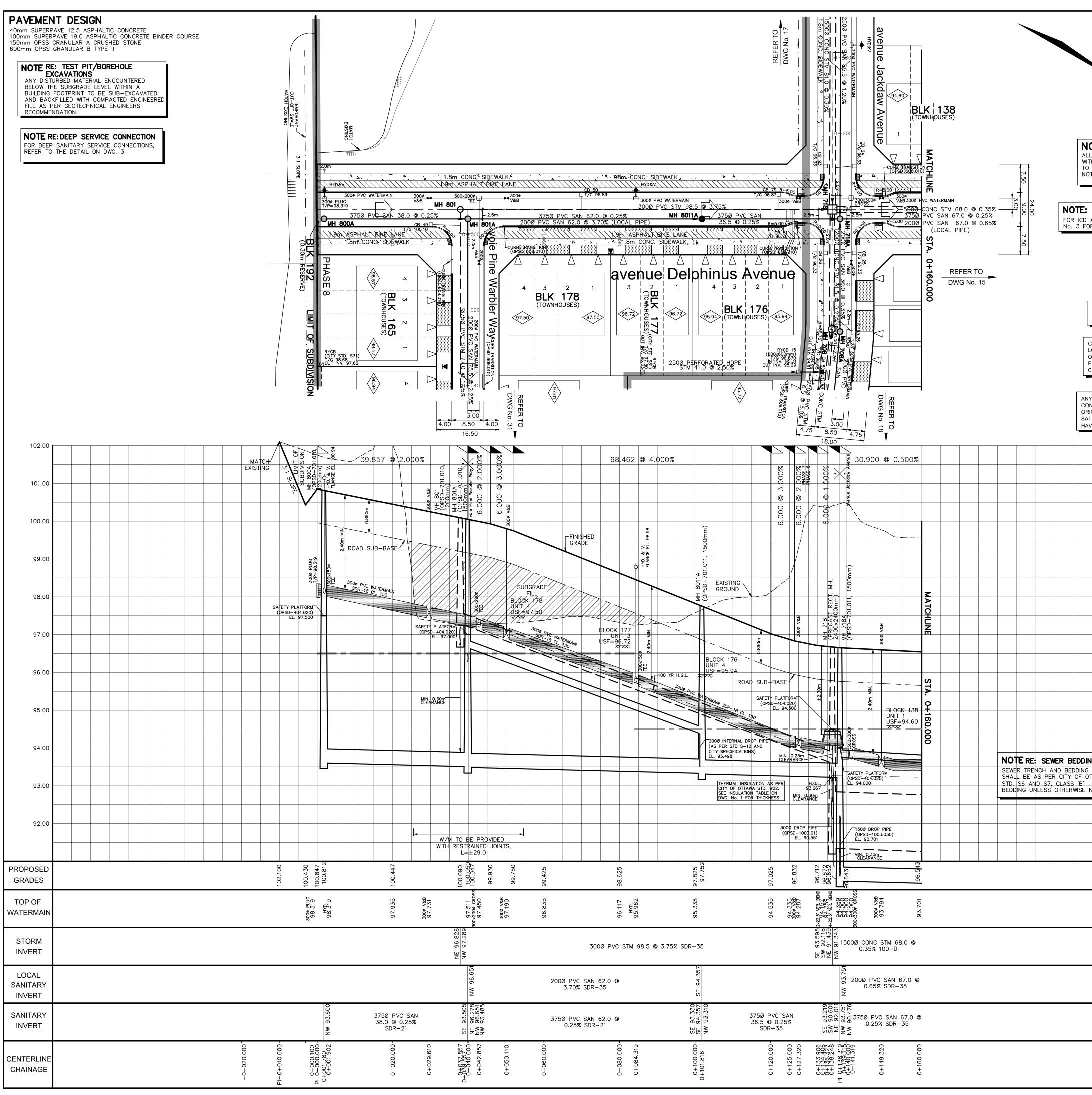
PROVIA.

10 3

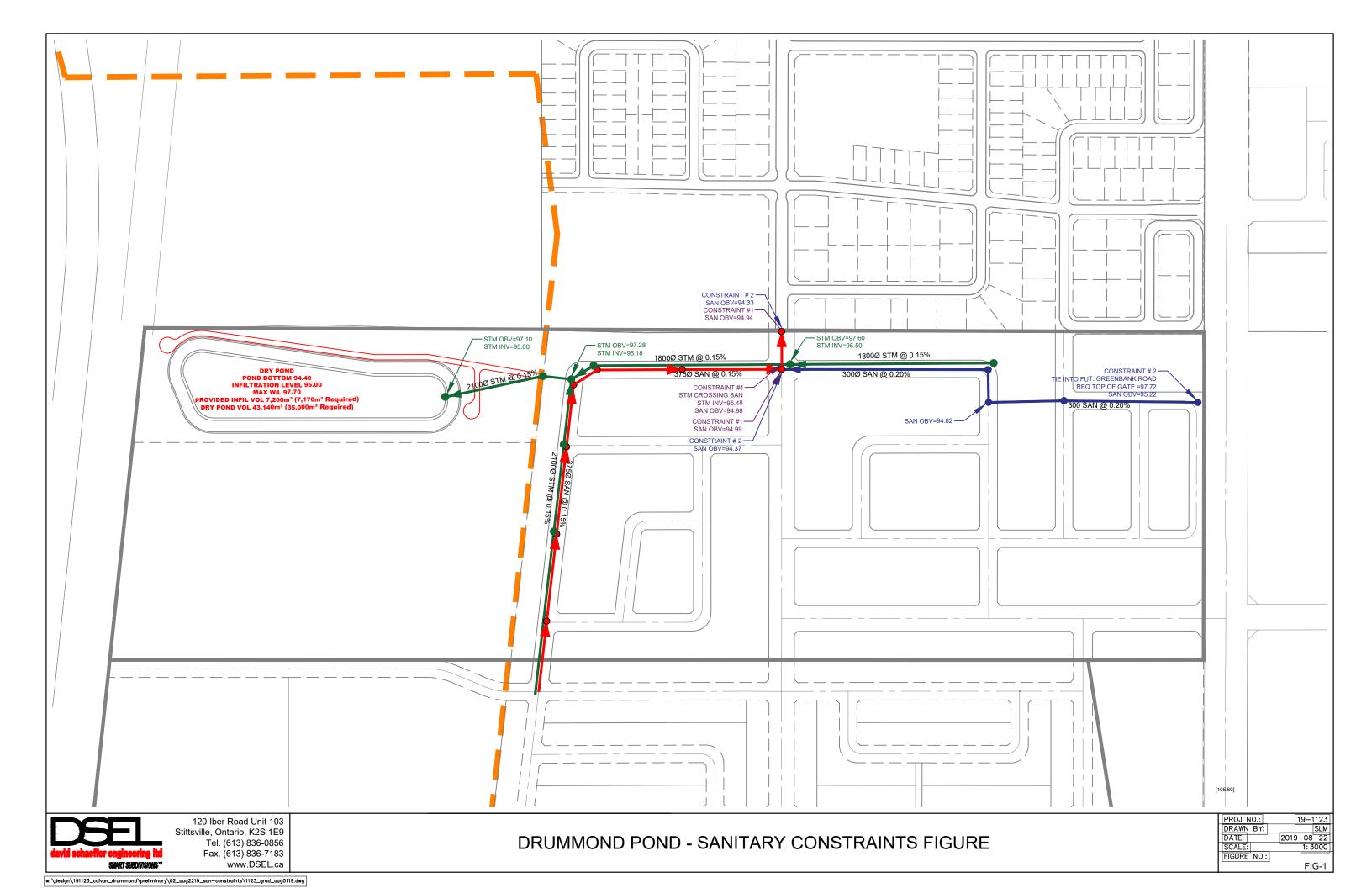
TARIO

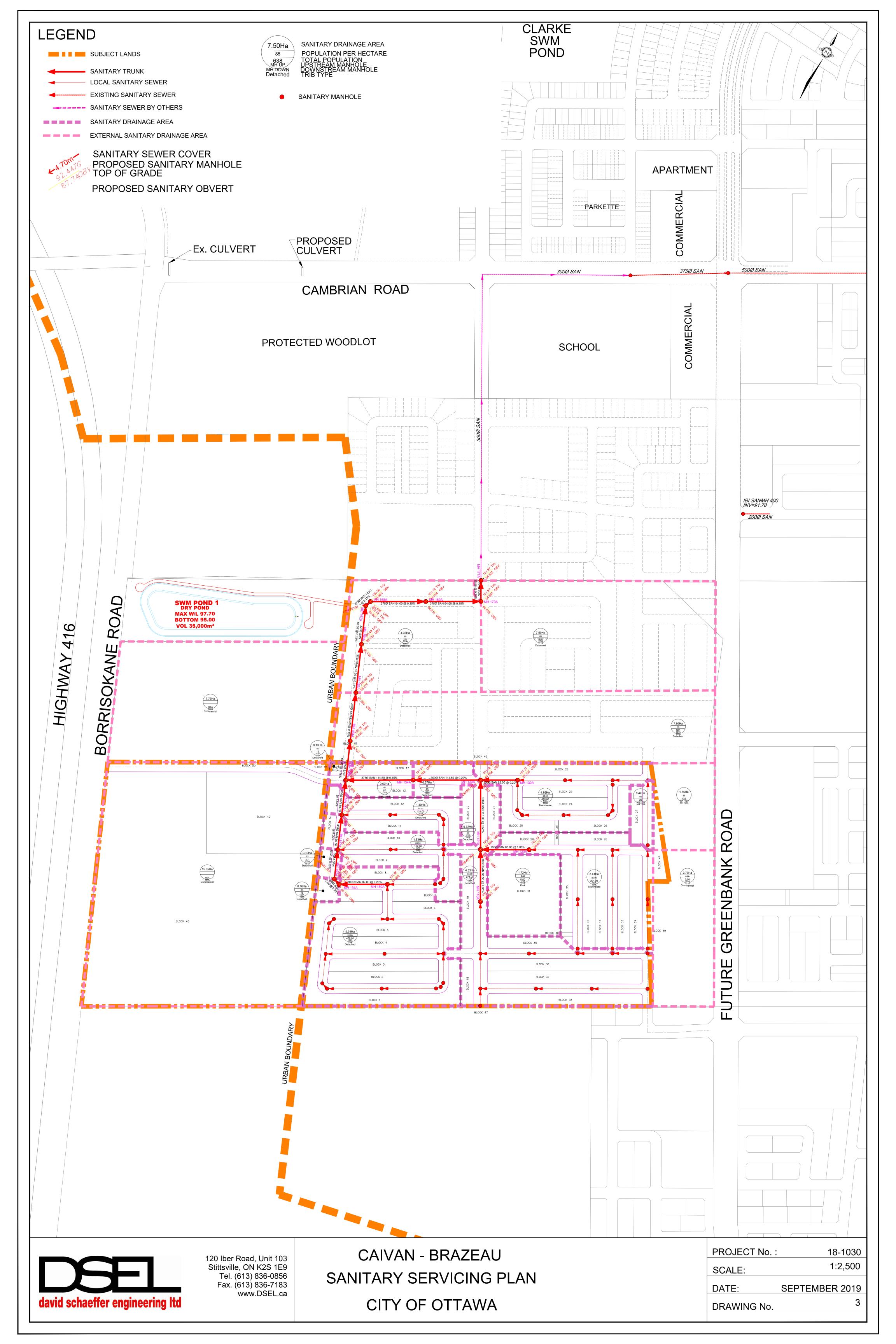
SANITARY SEWER CALCULATION SHEET

Manning's n=0.013


Manning's n=0.0		OCATION				RESIDENTI	IAL AREA AND	POPULATION			Γ		<u>co</u>	омм	INS	जात	PARK		C+I+I		INFILTRATIC	DN .	r	T			PIPE			
S	STREET	FROM	то	AREA	UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA AC	CU. F	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	v	/EL.
		M.H.	M.H.			Singles	Townhouse		AREA	POP.	FACT.	FLOW		AREA		AREA	AR		FLOW	AREA	AREA	FLOW	FLOW			ł	(FULL)	Q act/Q cap	(FULL)	
				(ha)					(ha)		-	(I/s)	(ha)	(ha)	(ha)	(ha)	(ha) (h	a)	(l/s)	(ha)	(ha)	(I/s)	(l/s)	(m)	(mm)	(%)	(l/s)	4	(m/s)	(m/s)
avenue Delphinu	is Avenue										<u> </u>			<u> </u>												1				+
								n	0.00	n				0.00		0.00	0			0.00	0.00				1	1				
	n Drummond Lands (BS			15.98				1019	15.98	1019			0.58	0.58	0.40	0.40	0.			16.96	16.96									
Contribution From	n Brazeau Lands (BSUE	A)		21.77				1309	37.75	2328			0.68	1.26	1.45		0.			23.90	40.86								ļ	
			0011		1				37.75	2328			ļ	1.26		1.85		00		0.00	40.86									
	Local Pipe	800A 801A	801A 8011A	0.09				0	37.84	2328	3.03	22.84		1.26		1.85	0.	00	1.01	0.09	40.95	13.51	37.36	38.0	375	0.25	87.67	0.43	0.79	0.76
	Local Pipe	801A	8011A	0.34	8		8	22	0.34 38.18	22 2350	3.70	0.26		1 20		1.85			1.01	0.34	0.34	0.11	0.38	62.0	200	3.70	63.09	0.01	2.01	0.55
		8011A	718A	0.15	3		3	9	38.33	2350	3.02	23.03		1.26		1.85			1.01	0.00	41.29 41.44	13.63 13.68	37.67 37.79	62.0	375	0.25	87.67 87.67	0.43	0.79	0.76
Contribution From	n avenue Jackdaw Aven			0.15	3	+		9	5.43	436	3.02	23.11		0.00		0.00		00	1.01	5.43	41.44	13.68	31.19	30.5	3/5	0.25	87.67	0.43	0.79	0.76
	n avenue Jackdaw Aven					+			3.36	176	<u> </u>			0.00		2.80		00 00		6.16	40.87 53.03			+					+	
Considuation	Local Pipe	718A	719A	0.34	8	+	8	22	0.34	22	3.70	0.26		0.00	<u> </u>	2.00	0.			0.34	0.34	0.11	0.38	67.0	200	0.65	26.44	0.01	0.84	0.29
		718A	719A		†	1	†		47.46	2993	2.95	28.66	1	1.26	t	4.65		00	1.92	0.00	53.37	17.61	48.19	67.0	375	0.05	87.67	0.55	0.84	0.23
	Local Pipe	719A	720A	0.35	9		9	25	0.35	25	3.69	0.30		1.25	1	1.00		<u> </u>		0.35	0.35	0.12	0.41	65.0	200	2.20	48.65	0.01	1.55	0.01
		719A	720A		†	1	<u> </u>		47.81	3018	2.95	28.87		1.26	1	4.65	0	00	1.92	0.00	53.72	17.73	48.52	65.0	375	0.90	166.33	0.29	1.50	1.30
Contribution From	n rue Cressida Street, Pi				1	1	<u> </u>		4.88	311	++		1	0.00	1	0.00		19		6.07	59.79			1	t		1	1	+	+ '.50
l l	Local Pipe	720A	7210A	0.22	6	1	6	17	0.22	17	3.71	0.20		1	1					0.22	0.22	0.07	0.28	38.5	200	0.65	26.44	0.01	0.84	0.27
		720A	7210A		1	1	1		52.91	3346	2.92	31.68		1.26		4.65	1.	19	2.04	0.00	60.01	19.80	53.52	38.5	375	0.30	96.03	0.56	0.87	0.89
		7210A	721A	0.19	1	1			53.10	3346	2.92	31.68	1	1.26	1	4.65			2.04	0.19	60.20	19.87	53.59	81.5	375	0.30	96.03	0.56	0.87	0.89
		721A	722A	0.28				0	53.38	3346	2.92	31.68	Ι	1.26	1	4.65			2.04	0.28	60.48	19.96	53.68	109.0	375	0.30	96.03	0.56	0.87	0.89
		722A	Ex, 501A						53.38	3346	2.92	31.68		1.26	1	4.65	1.	19	2.04	0.00	60.48	19.96	53.68	20.5	375	0.25	87.67	0.61	0.79	0.83
					,																									
									ļ		ļļ.		ļ	ļ	ļ															
Future Greenbar							·			ļ			l																ļ	
Contribution From				2.50	+		+	400	0.50	100			+		6.06					6.06	6.06									
	n Drummond Lands (BS		000 A	2.50				160	2.50	160 19				0.00						2.50	8.56									
	n ravenue Delphinus Av	enue, Pipe 703A - s							0.25	179				0.00	<u> </u>	0.00		00	1.00	0.00	0.25 8.81				+		<u> </u>			
				0.61	+				3.36	179				0.00		6.06			1.96 1.96	0.61	9.42		+							
		902A	903A	0.26					3.62	179	3.53	2.05	+	0.00		6.06			1.96	0.01	9.68	3.19	7.21	61.5	250	0.25	29.73	0.24	0.61	0.50
		903A	904A	0.61					4.23	179	3.53	2.05	+	0.00	+	6.06			1.96	0.61	10.29	3.40	7.41	145.0	250	0.25	29.73	0.24	0.61	0.50
		904A	905A	0.61					4.84	179	3.53	2.05	+	0.00	<u> </u>	6.06			1.96	0.61	10.20	3.60	7.61	145.0	250	0.25	29.73	0.26	0.61	0.50
		905A	Ex. Plug	0.18	+	-			5.02	179	3.53	2.05	†	0.00	+	6.06			1.96	0.18	11.08	3.66	7.67	38.0	250	0.50	42.05	0.18	0.86	0.65
	······	Ex. Plug	Ex. MH 57A	0.00		-			5.02	179	3.53	2.05	1	0.00		6.06			1.96	0.00	11.08	3.66	7.67	15.0	250	0.50	42.05	0.18	0.86	0.65
To Cambrian Roa	ad, Pipe Ex. 57A - 83A				1	1	1		5.02	179			1	0.00		6.06		00			11.08	0.00		10.0			1 12100	+	0.00	
					1	1				1	1		+							States Barry	20.		+		+		1	1		
														1	1			and the second second	nek.	ESSI0	A COL		1		1		1	1		-
															T			10	WO.L		VA,		1				1			
																		in	12000		S.S.	1	1		1	1	1		1	
																		51		ショー	$h \mathcal{V}$	6 8								
																	į	26	the second	10	SV									
					- <u> </u>				l	 		~~~~				↓	<u></u>		<u></u>	1 1 11 1-	U	m								
 									<u> </u>	<u> </u>	╂───┤		+	+	+	┠		i	W	<u>. LIU</u>	<u> </u>	<u>m</u>			+	+				
						-				+	++			+	+	++			-1001	16793	2		+		+	-+	+	+	+	
			[1	1	1		1	1	++		1	1	1	<u>† – – †</u>	1	1	1	THE R. LOW CO.	ansien a		1	+	1	+	1	1	+	+
															1		Ň	<u> </u>	Ang	16:20	151	1								
				·													8	N X	104	10,00	1.0									
 																↓ ↓	×	ς.φ	1	Manager Statistics	1408	1	4							
							+			+	++		+			<u>├</u>		-	Wer	OF O	ALL A	<u> </u>			+					
	I			DESIG	ON PARAME	TERS		I	1	.I	<u> </u>			4		Designed:	L	1.0	Color State		PROJECT	I T:	J		-l		.1	1		
Park Flow =	*****	9300	L/ha/da	0.10764		I/s/Ha										A.M.					1	••	т			HALF MC	ON BAY	PH7 AND	8	
Average Daily Flow	ily Flow = 280 l/p/day								Industrial	Peak Fact	or = as pe	r MOE Gra	noh										•						-	
Comm/Inst Flow =									Extraneo		-, as per		L/s/ha			Checked:					LOCATIO	N'								
Industrial Flow =										Velocity =		0.600				W.L.										City of	f Ottawa			
Max Res. Peak Fa									Manning	-	(Conc)		(Pvc)	0.013												0.0,0	Junio			
	mercial/Inst./Park Peak Factor = 1.00							Townhou		(/	2.7		2.2.10		Dwg. Refe	rence:			*****	File Ref:		19-1089		Date:			She	et No.	3	
	stitutional = 0.32 Vs/Ha							Single ho			3.4					ainage Plan, D				1		14-1089			Aug 2019				of 4	

SANITARY SEWER CALCULATION SHEET


Manning's n=0.013																											.uvvi	Л	
T	LOCATION				RESIDENT	IAL AREA AND	POPULATION					co	MM	IN	STIT	PAI	RK	C+l+l		INFILTRATIO	DN .		1			PIPE	*****		
STREET	FROM	TO	AREA	UNITS	UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU,	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	VE	L.
	M.H.	M.H.			Singles	Townhouse		AREA	POP.	FACT.	FLOW		AREA	1	AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW				(FULL)	Q act/Q cap	(FULL)	(ACT.)
			(ha)		-			(ha)	ļ		(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(%)	(l/s)		(m/s)	(m/s)
Cambrian Road					A COLOR	eein.					ļ			ļ												ļ			
Contribution From avenue Delphius Av				- ALE	40ri	SSION	4, S	53.38	3346		ļ		1.26		4.65		1.19		60.48	60.48			ļ						
Contribution From rue Apolune Street,				10	V STATES	Contraction of the Contraction o	KAN	4.21	417								3.19		7.40	67.88				ļ			L		
	500A	501A		1.5	Aler	- man	NXI	57.59	3763	2.89	35.19	ļ	1.26		4.65		4.38	2.39	0.00	67.88	22.40	59.98	6.5	500	0.12	130.80	0.46	0.67	0.65
Contribution From rue Apolune Street,				131		12A	161	1.29	91	1									1.29	69.17			L						
	501A	5010A	0.95	1 Li ×	n planar	- ang far oa kan	22	59.83	3854	2.88	35.95		1.26		4.65		4.38	2.39	0.95	70.12	23.14	61.47	124.0	500	0.12	130.80	0.47	0.67	0.65
	5010A	502A		12	M	1.110	r m	59.83	3854	2.88	35.95		1.26		4.65		4.38	2.39	0.00	70.12	23.14	61.47	124.0	500	0.12	130.80	0.47	0.67	0.65
Contribution From croissant Aphelion	Crescent, Pipe 121A	- 502A (From 888)	1	[]!			20	11.06	1144					<u> </u>			0.24		11.30	81.42			1	1					
School (From 888)					100	<u>†67932</u>		1						6.05	6.05			1.96	6.05	6.05	2.00	3.96	16.5	200	1.00	32.80	0.12	1.04	0.70
	502A	503A	0.42	A C	A	R CARLON SHITTAK		71.31	4998	2.80	45.29		1.26		10.70		4.62	4.37	0.42	87.89	29.00	78.67	111.5	500	0.15	146.24	0.54	0.74	0.76
Future Commercial Block					the.	16 20	18 - 1	/				1.36	1.36	2				0.44	1.36	1.36	0.45	0.89	25.5	200	1.00	32.80	0.03	1.04	0.44
Future Commercial Block				12	Nug	10,	RIS /					1.50	1.50					0.49	1.50	1.50	0.50	0.98	17.0	200	1.00	32.80	0.03	1.04	0.46
	503A	504A	0.20	2.6	N. T	Chronostatistica		71.51	4998	2.80	45.29		4.12		10.70		4.62	5.30	0.20	90.95	30.01	80.60	29.5	500	0.15	146.24	0.55	0.74	0.76
	504A	Ex. 57A		Carlo Carlos	We	OFON	N. State	71.51	4998	2.80	45.29		4.12		10.70		4.62	5.30	0.00	90.95	30.01	80.60	26.0	500	0.61	294.91	0.27	1.50	1.28
Contribution from fut. Greenbank Road	d, Ex. plug - Ex. 57A				CORDER TO A	· · · ·	the second s	5.02	179				0.00		6.06		0.00		11.08	102.03			1	1	1	1			
	Ex. 57A	Ex. 83A	1.63				T	78.16	5177	2.78	46.72	3.30	7.42	1	16.76		4.62	8.33	4.93	106.96	35.30	90.35	96.3	500	0.24	184.98	0.49	0.94	0.93
	Ex. 83A	Ex. 13A	0.50		1			78.66	5177	2.78	46.72	1	7.42	1	16.76		4.62	8.33	0.50	107.46	35.46	90.52	120.2		0.25	188.80	0.48	0.96	0.95
Contribution from STM & SAN EASEN	/ENT 1, Pipe 813A -	13A					1	1.34	181	1	1	1		1					1.34	108.80			1	1		1		1	1
T	Ex. 13A	Ex. 14A	0.43	0	1	T	0	80.43	5358	2.77	48.16	1	7.42	1	16.76		4.62	8.33	0.43	109.23	36.046	92.54	120.0	500	0.19	164.59	0.56	0.84	0.86
Contribution From Block 529, Pipe 203	3A - 14A							0.62	64					1					0.62	109.85									
	Ex. 14A	Ex. 15A	0.13	0	1	T	0	81.18	5422	2.77	48.67	+	7.42	+	16.76		4.62	8.33	0.13	109.98	36.293	93.30	44.3	500	0.21	173.04	0.54	0.88	0.90
Contribution From GRAND CANAL S			0.10	<u> </u>				11.07	1361				1.76	+	10.10		4.02	0.00	11.07	121.05	00.200	00.00	+++.0		0.21	170.04	0.04	0.00	0.00
Contribution From GRAND CANAL S						·		5.86	546	+		+		+				0.00	5.86	121.03		<u>+</u>	+	+	+		<u> </u>		
CONTROLOGICATION CONTROL OF	Ex. 15A	Ex. 150A	0.24	1 0		T	0	98.35	7329	2.67	63.41	+	7.42		16.76		4.62	8.33			41.000	440.74	77.0	500	0.07	400.00	0.50	1.00	1.03
	Ex. 15A	Ex. 150A Ex. 16A	0.24	0		+												<u> </u>	0.24	127.15		113.71	77.9	500	0.27	196.20	0.58	1.00	
		EX. TOA	0.29				0	98.64	7329	2.67	63.41		7.42		16.76		4.62	8.33	0.29	127.44	42.055	113.80	89.9	600	0.11	203.64	0.56	0.72	0.74
Contribution From Block 530, Pipe Ex		*****						0.45	41		ļ			ļ			L	L	0.45	127.89							ļ		
Contribution From Block 525, Pipe Ex								0.47	42		L			ļ					0.47	128.36									
	Ex. 16A	Ex. 17A	0.10	0			0	99.66	7412	2.67	64.04		7.42		16.76		4.62	8.33	0.10	128.46	42.392	114.76	34.7	600	0.16	245.60	0.47	0.87	0.85
Contribution From RIVER MIST ROA								17.86	1224				3.00	1					20.86	149.32		L							
Contribution From RIVER MIST ROAL								60.70	4447		1		4.90				2.50		68.10	217.42		1						1	
	Ex. 17A	Ex. 18A	0.27	0			0	178.49	13083	2.47	104.74	1	15.32		16.76	1	7.12	11.16	0.27	217.69	71.838	187.74	89.2	750	0.15	431.17	0.44	0.98	0.94
	Ex. 18A	Ex. 19A	0.31	0			0	178.80	13083	2.47	104.74		15.32		16.76		7.12	11.16	0.31	218.00	71.940	187.84	88.1	750	0.14	416.55	0.45	0.94	0.92
Contribution From Block 526, Pipe Ex	. 212A - 19A							0.47	42	1									0.47	218.47		1		1				1	
	Ex. 19A	Ex. 21A	0.10	0	Τ	Τ	0	179.37	13125	2.47	105.03		15.32		16.76		7.12	11.16	0.10	218.57	72.128	188.32	28.6	750	0.16	445.31	0.42	1.01	0.96
Contribution From REGATTA AVENU	E, Ex. Pipe 77A - 21/	1						5.58	349				1	1			1		5.58	224.15		1		1		1	1	1	
	Ex. 21A	Ex. 20A	0.17	0		1	0	185.12	13474	2.46	107.42		15.32	1	16.76		7.12	11.16	0.17	224.32	74.026	192.61	50.3	750	0.13	401.40	0.48	0.91	0.90
Contribution From Block 527, Pipe Ex								0.77	59			-		1					0.77	225.09				+		1			
	Ex. 20A	Ex. 222A	0.29	0			0	186.18	13533	2.46	107.83	1	15.32	+	16.76	<u> </u>	7.12	11.16	0.29	225.38	74.375	193.36	80.2	750	0.14	416.55	0.46	0.94	0.92
			0.20	+			+		+	+		+	10.02	+	10.10		+- <u>···</u>	11.10	0.20	220.00		100.00	1 00.2	+ '50	0.14	+10.00	1	0.04	0.02
	Ex. 222A	Ex. 22A	0.22	0			0	186.40	13533	2.46	107.83	+	15.32		16.76	2.89	10.01	11.47	3.11	228.49	75.402	194.70	50.6	750	0.14	416.55	0.47	0.94	0.93
	Ex. 222A Ex. 22A	Ex. 22A Ex. 45A	0.22				0	186.73	13533				15.32	+	16.76	2.09	10.01	11.47	0.33	228.49					0.14	416.55	0.47	0.94	0.93
To GREENBANK ROAD , Pipe Ex. 4		EX. 40A	1 0.33	<u> </u>		1				2.40	107.03		15.32					11.4/	0.33		75.511	194.81	95.7	750	0.13	401.40	0.49	0.91	0.90
TO GREENDANK ROAD , PIPE EX. 4	- CX. 433A		······			·		186.73	13533		+		15.32		16.76	 	10.01			228.82			+	+				+	
						+			+	-+			·		├	 						+						+	+
			+	+	+	+	+	+	+	+		<u> </u>		+		<u> </u>			+	+	+			+	+	+			
									+	1	+	+	+	+	1	t	·	<u> </u>	<u> </u>	+	<u> </u>	1	+	+	+	+	+	+	+
		1		1		1	1		1	-	1				1	t	1	<u>†</u>	<u> </u>	-	<u> </u>	1	+	1	+			+	1
		-	DESI	GN PARAME	TERS										Designed	d:		1		PROJECT	Γ:			- I					
Park Flow =	9300	L/ha/da	0.10764		l/s/Ha										A.M.							ТН		OWS IN	HALF MC	ON BAY	PH7 AND	3	
Average Daily Flow =	280	l/p/day						Industrial	Peak Fac	tor = as n	er MOE Gra	anh								1									
Comm/Inst Flow =	28000	L/ha/da	0.3241		l/s/Ha			Extraneo		.or ao þ		apri L/s/ha			Checked	4.				LOCATIO	N.								
Industrial Flow =	35000	L/ha/da	0.40509				Velocity =) m/s			W.L.					1.000,00					City of	f Ottawa					
Max Res. Peak Factor =										(Conc)		(Pvc)	0.013		VV.L.										Oity Of	Judwa	•		
Commercial/Inst./Park Peak Factor =									s n = se coeff=	-	2.7		0.013		Dwg. Re	ference.				File Ref:				Date:			Shee	at No	4
Institutional =													Drainage Pl	lan, Dwos.	No. 43.44				19-1089		·····	Aug 2019)			f 4			
			Single house coeff= 3.4													30.										ala and a second and			


Ottawa

	PARK PARK WOODLOT WOODLOT	
OTE: L EXISTING TREES, SHRUBS ETC. THIN LOTS, BLOCKS AND ROADS D BE REMOVED, UNLESS OTHERWISE DTED	WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT WOODLOT PHASE 8 PHASE 8 PHASE 8 PHASE 7 PHASE 7 PHA	
ICD APPLICATION, REFER TO DRAWING DR DETAIL.	SCHOOL PHASE 8 voe Pne Warbier Wey 3 E Crede Crede Voe Pne Warbier Wey 3 E Crede KEY PL/	
FOR WATERMAIN STUBS, 2.4m MIN. COVER TO BE PROVIDED PERMISSION REQUIRED FOR WORK ON ADJACENT LANDS	LEGEND HYDRO TRANSFORMER Image: Concept and the c	0000
CONTRACTOR TO VERIFY THE PRECISE LOCATIONS AND INVERT ELEVATIONS OF Ex. UNDERGROUND SERVICES AND Ex. UTILITIES PRIOR TO STARTING CONSTRUCTION	HYDRANT, VALVE & VB VALVE & VB VALVE & VB VALVE & VC VALVE & VC VALVE & VC VALVE & VC VALVE & VB VALVE & VB DECORATIVE FENCE (SEE LANDSCAPE DWGS FOR DETAIL)	
Y DISTURBED AREA DURING INSTRUCTION TO BE RESTORED TO THE RIGINAL CONDITION OR BETTER TO THE TISFACTION OF THE AUTHORITIES VING JURISDICTION	SANITARY MAINTENANCE HOLE HOLE AND AUGER HOLE (AH) MONITORING WELL LOCATION REPORT CONCEPTUAL WELL LOCATION 6 TOP OF FOUNDATION ELEVATION 6 FINISHED FLOOR ELEVATION (1905)	
	CURB INLET CATCHBASIN & LEAD CATCHBASIN & LEAD CATCHBASIN / MAINTENANCE HOLE CATCHBASIN / MAINTENANCE HOLE CATCH BASIN & LEADS	_
	(ST, SAN & WM) TEE CATCHBASIN PERFORATED PIPE ELBOW CATCHBASIN 00 DITCH AND CULVERT TOPOGRAPHIC INFORMATION CITY OF OTTAWA 1K MAPPING, RECEIVED ON FEBRUARY 7, 2017	
	AND DECEMBER 21, 2018. LEGAL INFORMATION CALCULATED M-PLAN PROVIDED BY STANTEC, PROJECT No. 161613817-132, RECEIVED ON AUGUST 12, 2019. 2nd SUBMISSION 19-08-16 00	
	00 BENCH MARK No. 00820010126 POINT IS LOCATED 1.65km NORTH OF BARNSDALE ROAD AND 5km SOUTH OF FALLOWFIELD ROAD ON HIGHWAY NORTH OF KEMPTVILLE. THE POINT IS SET EAST OF THE NORTHBOUND LANE IN THE GRASSY SHOULDER. ELEVATION = 96.923 m 00 00	[′] 416
NG	00 V.L. 19-08-16 2nd SUBMISSION 1 V.L. 19-04-16 1st SUBMISSION	BY
NOTED.	∞ CITY OF OTTAWA	
	OPOSED GRADES	ך פּ ד
W	PROJECT No. 19–1089 PROJECT No. 19–1089 STORM PLAN AND PROFILE OF © DSEI	
	NVERT avenue Delphinus Avenue (STA. 0+000.000 TO STA. 0+160.000) LOCAL ANITARY NVERT TAMARACK (NEPEAN) CORPORATION THE MEADOWS IN HALF MOON BAY PHASES 7 & 8 (3640 Greenbank Road)	D07-16-18-001
ξ	ANITARY NVERT ANITARY AVERT CORPORATION 120 lber Road, Unit 103 Stittsville, ON K2S 1E9 Tel. (613) 836-0856 Fax. (613) 836-7183 www.DSEL.ca	
	david schaetter engineering itd NTERLINE DRAWN BY: R.A./M.M. CHECKED BY: C.M.K. DRAWING NO. SHEET NO. DESIGNED BY: W.L. CHECKED BY: P.P. SCALE: H 1:500, V 1:50 DATE: APRIL 2019	

	Image: Note of the state of the st																											
g = e.e		LOCATION			F	ESIDENTIAL	AREA AND	POPULATI	N			cc	DMM	INSTIT	Р	ARK	C+I+I		NFILTRATIO	N					PIPE			
ST	TREET				AREA	UNITS	POP.	-		-		AREA										DIST	DIA	SLOPE			-	
		M.	H.	M.H.	(ha)				POP.	FACT.		(ha)										(m)	(mm)	(%)		Q act/Q cap	. ,	(ACT.) (m/s)
Unknown Road1	1 - 01	10	1 /	122.4	9.46		720	9.46	720	2.2	7 00	0.77	0.77	0.00	1 70	1 70	1.09	12.05	12.05	4.07	12 10	110.0	200	0.55	71 70	0.19	1.01	0.77
To Unknown Roa	ad6 - 06. Pip		IA	155A	0.40		730			3.3	1.02	2.11					1.00	12.95		4.27	13.10	110.0	300	0.55	11.12	0.10	1.01	0.77
								0.10																				
Unknown Road6	6 - 06	10	2.4	122.4	1 96		410	1.96	410	2.4	4.62		0.00	0.00		0.00	0.00	4.96	4.96	1.60	6.00	62.0	200	0.20	12.05	0.14	0.61	0.42
Contribution From	n Unknown I	-			4.80		419			3.4	4.03						0.00			1.60	0.23	63.0	300	0.20	43.20	0.14	0.01	0.43
					0.57		49			3.2	12.42						1.08			6.07	19.57	114.5	300	0.20	43.25	0.45	0.61	0.60
		-	4A	163A	0.67		57	14.56	1255				2.77	0.00		1.72	1.08		19.05			114.5		0.15		0.30	0.61	0.54
To Unknown Roa	ad12 - 11, Pi	pe 163A - 164A						14.56	1255				2.77	0.00		1.72			19.05									
Unknown Road1	12 - 11					+								<u>├──</u>														
		15	0A	151A	5.54	1	478	5.54	478	3.4	5.25		0.00	0.00		0.00	0.00	5.54	5.54	1.83	7.08	82.0	300	0.20	43.25	0.16	0.61	0.45
		15	1A	152A	0.16		-	5.70	492	3.4	5.39		0.00	0.00		0.00	0.00	0.16	5.70	1.88	7.27	12.0	300	0.20	43.25	0.17	0.61	0.45
																												0.46
		-																										0.49
Contribution From	n l Inknown I				1.40		121	8.82	1255	3.3	8.15		2.77	0.00		1.72	0.00	1.40	27.87	2.91	11.06	59.5	300	1.85	131.53	0.08	1.86	1.13
		16		164A	0.13		12	23.51	2029	3.1	20.15	15.65		0.00		1.72	6.15		43.65	14.40	40.71	67.0	375	0.15	67.91	0.60	0.61	0.64
To Unknown Roa	ad14 - 13, Pi		0/1	10 // (0.10			23.51	2029	0.1	20.10	10.00	18.42	0.00		1.72	0.10	10.10	43.65	11.10	10.11	01.0	010	0.10	01.01	0.00	0.01	0.01
		•																										
Unknown Road1			400/	1010				00.54	0000				40.40			4 70		40.05	40.05									
Contribution From	n Unknown I			A - 164A 165A	7.86		660	23.51 31.37	2029 2698	3.0	26.10		18.42 18.42	0.00		1.72	6 15	43.65	43.65	17.00	40.25	02.0	375	0.15	67.01	0.72	0.61	0.67
		164		166A	4.38		669 373	35.75	3071	2.9	29.33	7.79	26.21	0.00		1.72	6.15 8.68	7.86	51.51 63.68	17.00 21.01	49.25 59.02	83.0 83.0	375	0.15	67.91 67.91	0.73	0.61	0.67
		16		167A	4.50		575	35.75	3071	2.9	29.33	1.13	26.21	0.00		1.72	8.68	0.00	63.68	21.01	59.02	66.0	375	0.15	67.91	0.87	0.61	0.69
		16	-	168A				35.75	3071	2.9	29.33		26.21	0.00		1.72	8.68	0.00	63.68	21.01	59.02	10.5	375	0.15	67.91	0.87	0.61	0.69
		16		169A				35.75	3071	2.9	29.33		26.21	0.00		1.72	8.68	0.00	63.68	21.01	59.02	94.0	375	0.15	67.91	0.87	0.61	0.69
<u></u>	145 44 D	16	9A	170A				35.75	3071	2.9	29.33		26.21	0.00		1.72	8.68	0.00	63.68	21.01	59.02	94.0	375	0.15	67.91	0.87	0.61	0.69
To Unknown Road	ad15 - 14, Pi	pe 170A - 171A						35.75	3071				26.21	0.00		1.72			63.68									
Unknown Road1	15 - 14																											
Contribution From		Road14 - 13, Pip	e 169/	A - 170A				35.75	3071				26.21	0.00		1.72		63.68	63.68									
		17	0A	171A	7.50		638	43.25	3709	2.9	34.74		26.21	0.00		1.72	8.68	7.50	71.18	23.49	66.91	35.5	375	0.20	78.41	0.85	0.71	0.80
														 														
														├──														
														<u> </u>														
														 	_													
														├──														
														 														
														├──														
I				<u> </u>	DESIGN P	ARAMETE	RS	l	l	I	L	L	1	Design	ed:	1	I	I	PROJEC	Γ:	I			L	1	l	I	1
Park Flow =		930		L/ha/da		l/s/Ha									ADF								Br	azeau La	nds			
Average Daily Flow												•																
Comm/Inst Flow =				L/ha/da										Checke	ed:				LOCATIO	N:				City	Ottawa			
Industrial Flow = Max Res. Peak Fac	ctor =	350 4.0		L/ha/da	0.40508) l/s/Ha		Minimum Manning's	•	(Conc)	0.600 0.013		0.013											City of	Ollawa			
Commercial/Inst./Pa								Townhous		(COLC)	2.7	(FVC)	0.013	Dwa F	Reference:				File Ref:				Date:				Sheet No.	1
Institutional =	oun i du	0.3		l/s/Ha				Single ho			3.4				/ Drainage		s. No.				1030.000			06 Aug 201	9		of	1
		0.0	-					2			0.4			Canitary	, 2. anago	, D 1190			I						-	1	51	

CITY OF OTTAWA MINTO COMMUNITIES INC. JLR NO. 26610

			DESIGN PARAMETERS		
Single Family	3.4	pers/unit	q =	280	L/cap/day
Semi-Detached/Townhouse (row)	2.7	pers/unit	I =	0.330	L/s/ha
Apt Units	1.8	pers/unit	inst. =	28000	L/ha/day
Manning's Coeff. N =	0.013		CI Peaking Factor* =	1.0/1.5	

*ICI Peaking Factor = 1.5 if ICI in contributing area is >20%, 1.0 if ICI in contributing area is <20%

			-			RE	SIDENTIAL					c	OMMERC	AL	IN	STITUTIO	NAL	(Infilitration)											
	M.	.H. #			NUMBER OF U					PEAKING			CUMM.	INST.		CUMM.	INST.	PEAK EXTR.	PLUG	PEAK DES.			SEWER DA			RESIDUAL		UPST	
STREET	FROM	то	SING.	MULT.	APT.	AREA ha	POPUL. peop.	POPUL. peop.	AREA ha	FACTOR	FLOW I/s	AREA ha	AREA ha	FLOW /s	AREA ha	AREA ha	FLOW I/s	FLOW Vs	FLOW I/s	FLOW Vs	DIA. mm	SLOPE %	CAPAC.	VEL. m/s	LENGTH m	CAP. I/s	Center Line	Obvert	1
MINTO LANDS WITHIN BSUEA (OUTLETS	S TO RIVER M								-		1																		
Kilbimie Dr.	572	511		10		0.64	27	27	0.64	3.69	0.32		0.00	0.00	2.43	2.43	1.18	1.01		2.52	200	2.87	57.9	1.79	136.50	55.40	107.40	102.79	
Kilbimie Dr.	511	512		27		0.82	73	100	1.46	3.59	1.16	0.00	0.00	0.00	0.00	2.43	0.79	1.28		3.24	200	0.80	30.6	0.94	97.52	27.37	103.50	98.88	9
Street 1	514	512	21			1.07	71	71	1.07	3.62	0.84	0.00	0.00	0.00	0.00	0.00	0.00	0.35		1.19	200	0.74	29.4	0.91	212.06	28.24	105.60	99.67	9
Kilbirnie Dr.	512	10 (ex.)					0	171	2.53	3.54	1.96	0.00	0.00	0.00	0.00	2.43	0.79	1.64		4.39	200	1.60	43.3	1.33	74.41	38.89	103.40	98.10	9
MINTO LANDS WITHIN BSUEA (OUTLETS			1																										
MINTO LANDS WITHIN BSOEA (OUTLETS			.)																										
Street 1 Street 1	514 516	516 554	14 20	104 54		3.49 3.18	328 214	328 542	3.49	3.45 3.36	3.67 5.91		0.00	0.00		0.00	0.00	1.15		4.82 8.11	200 200	0.35	20.2 20.2	0.62	127.86 170.90	15.42 12.13	105.60 105.40	102.70 102.25	1(
																													1
Street 3	500	502	25	70	115	7.16	481	481	7.16	3.39	5.28		0.00	0.00		0.00	0.00	2.36	0.10	7.74	200	0.35	20.2	0.62	174.02	12.50	108.10	105.03	
Street 3	502	551	8	44		1.55	146	627	8.71	3.34	6.78		0.00	0.00		0.00	0.00	2.87		9.76	200	0.89	32.3	1.00	168.60	22.52	107.90	104.42	10
East-West Collector	550	551	20			1.98	68	68	1.98	3.63	0.80		0.00	0.00		0.00	0.00	0.65		1.45	200	0.35	20.2	0.62	161.54	18.79	105.50	103.20	1(
East-West Collector	551	552	22			1.49	75	770	12.18	3.30	8.23		0.00	0.00		0.00	0.00	4.02		12.34	200	0.35	20.2	0.62	113.56	7.90	105.90	102.63	10
East-West Collector	552	554	12	20		3.36	95	865	15.54	3.27	9.17		0.00	0.00		0.00	0.00	5.13		14.40	200	0.35	20.2	0.62	178.26	5.84	106.15	102.24	10
East-West Collector	554	556	11	34		1.81	129	1536	24.02	3.14	15.62		0.00	0.00		0.00	0.00	7.93		23.65	250	0.33	35.6	0.70	295.67	11.99	105.20	101.61	10
Street 4	517	564	20	35		2.07	163	163	2.07	3.54	1.87		0.00	0.00		0.00	0.00	0.68		2.55	200	0.58	26.2	0.81	282.43	23.60	105.30	102.10	1(
Alex Polowin Ave.	13 (ex.)	14 (ex.)	12			0.54	41	41	0.54	3.67	0.49		0.00	0.00		0.00	0.00	0.18		0.67	200	0.67	28.0	0.86	74.56	27.34	105.00	102.55	1(
Alex Polowin Ave	14 (ex.)	90 (ex.)	13			0.65	44	85	1.19	3.61	0.99		0.00	0.00		0.00	0.00	0.39		1.39	200	0.94	33.2	1.02	112.06	31.79	105.00	102.00	10
Russet Terrace River Mist Rd.	90 (ex.) 5 (ex.)	5 (ex.) 564	6 8	1		0.54 0.47	20 27	105 132	1.73	3.59 3.57	1.22		0.00	0.00		0.00	0.00	0.57		1.79 2.25	200 200	0.35	20.2 20.2	0.62	108.16 74.22	18.45 17.99	103.93 103.90	100.95 100.30	10
			I	1					I		1			1			1				1	1		I					F
River Mist Rd.	564	556	7	9		0.64	48	343	4.91	3.44	3.83		0.00	0.00		0.00	0.00	1.62		5.55	200	0.35	20.2	0.62	94.59	14.70	103.65	100.04	9
East-West Collector	556	557					0	1879	28.93	3.09	18.79		0.00	0.00	2.20	2.20	0.71	10.27		29.87	250	1.39	73.1	1.44	44.25	43.27	103.55	99.71	9
East-West Collector	557	558	6			1.12	20	1899	30.05	3.08	18.97		0.00	0.00	2.86	5.06	1.64	11.59	4.00	36.30	250	1.39	73.1	1.44	158.35	36.85	102.78	99.09	9
Street 5	560	558	50			3.09	170	170	3.09	3.54	1.95		0.00	0.00		0.00	0.00	1.02		2.97	200	0.35	20.2	0.62	142.27	17.27	98.80	95.32	9
East-West Collector	558	119				5.74	0	2069	38.88	3.06	20.51		0.00	0.00		5.06	1.64	14.50		40.75	375	0.18	77.6	0.68	150.71	36.85	99.90	93.71	9
Street 6	521	522	24	33		2.17	171	171	2.17	3.54	1.96		0.00	0.00		0.00	0.00	0.72		2.68	200	1.50	41.9	1.29	37.09	39.23	105.18	102.18	10
0.00010	522	523 524					0	171	2.17	3.54	1.96		0.00	0.00		0.00	0.00	0.72		2.68	200	0.80	30.6	0.94	73.27	27.93	104.50	101.62	10
	523			71		1.95	192	363	4.12	3.43	4.04		0.00	0.00		0.00	0.00	1.36		5.40	200	0.35	20.2	0.62	164.00	14.84	105.11	101.04	10
Adjacent to Barnsdale Rd	520	524	41			2.06	139	139	2.06	3.56	1.60		0.00	0.00		0.00	0.00	0.68		2.28	300	0.20	45.1	0.62	146.25	42.83	102.80	98.40	9
Adjacent to Barnsdale Rd Adjacent to Barnsdale Rd	524 578	578 532		87		3.63	0 235	502 737	6.18 9.81	3.38 3.31	5.50 7.89		0.00	0.00		0.00	0.00	2.04 3.24		7.54 11.13	300 300	0.20	45.1 45.1	0.62	126.92 173.72	37.58 33.98	103.50 104.92	98.11 97.85	9
Adjacent to Barnsdale Rd	532	534	50	26		3.29	240	977	13.10	3.25	10.27		0.00	0.00		0.00	0.00	4.32		14.60	300	0.20	45.1	0.62	127.45	30.52	103.80	97.51	9
Adjacent to Barnsdale Rd Easement (Barnsdale to E-W Collector)	534 536	536 538	55			2.96	187 0	1164 1164	16.06 16.06	3.21 3.21	12.09		0.00	0.00		0.00	0.00	5.30 5.30		17.39 17.39	450 450	0.20	133.0 133.0	0.81	173.27 309.73	115.63 115.63	103.00 101.56	95.50 95.15	9
	538	119					0	1164	16.06	3.21	12.09		0.00	0.00		0.00	0.00	5.30		17.39	525	0.15	173.8	0.78	245.34	156.37	99.75	93.80	9
Ex. Greenbank Rd.	119	120 (ex.)					0	3233	54.94	2.93	30.72		0.00	0.00		5.06	1.64	19.80		56.26	600	0.15	248.1	0.85	168.66	191.83	99.55	93.43	9
MATTAMY LANDS EAST OUTLETS TO D	UNDONALD D	R. & DES SOL	DATS																		600	0.25							<u> </u>
	900	158 (ex.)	31	51		3,10	243	243	3.10	3.49	2.75	0.00	0.00	0.00		0.00	0.00	1.02		3.77	200	0.35	20.2	0.62	280.00	16.47	106.62	97.23	9
	910	153 (ex.)		28		0.71	76	76	0.71	3.62	0.89	0.00	0.00	0.00		0.00	0.00	0.23		1.12	200	0.35	20.2	0.62	130.00	19.12	104.00	96.70	9
				20																									
	920 930	930 217 (ex.)	36			1.81	122	122 122	1.81	3.57 3.57	1.42	2.13	2.13	1.04		0.00	0.00	1.30		3.75 3.75	200 200	0.35	20.2 20.2	0.62	165.00 40.00	16.49 16.49	106.07 101.70	97.42 97.36	9
BRAZEAU AGGREGATE EXTRACTION A	REA OUTLETS	TO NEW GRE	ENBANK	ROAD*				1	1	1	1			1										1	1				L
	1																I				I								T.
	585 575	575 555	178	236	37	21,77	1309 0	1309 1309	21.77 21.77	3.18	13.48	0.68	0.68	0.22	1.45	1.45 1.45	0.47	7.89 7.89		22.06 8.58	250 250	0.24	30.4 30.4	0.60	431.00 228.00	8.34 21.82		98.56 97.52	9
	565	555					0	0	0.00		0.00		0.00	0.00		0.00	0.00	0.00		0.00	250	0.24	30.4	0.60	431.00	30.39		98.01	9
	555 545	545 900					0	1309 1309	21.77 21.77		0.00		0.68	0.22		1.45 1.45	0.47	7.89		8.58 8.58			30.4 30.4	0.60		21.82 21.82	104.31	96.98 96.66	9
	900	MA 14																			250	0.24	30.4	0.60		30.39		96.48	9
MATTAMY LANDS WEST OUTLETS TO N	NEW GREENBA	ANK RD	-						-		1							-		1									
Realigned Greenbank Rd.	900	MA 14	8	102		3,89	303	1612	25.66	3.13	16.32	0.00	0.68	0.22	0.00	1.45	0.47	9.17		26.18	250	1.30	70.7	1.40	60.00	44.55	104.31	96.88	9
	MA 14 MA13	MA13 MH57A				0.00	0	1612 1612	25.66 25.66	3.13 3.13	16.32 16.32	0.00	0.68	0.22	0.00	1.45 1.45	0.47 0.47	9.17 9.17		26.18 26.18	250 375	1.30 0.30	70.7 100.2	1.40 0.88	295.00 413.10	44.50 74.00	103.00 92.27	96.10 90.77	9
								1012	23.00	3.13	10.32		0.00	0.22		1,40	0.47	3.17		20,10	313	0.30	100.2	0.00	413.10	74.00	92.21	90.77	9
DRUMMOND AGGREGATE EXTRACTION	AREA OUTLE	TS TO PROPC	SED COL	LECTOR	RD.*				1	r –	T	1		<u> </u>	-	1	r	1		1	T	1		1	1	r	1		-
	593 592	592 590	1								-			-			-				200 200	0.35	20.2 20.2	0.62	300.00 220.00	20.24 20.24		99.19 98.14	9
			1											1			1												
	591	590	1	1							+			-			<u> </u>				200	0.35	20.2	0.62	300.00	20.24		98.42	9
	590 MA 11	MA 11 MA 10	151	226	31	18.48	1179 0	1179 1179	18.48 18.48	3.20 3.20	12.24 12.24	0.58	0.58	0.19	0.40	0.40	0.13	6.42 6.42		18.98 18.85	300 300	0.35	59.7 87.4	0.82	80.00 482.10	40.70 68.52	100.00	97.37 95.00	9
	MA 10	MH57A	1				0	1179	18,48	3,20	12,24		0.58	0.19		0.40		6.42		18.85	375	0.41	07.4 117.3	1,03	462.10	98.47	93.50	95 <u>.</u> 00 91.38	9
*ONLY FLOW CONTRIBUTIONS FROM											1		1	L			I	1	I	1	1	1	I	1	1	I	I	L	4

ONLY FLOW CONTRIBUTIONS FROM BSUEA ARE SHOWN, FOR SANITARY FLOWS FROM OTHER CONTRIBUTING AREAS TRIBUTARY TO CAMBRIAN ROAD, SEE OVERALL SANITARY SPREADSHEET

BSUEA SANITARY SEWER DESIGN SHEET

Designed by: A.T Checked by: H.M

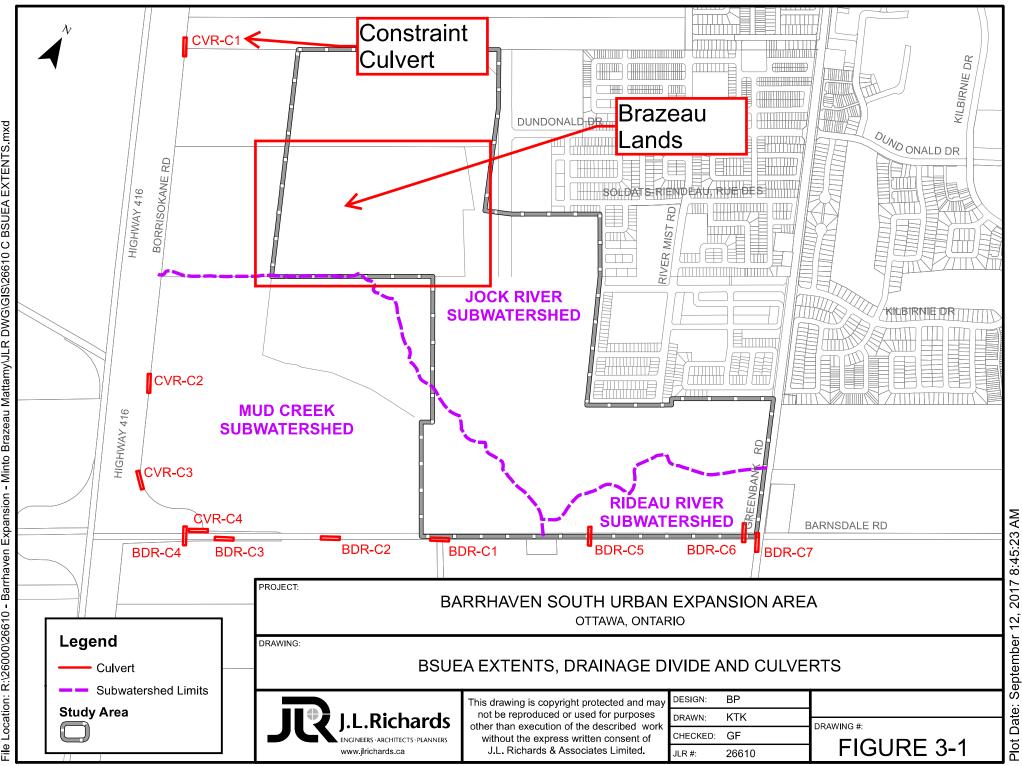
Date : February 2018

REAM		DOWNSTR	EAM			ICI Peakin	g Factor
Invert	Cover	Center	Obvert	Invert	Cover	ICI/	P.F
		Line				TOTAL	
	-	r	-				
102.59 98.68	4.61 4.62	103.50 103.40	98.88 98.10	98.68 97.90	4.62 5.30	0.79	1.50
90.00	4.02	103.40	90.10	97.90	0.30	0.00	1.00
99.47	5.93	103.40	98.10	97.90	5.30	0.00	1.00
97.90	5.30	101.18	96.91	96.71	4.27	0.00	1.00
102.50	2.90	105.40	102.25	102.05	3.15	0.00	1.00
102.05	3.15	105.20	101.65	101.45	3.55	0.00	1.00
101.00		107.00					4.00
104.827 104.218	3.07 3.48	107.90 105.90	104.42 102.92	104.218 102.717	3.48 2.98	0.00	1.00
103.00	2.30	105.90	102.63	102.43	3.27	0.00	1.00
102.43	3.27	106.15	102.24	102.03	3.91	0.00	1.00
102.03	3.91	105.20	101.61	101.41	3.59	0.00	1.00
101.36	3.59	103.55	100.64	100.38	2.91	0.00	1.00
101.90	3.20	103.65	100.45	100.25	3.20	0.00	1.00
102.35 101.80	2.45 3.00	105.52 103.96	102.05 101.95	101.85 101.75	3.47 2.01	0.00	1.00
100.75	2.98	103.80	100.57	100.37	3.23	0.00	1.00
100.10	3.60	103.80	100.04	99.84	3.76	0.00	1.00
			-				
99.84	3.61	103.55	99.71	99.51	3.84	0.00	1.00
99.46	3.84	102.78	99.09	98.84	3.69	0.07	1.00
98.84	3.69	99.90	96.89	96.64	3.03	0.09	1.00
95.12	3.48	99.90	94.82	94.62	5.08	0.00	1.00
93.32	6.20	99.55	93.43	93.05	6.12	0.00	1.00
101.98	3.00	104.50	101.62	101.42	2.88	0.00	1.00
101.42	2.88	105.11	101.04	100.83	4.07	0.00	1.00
100.83	4.07	103.50	100.46	100.26	3.04	0.00	1.00
98.10	4.40	103.50	98.11	97.80	5.39	0.00	1.00
97.80	5.39	104.92	97.85	97.55	7.07	0.00	1.00
97.55	7.07	103.80	97.51	97.20	6.29	0.00	1.00
97.20	6.29 7.50	103.00	97.25	96.95 94.70	5.75 6.41	0.00	1.00
95.04 94.70	7.50 6.41	101.56 99.75	95.15 94.53	94.70 94.08	6.41 5.22	0.00	1.00
93.26	5.95	99.55	93.43	92.89	6.12	0.00	1.00
92.82	6.12		93.17	92.57		0.00	1.00
97.02	9.39	101.03	97.13	97.13	3.90	0.00	1.00
96.49	7.30	100.35	96.65	96.65	3.70	0.00	1.00
97.21 97.16	8.65 4.34	101.70 101.70	97.36 97.24	97.16 97.04	4.34 4.46	0.54	1.50 1.50
01.10	04	101.70	01.24	07.04	7.40	0.04	1.00
98.30			97.52	97.27		0.09	1.00
97.27			96.98	96.72		0.03	1.00
97.76			96.98	96.72		0.00	1.00
			96.66				
96.72 96.40	7.65	103.00	96.66 96.48	96.40 96.23	6.52	0.03	1.00
96.23			96.10	95.85			
L	I			L	L		
96.63 95.85	7.43 6.90	103.00 95.20	96.10 92.27	95.85 92.02	6.90 2.93	0.03	1.00
90.39	1.50	93.60	89.53	89.15	4.07	0.03	1.00
	L					_	L
98.99 97.94			98.14 97.37	97.94 97.17			1.00 1.00
51.94			51.31	31.11			1.00
98.22			97.37	97.17			1.00
97.07		100.00	97.09	96.79	2.91	0.05	1.00
94.69	5.00	93,50	91.38	91.08	2,12	0.03	1.00
91.00	2.12	93.60	89.53	89.15	4.07		1.00
		-				-	

				[PROPOSED	AND BSUEA	DESIGN PARAM	IETERS	1										CITY OF O FO COMM	OTTAWA UNITIES INC.										
	Single Family Semi-Detached/Townhouse (row)	3.4 2.7	pers/unit pers/unit		q =	280 0.330		L/cap/day L/s/ha	1										JLR NO.		N SOUT			V SFI	X/FD	DESI	CN SI	TEET		
	Apt Units	1.8	pers/unit		Inst./Comm. =	28000		L/ha/day								_										DESP	Designe	ed by: AT		
	Manning's Coeff. N =	0.013			Commerial PF*= *1.5 if ICI in contrit						_	Legend		Proposed							O MH57		12.80) L/s			Checke	ed by:HM		
	Sources:				Phase 4 - Excluc Sanitary sewer o					ed by Stantec (2015)	-			Proposed Existing	by Others						AREAS									
		Barrhaven S	outh Master	Servicing S	Study Addendum	- Sanitary se	ewer design she	eet prepare	d Stantec (2014)						P	OPUL	ATIC	DNS /	AND P	EAK FA	АСТО	RS)							
				<u> </u>			RE					c	OMMERCI	AL	INS.		AL	GREEN/	UNUSED	l							Date: Feb	oruary 2018		
STREET	SOURCE	м.	H.#		IBER OF UNITS MULT. APT.	AREA TOTAL	POPULATION TOTAL	I CUMU POPUL	JLATIVE AREA	PEAKING FACTOR	POPUL. FLOW	AREA	CUMM. AREA	INST. FLOW	AREA	CUMM. AREA	INST. FLOW	AREA	CUMM. AREA	PEAK EXTR. FLOW	PLUG FLOW	PEAK DES. FLOW	DIA.		EWER DA	TA VEL.	LENGTH	RESIDUAL CAP.	ICI/	ICI* Peaking
	TURE REALIGNED GREENBANK AND	FROM	TO	5.110.		ha	peop.	peop.	ha	TACTOR	I/s	ha	ha	l/s	ha	ha	Vs	ha	ha	l/s	l/s	l/s	mm	%	I/s	m/s	m	l/s	TOTAL	Factor
Drummond Aggregate Extraction Area	a	545	MA11	151	226 31.00	18.48	1179	1179	18.48	3.20	12.24	0.58	0.58	0.19	1.23	1.23	0.40	0.50	0.00	6.70		19.5	350	0.5	87.4	1.20	300.00	67.85	0.09	1.00
Future Collector Road Cambrian Rd.	Stantec (2014) Stantec (2014)	MA11 MA10	MA10 MH57A			14.23 12.81	1523 1371	2702 4073	32.71 45.52	2.98 2.86	26.13 37.76		0.58	0.19 0.19	2.80 7.22	4.03 11.25	1.31 3.65	2.50 14.49	2.50 16.99	13.14 24.53		40.77 66.13	300 375	0.75	87.4 115.7	1.20 1.01	482.10 449.70	46.60 49.55	0.12	1.00
Brazeau Aggregate Extraction Area +		900	MA14	186	368 37.00	25.66	1693	1693	25.66	3.11	17.08	0.68	0.68	0.22	1.45	1.45	0.47		0.00	9.17		26.9	250	1.30	70.7	1.40	350.00	43.80	0.08	1.00
New Greenbank Road	Stantec (2014) Stantec (2014)	MA14 MA13	MA13 MH57A			4.79	513 1176	2206 3382	30.45 41.44	3.04 2.92	21.75 31.98		0.68	0.33	7.45	8.90 8.90	4.33 2.88	0.53	0.00	13.21 17.01		39.61 52.10	250 375	1.30 0.30	70.7	1.40 0.88	295.00 413.10	31.12 48.09	0.24 0.19	1.50
Cambrian Road	Stantec	MH57A	MH13A			4.29	458	7913	91.25	2.64	67.80	3.44	4.70	1.52	0.00	20.15	6.53		17.52	44.09		119.95	500	0.25	197.0	0.97	216.50	77.01	0.19	1.00
Cambrian Road Cambrian Road	Stantec Stantec	MH13A MH13A MH15A	MH15A MH17A			6.21	634 870	8547 9417	97.46	2.62	72.51	0.11	4.70	1.52	0.00	20.15	6.53		17.52 17.52 17.52	46.14		126.70	500 500 600	0.20	176.2	0.87	165.20 202.00	49.46 96.04	0.18	1.00
QUINN'S POINTE OUTLET TO MH1		WI TOA	WITT/A			103.07			100.07	2.00	70.01		1.70	1.02	5.00	20.10	5.05		11.02	10.00		107.02	000	0.10	201.0	0.13	202.00	00.04	5.17	1.00
Kilbirnie Drive Kilbirnie Drive		572 511	511 512		10 27	0.64	27 73	27 100	0.64	3.69 3.59	0.32		0.00	0.00	2.43	2.43 2.43	1.18 1.18		0.00	1.01 1.28		2.52 3.63	200 200	2.87 0.80	57.9 30.6	1.79 0.94	136.50 97.50	55.38 26.97	0.79	1.50 1.50
Future Collector Road		514	512	21		1.07	71	71	1.07	3.63	0.83		0.00	0.00		0.00	0.00		0.00	0.35		1.19	200	0.74	29.4	0.91	212.10	28.25	0.00	1.00
Kilbirnie Drive		512	EX10			0.00	0	171	2.53	3.54	1.96		0.00	0.00		2.43	1.18		0.00	1.64		4.78	200	1.60	43.3	1.33	74.00	38.50	0.49	1.50
River Mist Road		EX5	EX4	12		0.55	41	41	0.55	3.67	0.49		0.00	0.00		0.00	0.00		0.00	0.18		0.67	200	0.33	19.8	0.61	74.90	19.10	0.00	1.00
Boddington Street		EX101	EX100	14		0.72	48	48	0.72	3.65	0.57		0.00	0.00		0.00	0.00		0.00	0.24		0.81	200	0.98	33.8	1.04	90.13	33.00	0.00	1.00
Boddington Street		EX100	EX4	8		0.44	27	75	1.16	3.62	0.88		0.00	0.00		0.00	0.00		0.00	0.38		1.26	200	0.91	32.6	1.01	91.40	31.34	0.00	1.00
River Mist Road		EX4	EX3	12		0.53	41	157	2.24	3.55	1.81		0.00	0.00		0.00	0.00		0.00	0.74		2.54	200	0.32	19.4	0.60	74.95	16.82	0.00	1.00
Clonfadda Terrace Clonfadda Terrace		EX111 EX110	EX110 EX3	13 15		0.62	44 51	44 95	0.62	3.66 3.60	0.52 1.11		0.00	0.00		0.00	0.00		0.00	0.20 0.42		0.73 1.52	200 200	1.04 0.83	34.8 31.2	1.07 0.96	76.25 108.32	34.10 29.67	0.00	1.00
River Mist Road		EX3	EX2	3	- 11	0.32	10	262 300	3.82 4.37	3.48 3.46	2.96 3.37		0.00	0.00		0.00	0.00		0.00	1.26 1.44		4.22 4.81	200 200	0.35	20.2 45.5	0.62	100.22	16.00	0.00	1.00
River Mist Road Alex Polowin Avenue		EX2 EX13	EX1 EX12	11	14	0.55	38	300	0.46	3.46	0.44		0.00	0.00	-	0.00	0.00		0.00	0.15		0.59	200	1.77	34.4	1.40	112.11 74.36	40.65	0.00	1.00
Alex Polowin Avenue Alex Polowin Avenue Alex Polowin Avenue		EX13 EX12 EX11	EX12 EX11 EX10	24		0.74	82 58	119 177	1.20	3.58 3.53	1.38		0.00	0.00		0.00	0.00		0.00	0.40		1.78	200 200 200	2.14	50.1 44.0	1.54	107.77	48.32 41.35	0.00	1.00
Kilbirnie Drive		EX10	EX10	17	14	0.57	38	386	5.01	3.42	4.28		0.00	0.00		2.43	1.18		0.00	2.46		7.92	200	0.32	19.3	0.60	118.98	11.42	0.33	1.50
Block 251 (School)		Stub	EX20			0.00	0	0	0.00	3.80	0.00		0.00	0.00	2.83	2.83	1.38		0.00	0.93		2.31	200	0.32	19.3	0.60	11.00	16,99	1.00	1.50
Kilbirnie Drive		EX20	EX1		15	0.54	41	427	5.55	3.41	4.71		0.00	0.00		5.26	2.56		0.00	3.57		10.84	200	0.32	19.4	0.60	106.01	8.52	0.49	1.50
River Mist Road		EX1	MH163			0.08	0	727	10.00	3.31	7.79		0.00	0.00		5.26	2.56		0.00	5.04		15.39	200	0.32	19.3	0.60	39.41	3.96	0.34	1.50
MH163 TO MH17A RIVERMIST F	ROAD OUTLETS VIA CAMBRIAN R	ROAD				10.00	727															_			_					
River Mist Road River Mist Road	Stantec (2015)	MH163 EX162	EX162 EX161			0.08	0	727 727	10.08 10.28	3.31 3.31	7.79 7.79		0.00	0.00		5.26 5.26	2.56 2.56		0.00	5.06 5.13		15.41 15.48	250 250	0.85 1.15	57.2 66.5	1.13 1.31	36.30 44.40	41.78 51.05	0.34	1.50 1.50
River Mist Road		EX161A	EX161			0.00	0	0	0.00	3.80	0.00		0.00	0.00		0.00	0.00	0.91	0.91	0.30		0.30	150	1.00	15.9	0.87	14.00	15.59	0.00	1.00
River Mist Road		EX161	151			0.19	0	727	10.47	3.31	7.79		0.00	0.00		5.26	2.56		0.91	5.49		15.84	250	1.15	66.5	1.31	57.70	50.69	0.32	1.50
River Mist Road		EX151A	151			0.00	0	0	0.00	3.80	0.00		0.00	0.00	2.77	2.77	1.35		0.00	0.91		2.26	150	1.00	15.9	0.87	12.70	13.63	1.00	1.50
River Mist Road River Mist Road		151 EX151	EX151 MH142			0.09	0	727 727	10.56 10.56	3.31 3.31	7.79 7.79		0.00	0.00		8.03 8.03	3.90 3.90		0.91	6.44 6.44		18.13 18.13	300 300	1.40	119.4 119.4	1.64 1.64	17.90 44.40	101.23 101.23	0.41	1.50 1.50
Buffalograss Cres.	V 	EX151	EX158		24	0.00	65	65	0.56	3.63	0.77		0.00	0.00		0.00			0.91	0.18		0.95	200	0.40	21.6	0.67	95.50	20.69	0.41	1.00
Mattamy Lands East		900	EX158	31	51	3.10	243	243	3.10	3.49	2.75		0.00	0.00		0.00	0.00		0.00	1.02		3.77	200	0.40	20.2	0.62	280.00	16.46	0.00	1.00
Alex Polowin ave.		EX158	EX153	0	0	0.13	0	308	3.79	3.46	3.45		0.00	0.00			0.00		0.00	1.25		4.70	200	0.40	21.6	0.67	45.00	16.94	0.00	1.00
Mattamy Lands East		910	EX153		28	0.71	76	76	0.71	3.62	0.89		0.00	0.00		0.00			0.00	0.23		1.13	200	0.35	20.2	0.62	130.00	19.12	0.00	1.00
Alex Polowin ave.		EX153	EX152			0.12	0	384	4.62	3.42	4.26		0.00	0.00		0.00	0.00		0.00	1.52		5.79	200	0.80	30.6	0.94	70.00	24.82	0.00	1.00
Alex Polowin ave.		EX152	EX150			0.00	0	384	4.62	3.42	4.26		0.00	0.00		0.00	0.00		0.00	1.52		5.79	200	0.80	30.6	0.94	85.70	24.82	0.00	1.00
Rue Des Soldats Riendeau St.		EX165	EX150	17		0.67	58	58	0.67	3.64	0.68		0.00	0.00		0.00			0.00	0.22		0.91	200	1.50	41.9	1.29		41.00	0.00	1.00
Rue Des Soldats Riendeau St.	Stantec (2015)	EX150	EX146	6		0.30	20	462	5.59	3.39	5.08		0.00	0.00		0.00	0.00		0.00	1.84		6.93	200	0.80	30.6	0.94	72.00	23.68	0.00	1.00

		PROPOSED A	ND BSUEA DESIG	IN PARAMETERS					CITY OF OTTAWA MINTO COMMUNITIES INC.
Single Family	3.4 pers/unit	q =	280	L/cap/day				_	JLR NO. 26610
Semi-Detached/Townhouse (row)	2.7 pers/unit	I =	0.330	L/s/ha					BARRHAVEN SOUTH
Apt Units	1.8 pers/unit	inst./Comm. =	28000	L/ha/day					
Manning's Coeff. N =	0.013	Commerial PF*=	1.0/1.5			_			
		*1.5 if ICI in contribu	iting area is >20%,	1.0 if ICI in contributing area	s <20%	Legend	Proposed		
Sources:	Half Moon Bay South Sub	odivision - Phase 4 - Excludin	ng Arterials- Sanit	ary sewer design sheet p	epared by Stantec (2015)		Proposed by Others		
	Quinn's Pointe - Excluding	g Arterials-Sanitary sewer de	sign sheet prepa	red by J.L Richards (201			Existing		
	Barrhaven South Master	Servicing Study Addendum -	Sanitary sewer of	lesign sheet prepared Sta	tec (2014)	-			

								RE	SIDENTIAL				CC	DMMERCI/	L L	INS	STITUTION	AL	GREEN	/UNUSED	Г							Datorra	bruary 2018		
		м	H.#	NUM	MBER OF U	ITS A	REA	POPULATION	CUM	JLATIVE	PEAKING	POPUL.	1	CUMM.	INST.		CUMM.	INST.		CUMM.	PEAK EXTR.	PLUG	PEAK DES.			SEWER DA	TA		RESIDUAL		ICI*
STREET	SOURCE			SING.	MULT.	APT. TO	DTAL	TOTAL	POPUL.	AREA	FACTOR	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW		AREA	FLOW	FLOW	FLOW	DIA.	SLOPE	CAPAC.	VEL.	LENGTH	CAP.	ICI/	Peaking
		FROM	TO				ha	peop.	peop.	ha		/s	ha	ha	/s	ha	ha	/s	ha	ha	l/s	/s	/s	mm	%	/s	m/s	m	/s	TOTAL	Factor
Remora Way		EX147	EX146	20		(.94	68	68	0.94	3.63	0.80		0.00	0.00		0.00	0.00		0.00	0.31		1.11	200	1.00	34.2	1.06	78.20	33.11	0.00	1.00
Rue Des Soldats Riendeau St.		EX146	EX145	2			.08	7	537	6.61	3.37	5.86		0.00	0.00		0.00	0.00	_	0.00	2.18		8.04	200	0.50	24.2	0.75	19.30	16.15	0.00	1.00
Rue Des Soldats Riendeau St.		EX145	EX144	-			.07	0	537	6.68	3.37	5.86		0.00	0.00		0.00	0.00		0.00	2.20		8.06	200	0.50		0.75		16.13	0.00	1.00
Rue Des Soldats Riendeau St.		EX144	EX143	9			.54	31	568	7.22	3.36	6.18		0.00	0.00		0.00	0.00		0.00	2.38		8.56	200	0.50	24.2	0.75	114.90	15.63	0.00	1.00
Rue Des Soldats Riendeau St.		EX143	MH142			(.00	0	568	7.22	3.36	6.18		0.00	0.00		0.00	0.00		0.00	2.38		8.56	200	0.40	21.6	0.67	21.50	13.08	0.00	1.00
River Mist Road		MH142	EX139	3			.26	10	1305	18.04	3.18	13.44		0.00	0.00		8.03	3.90	_	0.91	8.90		26.25	300	0.40	63.8	0.87	74.80	37.56	0.30	1.50
River Wist Road		IVIT 142	EV198	3			.20	10	1305	10.04	3.10	15.44		0.00	0.00		0.03	3.90		0.91	8.90		26.25	300	0.40	03.0	0.07	74.00	37.50	0.30	1.50
		EX140	EX139	7		(.40	24	24	0.40	3.70	0.29		0.00	0.00		0.00	0.00		0.00	0.13		0.42	200	0.65	27.6	0.85	67.70	27.17	0.00	1.00
									1000	10.01		(0.00									0.40		07.00								
River Mist Road	V	EX139	EX136	10		(.47	34	1363	18.91	3.17	13.99		0.00	0.00	-	8.03	3.90	-	0.91	9.19	-	27.08	300	0.41	64.6	0.89	64.70	37.51	0.29	1.50
		EX137	EX136	15		(.84	51	51	0.84	3.65	0.60		0.00	0.00		0.00	0.00		0.00	0.28		0.88	200	0.65	27.6	0.85	67.80	26.71	0.00	1.00
River Mist Road		EX136	MH126	4		(.29	14	1428	20.04	3.16	14.60		0.00	0.00		8.03	3.90		0.91	9.56		28.07	300	0.41	64.6	0.89	78.90	36.52	0.28	1.50
Mattamy Lands East		920	930	36			.83	122	122	1.83	3.58	1.41	2.13	2.13	1.04		0.00	0.00		0.00	1.31		3.76	200	0.35	20.2	0.62	165.00	15.50	0.54	1.50
Mattamy Lands East		930	EX217	00				0	122	1.83	3.58	1.41	2.10	2.13	1.04		0.00	0.00		0.00	1.31		3.76	200	0.36		0.63	40.00	15.50	0.54	1.50
Flameflower St.		EX217	EX215			(.05	0	122	1.88	3.58	1.41		2.13	1.04		0.00	0.00		0.00	1.32		3.77	200	2.00	48.4	1.49	34.50	44.62	0.53	1.50
	0. (0015)	EVOID	51/045	_	-		10			0.40	0.70	0.47		0.00	0.00		0.00	0.00	_	0.00	0.00		0.00	000	0.05	07.0	0.05	45.00	07.05	0.00	1.00
Flameflower St.	Stantec (2015)	EX216	EX215	-	5	(.19	14	14	0.19	3.72	0.17		0.00	0.00	-	0.00	0.00	-	0.00	0.06	-	0.23	200	0.65	27.6	0.85	45.20	27.35	0.00	1.00
Flameflower St.		EX215	EX214		15	(.34	41	177	2.41	3.53	2.03		2.13	1.04		0.00	0.00		0.00	1.50		4.56	200	2.00	48.4	1.49	72.00	43.83	0.47	1.50
Flameflower St.		EX214	EX203		15	(.35	41	218	2.76	3.51	2.48		2.13	1.04		0.00	0.00		0.00	1.61		5.13	200	2.00	48.4	1.49	73.50	43.26	0.44	1.50
Devario Cres.		EX204	EX203	-			.54	62	62	0.54	3.64	0.73		0.00	0.00		0.00	0.00	3.10	3.10	1.20		1.93	200	1.50	41.9	1.29	36.50	39.97	0.00	1.00
Devano Cres.		EX204	EX203	-			.54	02	02	0.54	3.04	0.73		0.00	0.00		0.00	0.00	3.10	3.10	1.20		1.93	200	1.50	41.9	1.29	30.50	39.97	0.00	1.00
Devario Cres.		EX208	EX203			2	.50	187	187	2.50	3.53	2.14		0.00	0.00		0.00	0.00		0.00	0.83		2.96	200	0.40	21.6	0.67	120.00	18.68	0.00	1.00
				_																											
Flameflower St.		EX203	EX201	-		(.12	0	467	5.92	3.39	5.13		2.13	0.69	-	0.00	0.00	-	3.10	3.68	-	9.50	200	0.40	21.6	0.67	73.70	12.14	0.19	1.00
Dundonald Dr.		EX202	EX201	4		(.53	14	14	0.53	3.72	0.17		0.00	0.00		0.00	0.00		0.00	0.17		0.34	200	3.25	61.7	1.90	50.00	61.34	0.00	1.00
Dundonald Dr.		EX201	EX129A	3			.21	10	491	6.66	3.38	5.38		2.13	0.69		0.00	0.00		3.10	3.92		10.00	200	0.40	21.6	0.67	47.80	11.64	0.18	1.00
Dundonald Dr. Dundonald Dr.		EX129A EX129	EX129 EX128	18			.75	61 37	552 589	7.41	3.36 3.35	6.01 6.39		2.13 2.13	0.69		0.00	0.00		3.10 3.10	4.17 4.36		10.87 11.45	200 200	0.40	21.6 21.6	0.67	100.90 91.70	10.77 10.19	0.17	1.00
Buildonald Dr.		EX129	EA120				.56	37	569	7.99	5.55	0.39		2.13	0.09		0.00	0.00		3.10	4.30		11.45	200	0.40	21.0	0.07	51.70	10.19	0.10	1.00
Lamprey St.		EX130	EX128				.16	85	85	1.16	3.61	0.99		0.00	0.00		0.00	0.00	0.40	0.40	0.51		1.51	200	0.50	24.2	0.75	96.50	22.69	0.00	1.00
		=>///00	=>//0=						705	0.50	0.01			0.40	0.00				_	0.50	5.00		40.00		0.50		0.75	40.00	40.00		
Dundonald Dr. Dundonald Dr.		EX128 EX127	EX127 MH126	9			.37	31 44	705 749	9.52	3.31 3.30	7.57		2.13	0.69		0.00	0.00	-	3.50 3.50	5.00 5.22		13.26 13.92	200 200	0.50	24.2	0.75	49.80 97.80	10.93 5.43	0.14	1.00
Dundonald Dr.		EA127	1011120	13			.00		743	10.10	3.30	0.01		2.15	0.05		0.00	0.00		3.50	5.22		10.02	200	0.52	13.4	0.00	57.00	0.40	0.15	1.00
Dundonald Dr.		EX23	MH126				.06	71	71	1.06	3.63	0.83		0.00	0.00		0.00	0.00		0.00	0.35		1.18	200	1.47	41.5	1.28	89.30	40.30	0.00	1.00
		E1406 -	51/100							0.00	0.00	0.00		0.00	0.00	0.00	0.00	1.00		0.00	0.00		1.00	050	0.00	50.5	1.10	45.00	50.05	1.00	1.50
School		EX123A	EX123				.00	0	0	0.00	3.80	0.00		0.00	0.00	2.06	2.06	1.00		0.00	0.68	-	1.68	250	0.89	58.5	1.16	15.80	56.85	1.00	1.50
River Mist. Dr.		MH126	EX123		5	(.29	14	2262	31.57	3.03	22.25		2.13	1.04		8.03	3.90		4.41	15.23		42.41	375	0.45	122.7	1.08	122.00	80.29	0.22	1.50
River Mist. Rd.		EX123	MH112		7	(.34	19	2281	31.91	3.03	22.42		2.13	1.04		10.09	4.90		4.41	16.02		44.38	375	0.42	118.5	1.04	90.30	74.16	0.25	1.50
White Arctic Ave.		EX111	MH112			2	.39	378	378	3.39	3.43	4.20		0.00	0.00		0.00	0.00		0.00	1.12		5.32	200	0.32	19.4	0.60	74.80	14.04	0.00	1.00
V11110 / 11010 / 110.				-				0,0	0.0	0.00	0.10			0.00	0.00		0.00	0.00		0.00			0.02	200	0.02		0.00	7 1.00		0.00	1.00


'H SANITARY SEWER DESIGN SHEET Designed by: AT Checked by:HM

Date: February 2018

			Р	PROPOSED AND BSUEA D	ESIGN PARAMETERS																					
	Single Family Semi-Detached/Townhouse (row)	3.4 pers/unit	(ay											N SOUT			Z STV		DESIC	IN CU	FFT		
	Apt Units Manning's Coeff, N =	1.8 pers/unit		omm. = 28000		iy									DAI	ANIIA V E	N 8001	II SAN	HAN			DESIC	Designed	by: AT		
		-	*1.5 if	ICI in contributing area is >		0			Legend			v Others											Chickled			
		Quinn's Pointe - Excludin	g Arterials-Sanita	ary sewer design sheet p	repared by J.L Richar	ds (2015)						y Others														
							PEAKING	POPUI				INST					PLUG		-	9		Δ		·	lic	1 ×
STREET	SOURCE			T. APT. TOTAL	TOTAL POP	JL. AREA		FLOW	AREA	AREA	FLOW		AREA F	LOW A	REA ARE	A FLOW	FLOW	FLOW	DIA.		CAPAC.	VEL.	LENGTH	CAP.	ICI/	Peaking
River Mist. Rd.		MH112 EX102		0.14	0 2659	35.44	2.99	25.76		2.13	1.04		10.09	4.90	4.4	1 17.18		48.88	375	0.31	101.8	0.89	68.00	52.96	0.23	1.50
Dutchmans Way		EX103 EX102	18	0.80	61 61	0.80	3.64	0.72		0.00	0.00		0.00	0.00	0.0	0.26		0.98	200	2.02	48.6	1.50	120.00	47.65	0.00	1.00
Song Sparrow St.		EX104 EX102		3.83	386 386	3.83	3.42	4.28		0.00	0.00		0.00	0.00	0.0) 1.26		5.55	200	0.44	22.7	0.70	114.60	17.15	0.00	
River Mist Road		EX101 MH43A		0.00	0 3106	6 40.14	2.94	29.63		2.13	1.04		10.09	4.90	4.4	1 18.73		54.30	375	0.30	100.2	0.88	38.00	45.88	0.22	1.50
		MH44A MH45A		0.00	0 3458	3 46.70	2.91	32.63		2.13	0.69		10.09	3.27	4.4	1 20.90		57.49	375	0.30	100.2	0.88	64.00	42.70	0.19	1.00
		MH46A MH47A		8.40	562 4020	55.10	2.87	37.33		2.13	0.69		10.09	3.27 1.	.60 6.0	1 24.20		65.49	375	0.30	100.2	0.88	41.00	34.70	0.17	1.00
River Mist Road	Otenter (2014)	MH101A MH102A		0.00	0 4020) 55.10	2.87	37.33		2.13	0.69		10.09	3.27	6.0	1 24.20		65.49	375	0.30	100.2	0.88	64.00	34.70	0.17	1.00
		MH102A MH17A				0 60.34	2.83	40.78		2.13	0.69		10.09	3.27	6.0	20.93		70.67	375	0.30	100.2	0.88	81.00	29.52	0.16	1.00
CAMBRIAN RD. FROM MH17A TO Cambrian Rd. Cambrian Rd.	Stantec (2014)			26.01	1956 1581							2.96					<u> </u>									
					400 1022	1 190.40	2.14	144.23		0.00	2.21		55.20	10.70 0.	.00 20.0	5 70.04		233.20	130	0.15	413.5	0.52	211.00	104.24	0.15	1.00
							-																			
Future Collector Future Collector Future Collector												0.00														
Future Collector Future Collector																	0.10									
East-West Collector																										
East-West Collector																										
East-West Collector																										
Future Collector								1.87						0.00	0.0											
Alex Polowin Ave.																										
Alex Polowin Ave. Alex Polowin Ave.		90 5	11 0	0.54	37 122	1.73	3.58	1.41		0.00	0.00	0.00	0.00	0.00	0.0	0.00		1.41	200	0.35	20.3	0.63	108.16	18.87	0.00	1.00
River Mist Road																										
River Mist Road		564 556	7 9	0.64	48 360	4.91	3.43	4.01		0.00	0.00		0.00	0.00	0.0) 1.62		5.63	200	0.35	20.2	0.62	95.00	14.62	0.00	1.00
East-West Collector East-West Collector			6	1,12													4.00									
Future Collector		560 558	50 0	3.09	170 170	3.09	3.54	1.95		0.00	0.00		0.00	0.00	0.0) 1.02		2.97	200	0.35	20.2	0.62	150.00	17.27	0.00	1.00
East-West Collector		558 119		5.74	0 2093	38.88	3.06	20.73		0.00	0.00		5.06	1.64	0.0) 14.50	1	40.97	450	0.13	107.2	0.65	150.00	63.75	0.12	1.00
Future Collector			24 33	2.17			3.54	1.96										2.68	200	1.26	38.4	1.18	230.00	35.74	0.00	1.00
			71	1.95															1						0.00	1.00
Future Collector		520 524	41	2.06	139 139	2.06	3.56	1.60		0.00	0.00		0.00	0.00	0.0	0.68		2.28	200	0.26	17.4	0.54	72.20	15.16	0.00	1.00
Future Collector Future Collector																	1									
Future Collector Future Collector Future Collector		532 534	50 26	3.29	240 977	13.10	3.25	10.27		0.00	0.00		0.00	0.00	0.0) 4.32		14.60	300	0.20	45.1	0.62	127.45	30.52	0.00	1.00
Future Collector		536 538		0.00	0 1164	16.06	3.21	12.09		0.00	0.00	0.00	0.00	0.00	0.0	5.30		17.39	450	0.20	133.0	0.81	309.73	115.63	0.00	1.00
Greenbank Rd.			1																							
	IH205A EXISTING GREENBANK RD.			54.94															1							
Greenbank Road		EX120 EX121		0.22		7 55.16	2.93	30.92		0.00	0.00	0.00	5.06	1.64	0.0) 19.87	4.10	56.53	600	0.16	259.0	0.89	58.09	202.51	0.08	1.00
				0.28	0 3640) 61.99	2.90	34.16			0.00	0.00	6.63	2.15	0.0) 22.64		63.05	600	0.33			75.27	306.17	0.10	1.00

					PROPOSED	O AND BSUEA [DESIGN PAF	AMETERS	1										СІТҮ ОҒ О ГО СОММІ	DTTAWA UNITIES INC.										
	Single Family Semi-Detached/Townhouse (row)	3.4 2.7	pers/unit pers/unit		q =	280 0.330		L/cap/day L/s/ha	1										JLR NO.		N SOUT		TAD	V CT		DECL	CNL CT	TEET		
					-														DAKK				IIAK	I SL	WER	DESI				
	Apt Units Manning's Coeff. N =	1.8 0.013	pers/unit		Inst./Comm. = Commerial PF*=	28000 1.0/1.5		L/ha/day																				ed by: AT ed by:HM		
	Manning's Coen. N -	0.013			*1.5 if ICI in contr		20% 10 if	l in contributir	 g area is <20'	0/_		Legend		Proposed													Checke	u by.riivi		
	Sources:	Holf Moon P	ov South Sub							d by Stantec (2015)	-	Legend			by Others															
	Sources.				-Sanitary sewer					u by Stanlet (2015)	-			Existina	by Others															
					Study Addendur					2014)	-			LVISIULA																
		Darmaven o	outin Master c	Servicing	Study Addendar	II - Ganitary Se	wer design	sneet prepar		2014)	_																			
				1				RESIDENTIA					COMMERCI	Δ1	INS		Δι	GREEN/	UNUSED	1							Date: Feb	bruary 2018		
		1		NUN	MBER OF UNITS	AREA	POPULAT		ULATIVE	PEAKING	POPUL.		CUMM.	INST.		CUMM		UNLER	CUMM.	PEAK EXTR.	PLUG	PEAK DES.	T		SEWER DA	TA		RESIDUAL		ICI*
STREET	SOURCE	м.	H.#		MULT. APT		TOTAL			FACTOR	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	AREA	AREA	FLOW	FLOW	FLOW	DIA.		CAPAC.		LENGTH	CAP.	ICI/	Peaking
5EF	COURCE	FROM	то	1		ha	peop.	peop.	ha		/s	ha	ha	l/s	ha	ha	Vs	ha	ha	/s	l/s	l/s	mm	%	l/s	m/s	m	/s	TOTAL	Factor
Greenbank Road		EX122	EX123R			0.45	0	3640	62.44	2.90	34.16		0.00	0.00	0.00	6.63	2.15		0.00	22.79	4.10	63.20	600	0.21	291.1	1.00	121.02	227.90	0.10	1.00
																							4	4					4	
Easement		EX44	EX123R			0.00	0	259	2.62	3.48	2.93		0.00	0.00	0.00	0.00	0.00		0.00	0.86		3.79	300	0.35	59.9	0.82	19.00	56.12	0.00	1.00
Greenbank Road		EX123R	MH205A			0.43	0	3899	65.49	2.87	36.32		0.00	0.00	0.00	6.63	2.15		0.00	23.80	4.10	66.37	600	0.25	319.2	1.09	120.80	252.85	0.09	1.00
Greenbank rioad		EXTLOR	14112004			0.40		0000	00.40	2.07	00.02		0.00	0.00	0.00	0.00	2.10		0.00	20.00		00.01	000	0.20	010.2	1.00	120.00	202.00	0.00	1.00
Kilbirnie Drive	JLR (2016)	EX24	MH205A		3	0.11	8	224	2.15	3.50	2.54		0.00	0.00	0.00	0.00	0.00		0.00	0.71		3.25	200	0.71	28.8	0.89	28.70	25.59	0.00	1.00
		NU1005A	EVODA				0	4123	67.64	2.86	38.18		0.00	0.00	0.00	0.00	2.15		0.00	24.51		73.94		0.25	320.3	1.10	126.00	246.34	0.09	1.00
Existing Greenbank Road		MH205A	EX98A				0	4123	07.04	2.00	30.10		0.00	0.00	0.00	6.63	2.15		0.00	24.01	4.10	73.94	600	0.25	320.3	1.10	120.00	240.34	0.09	1.00
EXISTING GREENBANK RD. FROM	/ MH 98A TO MH45A	-			· ·	6.15	484																							
Existing Greenbank Road	IBI	EX98A	MH99A			0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25			125.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH99A	MH100A			0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25			108.00	246.34	0.09	1.00
Existing Greenbank Road Existing Greenbank Road	IBI IBI	MH100A MH204A	MH204A MH206A			0.00	0	4123 4123	67.64 67.64	2.86 2.86	38.18 38.18		0.00	0.00		6.63 6.63	2.15 2.15		0.00	24.51 24.51	4.10	73.94 73.94	600 600	0.25	320.3 320.3	\vdash	105.00 103.00	246.34 246.34	0.09	1.00
Existing Greenbank Road	IBI	MH204A MH206A	MH206A MH97A			0.00	0	4123	67.64	2.86	38.18		0.00	0.00		6.63	2.15		0.00	24.51	4.10	73.94	600	0.25		\vdash	125.00	246.34	0.09	1.00
Existing Greenbank Road	IBI	MH97A	MH96A			19.95	1631	5754	87.59	2.75	51.29		0.00	0.00		6.63	2.15	0.81	0.81	31.36	4 10	93.90	600	0.30	350.8	\vdash	98.00	256.95	0.07	1.00
Existing Greenbank Road	B	MH96A	MH95A			0.00	0	5754	87.59	2.75	51.29		0.00	0.00		6.63	2.15		0.81	31.36	4.10	93.90	600	0.30			129.00	256.95	0.07	1.00
Existing Greenbank Road	IBI	MH95A	MH201A			0.00	0	5754	87.59	2.75	51.29		0.00	0.00		6.63	2.15		0.81	31.36	4.10	93.90	600	0.30	350.8		123.00	256.95	0.07	1.00
Existing Greenbank Road	BI	MH201A	MH201B			12.13	787	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.30	350.8		124.00	246.83	0.06	1.00
Existing Greenbank Road	IBI	MH201B	MH200A			0.00	0	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.30			68.00	246.83	0.06	1.00
Existing Greenbank Road	IBI ISI	MH200A	MH200C			0.00	0	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.50	452.9	\square	48.00	348.93	0.06	1.00
Existing Greenbank Road	IBI	MH200C	MH45			0.00	0	6541	99.72	2.71	57.40		0.00	0.00		6.63	2.15		0.81	35.36	4.10	104.01	600	0.12	221.9	$ \longrightarrow $	26.00	117.88	0.06	1.00
Existing Greenbank Road	Stantec (2014)	MH45	MH435A			5.12	548	23310	301.30	2.27	171.38		6.83	2.21		39.83	12.91	0.00	29.44	124.54	4.10	320.14	900	0.10	597.2		296.00	277.08	0.12	1.00
North																_							4	4						
		MA9	MA8			22.23	2378	2378	22.23	3.02	23.28	0.00	0.00	0.00	2.45	2.45	0.79	9.54	9.54	11.29		35.37	450	0.11	98.4		507.50	63.03	0.07	1.00
		MA8	MA7			2.88	308	2686	25.11	2.99	25.99	0.00	0.00	0.00	0.00	2.45	0.79	0.78	10.32	12.50		39.29	450	0.11	98.4	$ \longrightarrow $	317.10	59.11	0.06	1.00
Realigned Greenbank Road		MA7 MA6	MA6 MA5			18.50	1979 2320	4665 6985	43.61 65.29	2.82	42.61 60.80	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32 10.32	18.61 25.76		62.01 87.36	450 525	0.11	98.4 140.5		573.10 473.90	36.39 53.14	0.04	1.00
Realigned Greenbank Road		MA6	MA5 MA4			9.53	1020	8005	74.82	2.69	68.49	0.00	0.00	0.00	0.00	2.45	0.79	0.00	10.32	28.90		98.19	525	0.10	140.5	\square	473.90	42.31	0.03	1.00
Realigned Greenbank Road		MA4	MH521A			8.07	863	8868	82.89	2.61	74.87	0.00	0.00	0.00	0.00	2.45	0.79	2.42	12.74	32.37		108.03	525	0.10		$ \longrightarrow $	530.70	32.47	0.03	1.00
		MH521A	MH522A			3.80	231	9099	86.69	2.60	76.56	0.00	0.00	0.00	0.00	2.45	0.79	0.02	12.76	33.63		110.98	600	0.10	201.5		49.90	90.52	0.02	1.00
	\downarrow	MH522A	MH435A			0.00	0	9099	86.69	2.60	76.56	0.00	0.00	0.00	0.00	2.45	0.79	0.00	12.76	33.63		110.98	600	0.10			11.10	90.52	0.02	1.00
																							4	/				1 /		
		MH435A	MH501A			0.00	0	32409	387.99	2.16	226.39	0.00	6.83	2.21	0.00	42.28	13.70	0.00	42.20	158.17	4.10.	409.57	900	0.10	597.0		13.30	187.43	0.10	1.00

APPENDIX D

File Location: R:\26000\26610 - Barrhaven Expansion - Minto Brazeau Mattamy\JLR DWG\GIS\26610 C BSUEA EXTENTS.mxd

Culvert ID	Location	Туре	Size (mm)
CR-C1	On Cambrian Road, 910 m east of Borrisokane Road, carries Clarke West Municipal Drain	Circ. CSP	1650
CR-C2	On Cambrian Road at Borrisokane Road	Circ. CSP	N/A
BDR-C4	On Barnsdale Road, 50 m west of Borrisokane Road	Circ. CSP	1200
BDR-C5	On Barnsdale Road, 500 m west of the existing Greenbank Road	Circ. CSP	500
BDR-C6	On Barnsdale Road, 60 m west of the existing Greenbank Road	Circ. CSP	400

Table 5-1: Inventory of Model Boundary Water Crossings

It should be noted that culvert CR-C2 was not included as part of the topographical survey and size is currently unknown.

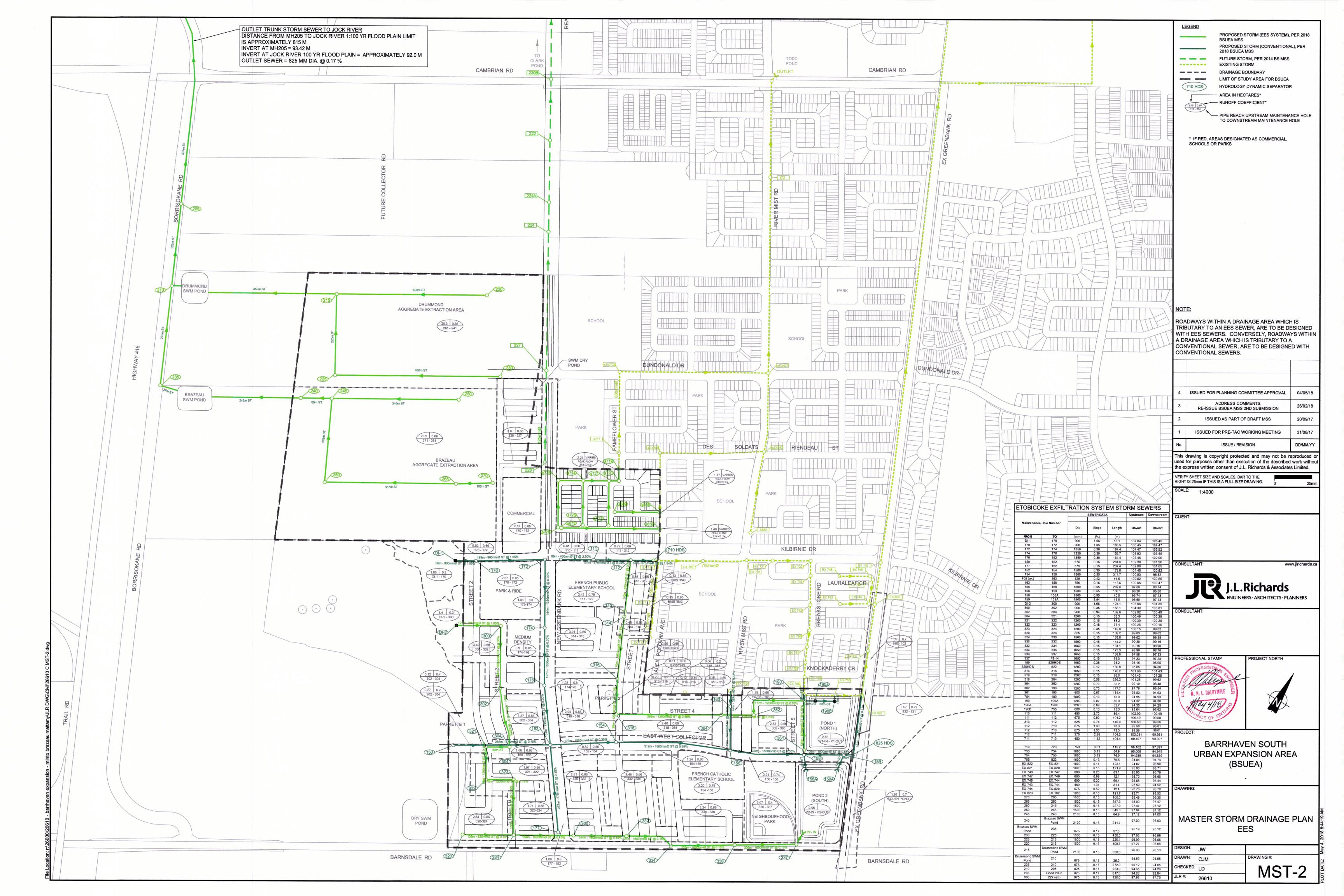
The 2014 Barrhaven South Master Servicing Study Draft Addendum (Draft 2014 BSMSSA) prepared by Stantec, notes that water crossing CR-C1 is to be replaced with storm sewers when the Clarke West Municipal Drain is enclosed as part of the adjacent development and the Clarke Stormwater Management Facility is constructed. The Draft 2014 BSMSSA also indicated that culvert CR-C2 is to be maintained, and will accommodate flows from the existing catchment area south of Cambrian Road up to the 1:100 year event. Should future development occur south of the woodlot draining to CR-C2, grading and servicing from the future development area in the vicinity of the woodlot should be developed to maximize overland sheet flow drainage (not channelized) towards the woodlot.

Table 5-2: Inventory of Mode	I Water Crossings (Internal)
------------------------------	------------------------------

Culvert ID	Location	Туре	Size (mm)
CVR-C1	East of Borrisokane Road along the north corner of the BSUEA	Circ. CSP	500
CVR-C2	East of Borrisokane Road at Field Entrance	Circ. CSP	450
CVR-C3	East of Borrisokane Road at Field Entrance	Circ. CSP	400
CVR-C4	Borrisokane Road Crossing north of Barnsdale Road	Circ. CSP	1200
BDR-C1	Viewbank Road Crossing	Circ. CSP	400
BDR-C2	Field Entrance Crossing South of Barnsdale Road	Circ. CSP	400
BDR-C3	Field Entrance Crossing South of Barnsdale Road	Circ. CSP	500
BDR-C7	Barnsdale Road Crossing close to the existing Greenbank Road Intersection	Circ. CSP	500

Table 5-2, above, summarizes the various culvert crossings within the BSUEA. As shown above, all the culverts are 500 mm in diameter or less with the exception of CVR-C4, which is 1200 mm in diameter.

B5.5.1 Storm Distribution


The hydrological response of the BSUEA and abutting lands was simulated under a 6 hour, 12 hour and 24 hour SCS Type II storm distribution. The SCS Type II storm distribution was developed by the American Soil Conservation Service and is generally used for estimating flows in rural areas. The critical storm event under pre-development conditions, with the highest peak runoff, was found to occur under the 12 hour SCS Type II storm distribution.

B5.6 Modeling Results

The pre-development SWMHYMO simulation results, predicting flows at each of the culverts for the critical storm event, are shown in Table 5-5, below. The estimated capacity and level of service of each culvert is also provided. The details of culvert CR-C2, crossing Cambrian Road at Borrisokane Road, could not be obtained in the field due to obstructions and/or structural failure. Hence, the capacity and level of service at this culvert could not be confirmed.

Culvert ID	Flow	/ (m³∕s) at	culvert lo (recur	cation for rence)	return pe	eriod	Estimated Culvert	Estimated Level of
	1:2 yr	1:5 yr	1:10 yr	1:25 yr	1:50 yr	1:100 yr	Capacity (m³/s)	Service (years)
CR-C1	0.3	0.7	1.0	1.6	2.0	2.5	5.5	1:100
CR-C2	0.2	0.4	0.7	1.0	1.3	1.6	N/A	N/A
CVR-C1	0.1	0.3	0.5	0.8	1.0	1.3	0.4	1:5
CVR-C2	0.0	0.1	0.1	0.2	0.2	0.3	0.2	1:25
CVR-C3	0.0	0.1	0.2	0.2	0.3	0.4	0.3	1:50
CVR-C4	0.2	0.4	0.6	0.9	1.1	1.4	2.6	1:100
BDR-C1	0.0	0.0	0.1	0.1	0.1	0.2	0.2	1:100
BDR-C2	0.0	0.1	0.1	0.1	0.2	0.2	0.2	1:50
BDR-C3	0.1	0.1	0.1	0.2	0.2	0.3	0.5	1:100
BDR-C4	0.2	0.4	0.6	0.9	1.2	1.5	2.6	1:100
BDR-C5	0.0	0.0	0.0	0.0	0.0	0.1	0.3	1:100
BDR-C6	0.0	0.0	0.1	0.1	0.2	0.2	0.2	1:100
BDR-C7	0.1	0.1	0.1	0.2	0.3	0.4	0.3	1:50
Total Flow to Thomas Baxter Municipal Drain	0.2	0.5	0.7	1.1	1.3	1.6	N/A	N/A

Table 5-5: Hydrological Simulation Results at Culvert Locations(12 hour SCS Type II storm)

patersongroup

memorandum

consulting engineers

re:	Groundwater Infiltration Review
	Proposed Residential Development
	Brazeau Pit and Drummonds Pit- Borrisokane Road - Ottawa
to:	Caivan Communities - Mr. Andrew Finnson - afinnson@caivan.com
date:	August 30, 2019
file:	PG4504-MEMO.06 Revision 1

Paterson Group (Paterson) has prepared the current memorandum report to provide a review of the hydrogeological characteristics in support of groundwater infiltration recommendations for the aforementioned site.

Background Information

It is currently understood that the proposed residential development consists of a mixture of single family and townhouse style residential dwellings. It is also understood that the development will be serviced by municipal infrastructure that outlets to a stormwater management pond.

The field program for the geotechnical investigation at the Brazeau Pit was completed between November 16, 2018 and April 10, 2019. At that time, a total of 12 boreholes and 15 test pits were advanced to a maximum depth of 5.9 m below existing grade. The results of the investigation indicated that, in general, the subsurface profile consisted of a thin layer of fill material overlying a deposit of silty sand/sand with varying amounts of gravel and cobbles. A thick layer of fill material was encountered within the southeast portion of the subject site and primarily consisted of silty sand with varying amounts of clay, gravel, cobbles, organics and construction debris. This was typically underlain by a till deposit composed of a silty sand matrix with gravel, cobbles and boulders. A very stiff to stiff silty clay layer was noted between the silty sand/sand and till deposits at select boreholes within the western portion of the property. A DCPT test was completed at one borehole location and encountered practical refusal at a depth of 23.5 m. However, bedrock was not conclusively encountered as part of the geotechnical investigations for the proposed development.

The field program for the geotechnical investigation at the Drummonds Pit was completed between July 22 and July 26, 2019. At that time, a total of 8 boreholes and 14 test pits were advanced to a maximum depth of 11.3 m below existing grade. The results of the investigation indicated that, in general, the subsurface profile consisted of a fill material comprised of silty sand to sand and/or silty clay with varying amounts of gravel, cobbles and boulders. Depending on the depth of excavation during the extraction of the aggregate material, the above noted fill material is underlain by either silty sand/sand with varying amounts of gravel, cobbles and boulders or a glacial till deposit composed of a silty sand to silty clay matrix with varying amounts of gravel, cobbles and boulders. A very stiff to stiff silty clay layer was noted underlying the silty sand/sand or fill material at select test holes. A DCPT test was completed at one borehole location and encountered practical refusal at a depth of 11.6 m.

Bedrock was not conclusively encountered as part of the geotechnical investigations for the proposed development. However, based on available mapping, the site is located in an area where bedrock consists of dolomite of the Oxford formation, with overburden thickness ranging from 15 to 25 m.

Hydrogeological Setting

The subject site is located primarily within the Jock Downstream Reach subwatershed of the Jock watershed, with a negligible percentage of the property being located within the Mud Creek subwatershed of the Lower Rideau watershed.

Hydraulic Conductivity and Infiltration Values

Hydraulic conductivity testing was not completed as part of the geotechnical investigations for the proposed development. However, testing completed directly south of the subject site as part of the Community Development Plan (CDP) determined that the hydraulic conductivity of the silty sand/sand deposit ranged from 3.0×10^{-6} to 4.8×10^{-4} m/sec. The hydraulic conductivity values obtained from within the till deposit were slightly lower, and ranged from 5.0×10^{-7} to 7.6×10^{-5} m/sec. The values obtained from the field testing to the south are consistent with published values, and are considered applicable to the materials encountered at the subject site. With regards to the silty clay layer noted underlying the silty sand/sand deposit, hydraulic conductivity values were anticipated to range from 1.0×10^{-9} to 1.0×10^{-7} m/sec, and were based on published values. Due to the variability in the fill material noted on site, hydraulic conductivity values are anticipated to range from 1.0×10^{-7} to 1.0×10^{-4} m/sec and is dependant on the ratio of silty sand/sand to silty clay within the material. For infiltration system design purposes, it is recommended to use an infiltration rate of 75 mm/hr for the Brazeau Pit site and an infiltration rate of 50 mm/hr for the Drummond Pit site.

patersongroup

Mr. Andrew Finnson Page 3 File: PG4504-MEMO.06

Based on discussions with David Schaeffer Engineering Ltd., it is understood that a version of the Etobicoke exfiltration system is being proposed for the development in order to ensure infiltration volumes to the underlying aquifer systems be maintained. The exfiltration system is proposed to be installed below the curb lines of the development and placed over native silty sand/sand, free-draining sand material 1.5 m in thickness or a silty sand/sand to silty clay fill material. It is understood that the subject area is required to meet post-development infiltration levels of 40% of the area precipitation. It is further understood that the annual precipitation for the area is 844 mm, so a post-development infiltration level of 40% would require that a minimum infiltration of 338 mm be achieved for the subject site.

Water Levels and Flow Directions

Water levels obtained at the time of the geotechnical investigations ranged from 0 to 9.1 m depth below existing grade. Based on the recovered water levels, it is expected that the local groundwater flow direction trends to the north towards the Jock River, located approximately 1.4 km north from the north property boundary of the Drummonds Pit. This is corroborated by the groundwater divide separating the Jock Downstream Reach subwatershed and the Mud Creek subwatershed located at the southern boundary of the Brazeau Pit. Its location at the southern edge of the property would suggest that groundwater flows north, away from the divide.

Groundwater Recharge and Discharge

The presence of overburden soils with moderate to high hydraulic conductivity overlying the bedrock aquifer units are considered to provide the potential for significant groundwater recharge within the study area. The Kars esker is considered to transmit large quantities of water that are recharged through the infiltration of precipitation within the non-cohesive material comprising the original overburden materials in the area. The subject site represents a small portion of the existing zone identified by the Mississippi-Rideau Source Protection Region (MRSPR) as a zone of significant groundwater recharge.

Mr. Andrew Finnson Page 4 File: PG4504-MEMO.06

Recommendations

As previously discussed, existing conditions at the subject site currently allow for significant volumes of recharge to occur. As such, it is recommended that measures be taken as part of the proposed development to ensure that infiltration volumes to the underlying aquifer systems be maintained. In accomplishing this, the following are some of the potential measures that could be implemented at the subject site:

- □ Transport the water using a modified version of the Etobicoke exfiltration system for the development with a minimum 1 m vertical separation between the base of the system and the seasonally high water table to allow for adequate infiltration.
- Allocate land for City parks, providing opportunities to allow clean water to infiltrate into the overburden aquifer system.
- Promote infiltration of clean water from rooftops by directing stormwater to grassed areas as opposed to driveways and/or municipal infrastructure.
- □ Implement Low Impact Development (LID) measures in conjunction with BMP for stormwater quality and quantity control to assist in infiltrating clean water, treating salt impacted water where required or redirecting salt impacted water away from infiltration locations.

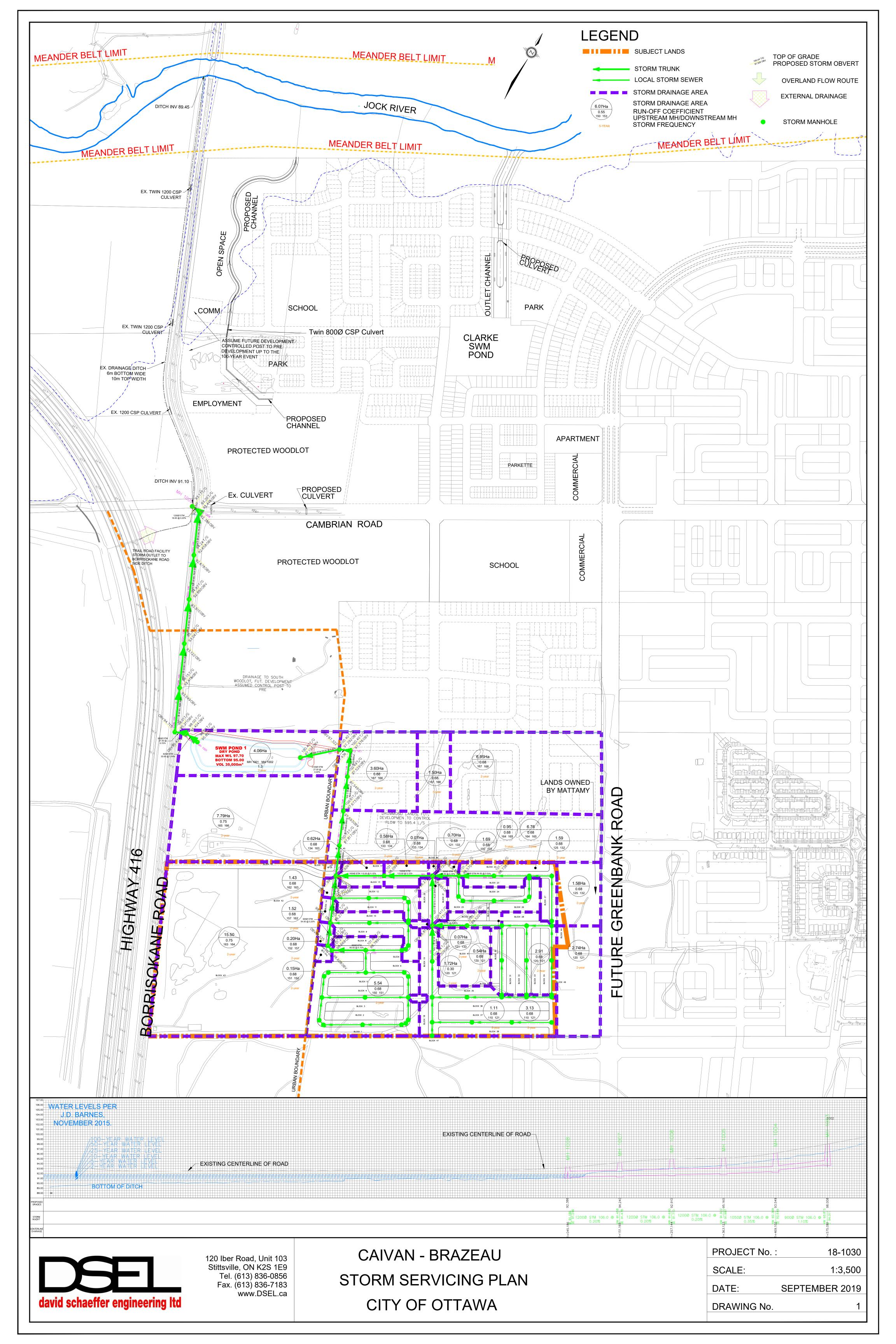
It is important to note that not all of the above may necessarily need to be employed at the subject site, and that the measures required to maintain existing infiltration will be dependent on the final design of the proposed development.

We trust that this information satisfies your requirements.

Best Regards,

Paterson Group Inc.

Mike Killam, P.Eng.



Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

David J. Gilbert, P.Eng.

Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 St. Lawrence Office 993 Princess Street Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Local Roads Return Frequency = 2 years

Collector Roads Return Frequency = 5 years Arterial Roads Return Frequency = 10 years

(0.012	Collector	Roads Return	n Frequenc	y = 5 years																								199		UW	U
Aanning	0.013	Arterial R	loads Return	Frequency	= 10 years				ARE	A (Ha)										F	LOW							SEWER D	ТА			
	LOCATION		2 Y	EAR			5 Y	YEAR	70.02		10 YI	EAR			100 YEA	R		Time of	Intensity	Intensity		Intensity	Peak Flow DL	A. (mm)	DIA. (mm)	TYPE	SLOPE		CAPACITY	VELOCIT	TIME OF	RATIO
		AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA			Accum.	Conc.	2 Year	5 Year	10 Year	100 Year										
ocation	From Node To Nod	e (Ha)	K	2.78 AC	2.78 AC	(Ha)	IX.	2.78 AC	2.78 AC	(Ha)	IX.	2.78 AC	2.78 AC	(Ha)	2.	78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s) (a	actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (min	ı Q/Q fu
nknown	1 Road9 - 09		-																													-
IIKIIOWI	Roaus - 09			0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00		(0.00	0.00														+	+
		0.54	0.68	1.02	1.02			0.00	0.00			0.00	0.00			0.00	0.00															
		1.72	0.30	1.43	2.46			0.00	0.00			0.00	0.00			0.00	0.00															
	120 121	2.74 2.91	0.68	5.18 5.50	7.63 13.14			0.00	0.00			0.00	0.00			0.00	0.00	10.00	76.81	404.40	122.14	470.50	1009	750	750	CONC	0.95	83.0	1085.09	2.46	0.56	0.93
o Unkno	wn Road1 - 01, Pip			5.50	13.14			0.00	0.00			0.00	0.00			5.00	0.00	10.00 10.56	70.01	104.19	122.14	176.00	1009	750	730	CONC	0.95	03.0	1065.09	2.40	0.50	0.93
			-																													
Inknown	n Road1 - 01																															
			-	0.00	0.00	0.00	0.00 0.68	0.00	0.00			0.00	0.00			0.00	0.00	16.33														+
	110 121	3.13	0.68	5.92	5.92	1.11	0.00	0.00	2.10			0.00	0.00			0.00	0.00	16.33	58.80	79.49	93.07	135.88	515	600	600	CONC	1.75	85.5	812.26	2.87	0.50	0.63
ontributi	on From Unknown				13.14				0.00				0.00				0.00	10.56														
		0.07	0.68	0.13	19.19	0.70		0.00	2.10			0.00	0.00			0.00	0.00	10.00				100.10	1075		1000				1710 57			0.70
o Unkno	121 133 wn Road6 - 06, Pip	0 122 12	4	0.00	19.19 19.19	0.70	0.68	1.32	3.42 3.42			0.00	0.00		(0.00	0.00	16.83 18.10	57.77	78.09	91.42	133.46	1375	1200	1200	CONC	0.20	118.0	1743.57	1.54	1.28	0.79
	WIT ROADO - 00, FI	Je 133 - 13	+		19.19				J.42				0.00				0.00	10.10													<u>+</u>	1
nknowr	n Road6 - 06																															
			0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00	12.28											<u> </u>	+	+	<u> </u>
	125 132	1.58 1.59	0.68	2.99 3.01	2.99 5.99			0.00	0.00			0.00	0.00			0.00	0.00	12.28	69.04	93.52	109.58	160.10	414	750	750	CONC	0.20	84.0	497.87	1.13	1.24	0.83
	120 132	1.58	0.00	0.00	5.99	0.00	0.00	0.00	0.00			0.00	0.00	1		0.00	0.00	15.36	03.04	33.32	109.00	100.10		, 30	100	CONC	0.20	04.0		1.13	1.24	0.03
	132 133		0.68	3.19	9.19			0.00	0.00			0.00	0.00		(0.00	0.00	15.36	60.92	82.40	96.49	140.90	560	900	900	CONC	0.15	63.0	701.13	1.10	0.95	0.80
ontributi	on From Unknown	Road1 - 0'	I, Pipe 121		19.19	0.07		0.40	3.42				0.00				0.00	18.10												<u> </u>		_
	133 134	0.58	0.68	0.00	28.37 29.47	0.07	0.68	0.13	3.55 3.55			0.00	0.00			0.00	0.00	18.10	55.30	74.71	87.45	127.64	1895	1500	1500	CONC	0.15	115.0	2737.76	1.55	1.24	0.69
	134 163				30.64			0.00	3.55			0.00	0.00			0.00	0.00	19.34	53.12					1650	1650	CONC		115.0				
o Unkno	wn Road12 - 11, P	ipe 163 - 1	64		30.64				3.55				0.00				0.00	20.50														
	Deedd2 44																													───	<u> </u>	
IIKIIOWI	1 Road12 - 11			0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00	17.19												+		
	150 151	5.54	0.68	10.47	10.47	0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00	17.19	57.03	77.08	90.24	131.72	597	900	900	CONC	0.15	80.5	701.13	1.10	1.22	0.85
	151 152	0.15	0.68	0.28	10.76			0.00	0.00			0.00	0.00			0.00	0.00	18.41	54.74	73.94	86.55	126.31		900	900	CONC	0.15	15.0	701.13	1.10	0.23	0.84
	152 157	0.20	0.68	0.38	11.13 11.13	0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00	18.64 14.80	54.33	73.39	85.90	125.36	605	900	900	CONC	0.20	54.5	809.60	1.27	0.71	0.75
	157 162	1.52	0.68	2.87	14.01	0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00	19.35	53.10	71.71	83.92	122.46	744	900	900	CONC	0.25	59.5	905.16	1.42	0.70	0.82
				0.00	14.01	0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00	14.54														
	162 163		0.68	2.70	16.71			0.00	0.00			0.00	0.00		(0.00	0.00	20.05	51.95	70.15	82.09	119.77	868	975	975	CONC	0.25	53.5	1120.53	1.50	0.59	0.77
Contributi	on From Unknown 163 164		6, Pipe 134 0.75		30.64 79.67			0.00	3.55 3.55			0.00	0.00			0.00	0.00	20.50 20.64	51.02	68.87	80.59	117.57	4310	1950	1950	CONC	0.15	72.5	5511.18	1.85	0.65	0.78
o Unkno	wn Road14 - 13, P			52.52	79.67			0.00	3.55			0.00	0.00				0.00	21.30	51.02	00.07	00.55	117.57	4310	1350	1330	CONC	0.15	12.0	3311.10	1.00	0.05	0.70
		·																														1
	n Road14 - 13	Bood 10	1 Dir - 40	2 164	70.07				3.55				0.00				0.00	21.30												──	───	
JUUINUI	on From Unknown	Nuau 12 -	i i, mpe 16	0.00	79.67 79.67	0.95	0.68	1.80	5.35			0.00	0.00	-	(0.00	0.00	21.30			-									+	+	+
	164 165	6.76	0.68	12.78	92.45	0.00	0.00	0.00	5.35			0.00	0.00	l		0.00	0.00	21.30	50.03	67.53	79.01	115.26	4987	2100	2100	CONC	0.15	82.5	6715.38	1.94	0.71	0.74
	165 166		0.75	16.24	108.69			0.00	5.35			0.00	0.00			0.00	0.00	22.01	49.01	66.13		112.86		2100	2100	CONC	0.15	82.5	6715.38	1.94	0.71	0.85
o Unkro	166 167 wn Road11 - 1001		169	0.00	108.69 108.69			0.00	5.35 5.35			0.00	0.00		(0.00	0.00	22.72 23.25	48.04	64.80	75.81	110.57	5568	2100	2100	CONC	0.15	62.0	6715.38	1.94	0.53	0.83
		, Fipe 107	100		106.09				0.00				0.00			\rightarrow	0.00	23.23												+	+	+
	n Road11 - 1001			1				1						1																		
ontributi	on From Unknown	Road14 - 1	13, Pipe 16		108.69	4.50	0.00	0.01	5.35			0.00	0.00				0.00	23.25											<u> </u>	+	+	<u> </u>
	<u>├──</u>	3.60	0.68	0.00 6.81	108.69 115.50	1.50	0.68	2.84 0.00	8.19 8.19			0.00	0.00			0.00	0.00													──	┼───	+
	167 168		0.68			1			8.19				0.00				0.00	23.25	47.33	63.84	74.68	108.92	6611	2100	2100	CONC	0.20	27.0	7754.25	2.24	0.20	0.85
	168 169				128.63			0.00	8.19			0.00	0.00			0.00	0.00						6575			CONC						
			-		-																									<u> </u>	<u> </u>	
efinitions	<u>I I</u>		1	1	1	1	1	1	1	1			1	1	I I					1	1	1	Designed:	AI	DF	PROJECT	1	1	l Bra	azeau Land	l	1
= 2.78 A	AIR, where								Notes:														_									
	flow in Litres per sec	ond (L/s)								Rainfall-Inte													Checked:			LOCATIC	DN:					
	in hectares (ha) l Intensity (mm/h)								2) Min. Vel	locity = 0.80	m/s												Dwg. Referen	·e·		File Ref:			City of C Date:	Ottawa	Sheet No.	
	f Coefficient																						Dag. Referen	<i></i>		i ne ivel.	1030		11 Sep	2019		T 1 OF 2

STORM SEWER CALCULATION SHEET (RATIONAL METHOD) Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years Manning 0.013 Arterial Roads Return Frequency = 10 years

anning 0.013		Arterial Ro	oads Return	Frequency	= 10 years																								/		er.	
LOCATION		AREA (Ha) 2 YEAR 5 YEAR 10 YEAR 100 YEAR										FLOW Time of Intensity Intensity Intensity Intensity					Peak Flow DIA. (mm) DIA. (mm) TYPE SLOPE LENGTH						TA CAPACITY VELOCITY TIME OF RATIO									
		AREA	1	LAR Indiv.	Accum.	AREA		Indiv.	Accum.	AREA		Indiv.	Accum.	AREA		ndiv.	Accum.	Conc.				100 Year	Peak Flow	DIA. (mm)	DIA. (mm) IYPE	SLOPE	LENGTH		VELOCII	1 TIME OF	KAII
cation From Nod	e To Node	(Ha)	R	2.78 AC		(Ha)	R		2.78 AC		R	2.78 AC		(Ha)			2.78 AC	(min)	(mm/h)		(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (mir	n Q/Q fi
known Road19	- 2002																															
		0.00	0.00	0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00						1300									
1001	1002			0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00				122.14		1300	825	825	CONC		33.0	1572.44	2.94	0.19	0.83
1002 Unknown Road1	1003		1004	0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	10.19 10.38	76.09	103.22	120.99	176.87	1300 1300	900	900	CONC	0.70	27.5	1514.61	2.38	0.19	0.86
Unknown Road	8 - 2001, 1	-ipe 1003	- 1004		0.00				0.00				0.00				0.00	10.38					1300									-
known Road18																																
ntribution From U		oad19 - 2	002, Pipe						0.00				0.00				0.00	10.38	75.00	100.00		175.10	1300					100.0	1000.07			
1003 1004	1004 1005			0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	10.38 10.97	75.38 73.27	102.23 99.33	119.83 116.41	175.16 170.14	1300 1300	900 1050	900 1050	CONC CONC	1.10 0.35	106.0 106.0	1898.67 1615.52	2.98 1.87	0.59	0.6
1004	1005			0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	11.92	70.15	99.33		162.74	1300	1200	1200	CONC		106.0	1743.57	1.67	1.15	0.0
1006	1007			0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	13.06	66.75	90.38	105.88	154.68	1300	1200	1200	CONC	0.20	106.0	1743.57	1.54	1.15	0.7
1007	1008			0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	14.21	63.70	86.20	100.96	147.45	1300	1200	1200	CONC	0.20	106.0	1743.57	1.54	1.15	0.7
Jnknown Road2	20 - 2003, I	Pipe 1008	- 1009		0.00				0.00				0.00				0.00	15.36					1300									
nown Road20	- 2003																															
tribution From L		oad18 - 2	001, Pipe	1007 - 100	0.00				0.00				0.00				0.00	15.36					1300									
1008	1009			0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	15.36	60.94	82.42	96.52	140.94	1300	1200	1200	CONC	0.20	18.0	1743.57	1.54	0.19	0.7
																			-							-				-		
									1								1															
																			1							1				1		
																																_
									-								-												-			
									-								-												-			
					+																							+	+			-
				1	+			<u> </u>	<u> </u>	+							<u> </u>				+			+			+	+	+	1		+
																												1	1			
								ļ	ļ								ļ	ļ	 			ļ				 	+			 		-
					+																					<u> </u>	+					+
					1			<u> </u>	<u> </u>								<u> </u>										1	1	+			+
																																L
																																_
																												+	+			+
tions:	1	1	1	1	1	1	1	1	1	1	1	1		1	I		1	1	1	1	1	1	Designed:	A	DF	PROJECT	Г:	1	Bra	azeau Land	s	<u> </u>
.78 AIR, where									Notes:														_ conginedi	71					Dit		-	
Peak Flow in Litr	es per secor	nd (L/s)							1) Ottawa I	Rainfall-Inte		e											Checked:			LOCATIO	DN:					
Areas in hectares									2) Min. Vel	locity = 0.80	m/s																		City of (Ottawa	Lat. 37	
ainfall Intensity (Dwg. Refe	erence:		File Ref:	1000		Date:	2010	Sheet No.	
unoff Coefficier	IT																									1	1030		11 Sep	2019	SHEE	120

Æ

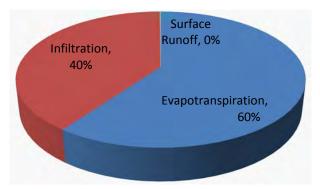
)ttawa

5.4.3 Stormwater Management Facilities (SWMFs)

The SWMFs, either wet ponds or dry ponds, should be designed in accordance with Section 8 of the OSDG and MOE's publication entitled "SWM Planning and Design Manual, 2003".

The normal water level in the wet ponds should be above the highest elevation of either: (i) the free flowing water level in the downstream storm sewer during the 1:2 year event; or (ii) the elevation of the underlying groundwater table.

For safety reasons, the live storage in dry ponds should be kept to 1.5 m (OSDG) to 2.0 m deep (MOE). A minimum 300 mm freeboard should be provided between the 1:100 year water surface elevation and the overflow elevation.


SWMFs should be integrated into the community through the use of pathways or other linkages.

5.4.4 Water Balance

The Hydrogeological Existing Conditions Report (Paterson Group Inc., 2017) recommended that infiltration measures be incorporated into the BSUEA's storm servicing design, as the subject area contributes to groundwater recharge of the esker, which should be preserved. The Paterson Group Inc. (Paterson) Report recommended that:

- Distributed infiltration be achieved to promote recharge of overburden aquifer and preserve the pre-infiltration condition for the three (3) subwatersheds; and,
- Only captured runoff that is relatively free of roadway salts be infiltrated to minimize adverse impacts on the esker.

An analysis (using the PCSWMM software platform) was carried out and is summarized in the Existing Condition Report (Appendix B) to determine the various contributions of the water budget based on long-term simulations. To simulate the infiltration, the analysis utilized measured data compiled as part of Paterson's field program. Infiltration to groundwater recharge zones was simulated based on measured saturated field hydraulic conductivity, which was translated to infiltration rates (refer to Section B6.1.1 of Appendix B). The analysis revealed that overall pre-development infiltration from the subject site (excluding the aggregate extraction areas) accounted for 40% of the overall water budget (Figure 5-2). The City and RVCA have agreed with Paterson's recommendation that pre-development infiltration levels should be maintained and distributed infiltration be achieved across the site, and should not be concentrated at one or two location(s).

Figure 5-2: Existing Water Budget Breakdown

5.5 Storm Servicing Strategy

Based on the storm drainage connections and criteria set out in Sections 5.2 and 5.4 respectively, a stormwater management strategy has been developed. The strategy strives to preserve predevelopment infiltration across the BSUEA, which in turn, impacts the individual stormwater management strategies developed for each of the servicing areas depicted in Figure 4-2. Subsection 5.4 presents the rationale in developing storm servicing strategies, Sub-section 5.5.5 the storm drainage and design methodology, Sub-sections 5.7 5.8, and 5.9 present the analyses carried out for the conventional, EES and infiltration gallery servicing strategies, respectively while Sub-section 5.10.2 summarizes the impact of the strategies on the municipal drains.

- 5.5.1 EES Infiltration Strategy
 - 5.5.1.1 Background

During the preparation of the Existing Condition Report, it became evident that storm servicing for the BSUEA would need to incorporate measures to recharge the overburden aquifer. As a result of extensive work and consultation with the both the City and RVCA over a nine (9) month period, the preferred infiltration servicing strategy has been identified as the Etobicoke Exfiltration System (EES). During this nine (9) month period, a number of Memoranda were prepared to support the selection process. All documents and work undertaken (Memoranda and Presentation) are described below (Sections 5.5.1.1 to 5.5.1.6) and included in Appendix E.

In September 2016, a Memorandum to the City outlined potential infiltration measures that could be considered for the BSUEA. The Memorandum outlined general considerations related to infiltration and nine (9) specific infiltration measures, which ranged from reduced lot grading to infiltration galleries and bioretention cells. The advice from the City and RVCA following submission of the Memorandum is that infiltration measures should be spread across the site so as to mimic current infiltration patterns and should not rely on infrastructure on private properties. After further review and discussions, the EES was selected as the preferred measure to preserve the water budget and carried forward for further sizing and analysis.

5.8 Analysis of EES Results

5.8.1 BSUEA Site Wide Infiltration with EES

A water budget analysis was carried out as part of the Existing Condition Report (Section B6, Appendix B). This analysis revealed that pre-development infiltration across the BSUEA accounted for 40% of the total precipitation based on long-term simulations. Based on the post-development simulation results, the water budget for the overall BSUEA lands is shown in Table 5-8 below and compared in the table with the existing conditions water budget. The use of the EES along the local road network within the BSUEA lands achieves an infiltration of 44% which is greater than under existing conditions, which shows that infiltration within ±10% of existing is achievable. It should be noted that this analysis has excluded the Brazeau and Drummond properties which have been assumed to integrate measures to promote infiltration and preserve pre-infiltration rates along both properties separately from the remaining BSUEA. Further refinements to the high level infiltration concept, including sizing of the EES, can be investigated during detailed design.

Water Budget Component	Annual Average Depth (mm)	Budget (%)	Existing Condition Budget (%)
Precipitation	844	100%	100%
Evapotranspiration	231	27%	60%
Infiltration	377	44%	40%
Surface Runoff	225	27%	0%

5.8.2 Minto Lands

5.8.2.1 Major System Cascading and Ponding Levels

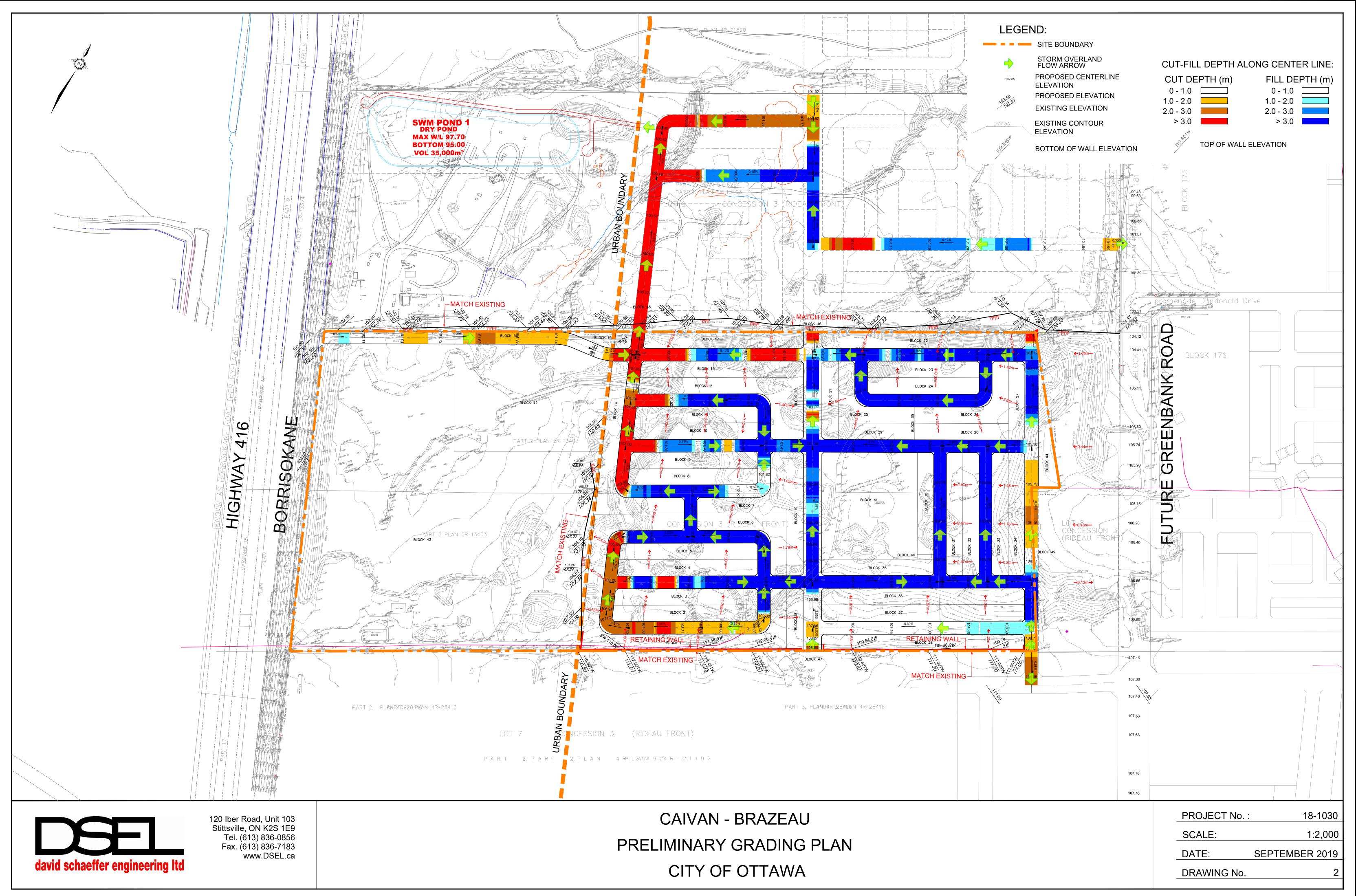
The simulated elevations along the major overland system nodes are shown in Table 5-9 and Table 5-10. There is no ponding during the 1:5 year event or 1:10 year event for local/collector roads and arterial roads, while the depth of flow along the major system is maintained to or below 350 mm during the 1:100 year event.

Major System Node	3 hr Chi 1:5 yr Ponding Depth (mm)	24 hr SCS 1:5 yr Ponding Depth (mm)	3 hr Chi 1:100 yr Ponding Depth (mm)	24 hr SCS 1:100 yr Ponding Depth (mm)
S_110-111	10	10	350	210
S_111-112	10	10	250	30
S_150-152	10	10	210	160
S_152-154	10	10	80	70

Pond Parameter	Dry Pond 1	Dry Pond 2	Western Spill-over Pond
Water Quality	Not Required	Not Required	Not Required
Simulated Release Rate (m ³ /s)	1.7	0.5	0.33
Pond Invert (m)	95	95.6	100
Pond Top of Bank (m)	95.75	96.8	100.7
Active Storage Depth (m)	0.75	1.2	1.1
Freeboard (m)	>0.3	>0.3	>0.3
Outlet Elevation (m)	95	95.6	100
Outlet Diameter (m)	0.675	0.375	0.4
Drawdown Time (hrs)	6	12	6
Surface Area (ha)	1.5	1.7	1.2

Table 5-13: Minto EES Pond Parameters and Results

5.8.3 Mattamy Lands East and Mattamy Lands West


The Mattamy Lands East was modelled at the conceptual level as part of the Half Moon Bay South – Phase 4 Stormwater Management Report (Stantec, 2015) while the minor system of Mattamy Lands West was included in the Draft BSMSSA, Stantec, 2014. Neither of these Reports included an assessment of EES within the storm minor system.

Including the EES within these areas would not alter the stormwater management approach as neither of the Mattamy Lands requires additional water quality control and the MSS designs do not affect major system storage requirements. The use of EES in Mattamy Lands East, however, may improve the downstream HGLs in the Half Moon Bay South subdivision and areas draining to the Todd Pond as exfiltration of clean runoff into the underlying groundwater and esker would be promoted resulting in a reduction in the flow and increase in available capacity in the conventional sewers.

5.8.4 Brazeau and Drummond Aggregate Extraction Areas

The EES has been identified as a suitable strategy on urban development in the BSUEA to achieve distributed infiltration as per the recommendations of Paterson's Existing Conditions Report. Assuming that both aggregate extraction areas are developed as residential, infiltrating clean runoff from local roads can achieve the required infiltration. Alternatively, infiltration galleries could also supplement or replace part of an EES. At detailed design of these properties, the strategy to preserve pre-development infiltration rates will need to be reviewed in consultation with the Geotechnical Engineer once it is known what type of fill material was used to meet the minimum rehabilitation elevations.

APPENDIX E

