Marlborough Creek Meander Belt Width Delineation

6038 Ottawa Street City of Ottawa (Richmond), Ontario

Prepared for: David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

March 10, 2025

GEO Morphix Project No. 25011

Ver.	Purpose/Change	Authored by	Approved by	Date
1.0	Address Agency comments on February 26, 2021 Meander Belt Width Assessment Letter	Jan Franssen, Ph.D. Kat Woodrow, M.Sc.	Paul Villard, Ph.D., P.Geo	March 10, 2025

Disclaimer

This report presents professional opinions and findings of a scientific and technical nature based on the knowledge and information available at the time of preparation. This document is prepared solely for the Client, and the data, interpretations, suggestions, recommendations, and opinions expressed in the report pertains only to the project being completed for the Client.

Table of Contents

1	Introd	luction	1
2	Backg	round Review and Desktop Assessment	1
	2.1	Background Information	1
	2.2	Surficial Geology and Physiology	1
	2.3	Historical Assessment	2
3	Water	course Characteristics	3
	3.1	Reach Delineation	3
	3.2	Rapid Geomorphological Assessment Tools	4
4	Mean	der Belt Width Assessment	4
5	Sumn	nary and Recommendations	5
6	Refere	ences	7

Appendices

- Appendix A: Surficial Geology Mapping
- Appendix B: Historical Aerial Imagery
- Appendix C: Study Area and Reach Delineation Mapping
- Appendix D: Site Photographs
- Appendix E: Field Observations
- Appendix F: Meander Belt Width Delineation Mapping

1 Introduction

GEO Morphix Ltd. was retained to complete a meander belt width assessment for Marlborough Creek to support the proposed development at 6038 Ottawa Street in the City of Ottawa (Richmond), Ontario. The proposed development includes residential, commercial, and natural land uses, as well as associated road networks. The proposed development is approximately 67 hectares in area. Stormwater management facilities are proposed on site, which will direct flows to the subject watercourse. Given the proposed development is adjacent to the main branch of Marlborough Creek, a meander belt width assessment is required to delineate the erosion hazard and channel migration limit.

A preliminary Fluvial Geomorphology Report was submitted on February 26, 2021, and included a review of background reports and mapping, watercourse reach delineation, a review of recent and historical aerial photographs, and delineation of a preliminary meander belt width. The preliminary report (GEO Morphix Ltd., 2021) was based on a desktop assessment only. In April 2021, field reconnaissance was completed to confirm existing site conditions and finalize the geomorphic assessment. The field investigation verified our findings from the desktop assessment and confirmed there were no changes to the initial findings. This report provides a complete summary of the geomorphic assessment.

The following activities were completed to address the City of Ottawa's concerns related to natural hazards, and identify the meander belt width associated with the subject property:

- Review available background reports and mapping (e.g., watershed/subwatershed reporting, geology, and topography) related to channel form and function and controlling factors related to fluvial geomorphology
- Review recent and historical aerial photographs of the site to understand historical changes in channel form and function
- Delineate watercourse reaches based on a desktop assessment and confirm reach delineation through geomorphic field observations
- Conduct field reconnaissance using standard, industry-accepted tools such as the rapid geomorphic assessment (RGA) and rapid stream assessment technique (RSAT) to evaluate existing instream and riparian conditions (i.e., evidence of ongoing channel processes, active erosion/deposition, or potential channel instability)
- Delineate limits of the meander belt width/erosion hazard on a reach basis using the results of the desktop and field assessments

2 Background Review and Desktop Assessment

2.1 Background Information

The subject property is within the Rideau Valley watershed, and more specifically, the Jock River subwatershed (Richmond catchment). The Jock River-Richmond subwatershed drains an area of approximately 31 square kilometers and occupies 60 km of channel (including both Jock River and tributaries) (RVCA, 2016). According to the Rideau Valley Conservation Authority (RVCA), the majority of the Jock River (Richmond system) is in generally good condition. Further, most of the system along the Jock River main branch and Marlborough Creek has low erosion levels and an established forested riparian corridor (RVCA, 2016). Specific to riparian vegetation, Marlborough Creek has a riparian buffer of greater than 30 meters along 99% of both the right and left banks (RVCA, 2016).

2.2 Surficial Geology and Physiology

Geology and physiography act as constraints to channel development and tendency. These factors determine the nature and quantity of the availability and type of sediment. Secondary variables that affect the channel include land use and riparian vegetation. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

Marlborough Creek within the subject property is located in the Clay Plains physiographic region of Ontario (Chapman and Putnam, 2007). The surficial geology associated with Marlborough Creek largely contributes to its planform and stability over time. The subject lands are characterized at surface as fine-textured (clay, silt) glaciomarine deposits deposited in and off-shore environment of the Champlain Sea during the Wisconsinan Glaciation (OGS, 2010). Surficial deposits and substrate within the subject property include silt and clay, minor sand, and gravel (OGS, 2010). Upstream of the subject lands, Marlborough Creek flows through lands characterized by Paleozoic bedrock and thin deposits of glacial till (OGS, 2010).

Fine-textured sediments deposited within off-shore glacio-marine or marine environments, like those observed at surface within the subject lands, may be subject to sensitivity and erosion due to high pore pressure and low shear strength when disturbed (Mayne, Cargill & Miller, 2019; Brooks, 2019). Disruptions, such as erosional slope failure, construction activities, or seismic activity, may trigger further rotational slope failures. While slope failures are well documented within Eastern Ontario and The City of Ottawa (Brooks, 2019), no such failures have been documented along Marlborough Creek or the collecting Jock River, nor were any slump scars identified during the desktop review of LiDAR data for the area. Additionally, Marlborough Creek occurs within a generally unconfined system and has limited sinuosity, further limiting the likelihood of disruptions along the outside of meander bends.

For reference, a map of local surficial geology is provided in **Appendix A.**

2.3 Historical Assessment

A series of historical aerial photographs were reviewed to determine changes to the channel and surrounding land use and land cover. This information, in part, provides an understanding of the historical factors that have contributed to current channel morphodynamics.

Various aerial photographs and satellite images from 1954 to 2017 were retrieved to complete the historical assessment and inform the meander belt width delineation. Specifically, aerial photographs from 1954 (McMaster University), 1976, 1999 (City of Ottawa), and satellite imagery from 2017 (Google Earth Pro) were reviewed. All historical aerial photographs are provided in **Appendix B** for reference.

In 1954, Marlborough Creek was identified as a single-thread channel with a meandering planform and limited sinuosity. The subject lands were occupied for agricultural use with few residential dwellings established along Ottawa Street. A woodlot was present at the furthest downstream extent of the watercourse. The Canada National Railway (CNR) ran through the northwest extent of the subject property and crossed Marlborough Creek downstream from the subject property. A limited riparian buffer was observed surrounding Marlborough Creek, which consisted of sparse tree/shrub species.

By 1976, the riparian buffer associated with Marlborough Creek was more extensive, with established tree species throughout the reach and clustered around the crossings at McBean Street and Ottawa Street. Channel planform was generally unchanged; however, the development of geomorphic units was more pronounced. Channel geometry was reduced at the crossing with McBean Street but increased moving downstream into a pool feature. This pattern was repeated moving downstream through the subject property. A crossing over Marlborough Creek was constructed through private lands, which was likely large enough to facilitate small vehicles and pedestrians.

There were no changes in land use or channel planform by 1999. However, the development of geomorphic units and the fluctuation in channel geometry moving downstream became more evident. Particularly through the downstream extent of Marlborough Creek within the subject property, channel geometry was consistently widened. This may have been attributed to the time of year the photograph was taken (i.e., following snowmelt or a high rainfall event). The riparian buffer was more established through the system, with very few banks exposed with limited vegetation.

In 2017, a similar sized crossing was constructed approximately 90 m downstream from the existing bridge. There were no changes in land use or channel planform, and riparian vegetation was more established. The sequence of geomorphic units (i.e., riffles and pools) was less defined, however, this may be due to the time of year the photograph was taken (summer).

Given the limited changes in channel planform over time, the development of geomorphic units, the extent of riparian vegetation, and the underlying geology controlling the form and function of Marlborough Creek, it was determined that the system is generally stable.

3 Watercourse Characteristics

3.1 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity.

Reaches are delineated based on changes in the following:

- Channel planform
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology
- Certain types of channel modifications by humans

This follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards et al. (1997), and the Toronto and Region Conservation Authority (2004). Reaches are first delineated as a desktop exercise using available geologic and topographic mapping and aerial imagery. The results are then verified in the field.

Based on a desktop assessment, there was limited change in channel geometry, planform, or riparian cover associated with Marlborough Creek within the subject property (between McBean Street and Ottawa Street). Two (2) drainage features contributed minor flows to the system but did not impact the geomorphological or hydrological characteristics of Marlborough Creek itself. As such, one (1) singular reach was delineated as **MC1**. No additional sub-reaches within **MC1** were identified during field verification. Reach delineation is graphically defined in **Appendix C.** General Reach Observations

Field investigations were completed on April 20, 2021, and included the following:

- Descriptions of riparian conditions
- Estimates of bankfull channel dimensions
- Determination of bed and bank material composition and structure
- Observations of erosion, scour, or deposition
- Collection of photographs to document the watercourses, riparian areas and/or valley, surrounding land use, and channel disturbances such as crossing structures

These observations and measurements are summarized below. The descriptions are supplemented and supported with representative photographs, which are included in **Appendix D**. Field sheets, including those completed for rapid assessments, are provided in **Appendix E**. The conditions observed along **Reach MC1** during the April 2021 field visit confirm the desktop reach delineation results.

Reach MC1 is located along Marlborough Creek, a tributary to the Jock River. McBean Street, the western boundary of the subject lands, marks the upstream extent of **Reach MC1**, while Ottawa Street to the north marks the downstream extent. Land use within the subject lands was diverse and included cultivated and uncultivated agricultural land, residential properties, and commercial use. A rail line runs southwest to northeast across the subject property directly north of the reach. Two private, culverted crossings were constructed about 90 metres apart midway through the reach; these likely connect the commercial property north of the reach with apparent storage on the property directly south.

Downstream of the crossings, a large pond located on the subject property was connected to the reach via two drainage features.

Reach MC1 was mostly unconfined, but several constructed berms flanking its floodplain (e.g., between the two culverted crossings on private property, upstream of the Ottawa Street crossing), create a localized area of partial confinement. Generally, there was approximately 2 meters rise between bed of the channel and the adjacent tableland, connected by moderately sloped banks and a well-connected floodplain. The channel was slightly sinuous (1.06-1.30) within a linear floodplain, with an average slope through the reach of about 0.133 percent. The definition of the channel through **Reach MC1** was variable. Where defined, the average channel width is approximately 2.5 metres and encroached upon by riparian vegetation, with occasional riffle features and vegetated bars and islands. Pool features, averaging approximately 11.5 metres width, were observed downstream of the McBean Street crossing and both upstream and downstream of the two private crossings located mid-reach. Bed substrate was moderately well sorted, with riffles consisting of gravel and cobble sized clasts, and pool substrate composed of clay, silt, sand, and gravel-sized clasts; larger cobble and boulder clasts occurred along the floodplain but appeared to have been placed through human activity (i.e., removing stones to prepare land for cultivation). Banks were entirely covered by established and stable riparian vegetation.

Wetland submergent and emergent vegetation occurred continuously along the floodplain of the reach, occasionally spanning the channel and causing it to become undefined. Water quality was observed as low levels of turbidity and limited colour and odour. Beyond the wetland-occupied floodplain, riparian vegetation become less continuous as they transition to established trees (5-30 years) and grass species.

3.2 Rapid Geomorphological Assessment Tools

Channel instability was objectively quantified through the application of the Ontario Ministry of the Environment's (2003) Rapid Geomorphic Assessment (RGA). Observations were quantified using an index that identifies channel sensitivity based on evidence of aggradation, degradation, channel widening, and planimetric adjustment. The index produces values that indicate whether a channel is stable/in regime (score <0.20), stressed/transitional (score 0.21-0.40), or adjusting (score >0.41).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system as it considers the ecological function of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34), or excellent (35-42) degree of stream health.

These observations and measurements are summarized below. The descriptions are supplemented and supported with representative photographs, which are included in **Appendix D**. Field sheets, including those completed for RGA and RSAT assessments, are provided in **Appendix E**.

Reach MC1 was assigned an RGA score of 0.14, indicating the reach was in regime. The dominant geomorphological indicator was evidence of widening due to the observations of fallen and leaning trees and occurrence of large organic debris. However, it is important to note that falling and leaning trees were likely attributed to human modification adjacent to the watercourse rather than from active channel processes. **Reach MC1** had an RSAT score of 30, or "good". There was one limiting factor, riparian habitat conditions, that was attributed to the narrow riparian area outside of the well-connected flood plain, which was with predominantly wooded vegetation (i.e., trees)and fragmented in some areas.

4 Meander Belt Width Assessment

Most watercourses in southern Ontario have a natural tendency to develop and maintain a meandering planform, provided there are no spatial constraints. A meander belt width or erosion hazard assessment estimates the lateral extent that a meandering channel has historically occupied and will likely occupy in the future. This assessment is therefore useful for determining the potential hazard to proposed activities in the vicinity of a watercourse.

When defining the erosion hazard for a watercourse, Ministry of Natural Resources and Forestry (MNRF, 2002) guidelines treat unconfined and confined systems differently. Unconfined systems are those with poorly defined valleys or slopes well outside where the channel could realistically migrate. Confined systems are those where the watercourse is contained within a defined valley, where valley wall contact is possible.

When a meandering channel is confined, erosion of the valley wall needs to be considered. The Ontario Ministry of Natural Resources and Forestry (MNRF) outlines an approach for establishing the erosion hazard for confined valley systems. This approach defines an appropriate erosion setback or toe erosion allowance from the channel bank where the creek is within 15 m from the toe of slope (MNRF, 2001).

In unconfined systems, the limit of the erosion hazard and migration potential can be delineated based on the meander amplitude. Meander amplitude is defined by Leopold et al. (1964) as the lateral distance between tangential lines drawn to the center channel of two successive meander bends. This differs from meander belt, which is measured for a reach between lines drawn tangentially to the outside bends of the laterally extreme meander bends (TRCA, 2004). Both the meander belt width and amplitude quantify the lateral extent of a river's occupation on the floodplain (TRCA, 2004).

Given that Marlborough Creek is a naturally unconfined system, recent aerial photographs from Google Earth Pro were reviewed and the amplitude of two meander bends were measured. This measurement was used to delineate the meander belt width extent. Meander amplitudes were measured from the largest extent of the historical to most recent meanders. As such, the meander amplitude measurement accounts for both potential migration over the historical record (i.e., 63 years) and the largest apparent expression of the channel. Meander amplitudes ranged from 39.2 m to 60.5 m. Further, a 10% factor of safety was applied to the largest meander amplitude (60.5 m) to account for changes in creek morphology over time. With a 10% factor of safety, the calculated meander belt width is 67 m. The meander belt width delineation is graphically presented in **Appendix F.**

5 Summary and Recommendations

Marlborough Creek flows through a generally unconfined valley system within the northwestern extent of the subject property. One (1) reach was delineated as part of the fluvial geomorphological assessment and meander belt width analysis. A meander belt width assessment was completed via desktop analysis, and a technical memo summarizing the preliminary findings was submitted on February 26, 2021.

The desktop analysis utilized, in part, historical aerial photographs to determine that land use, channel planform, and riparian vegetation had not undergone substantial changes between 1954 and 2017. During the time period between 1954 and 2017, geomorphic units (i.e., riffles, pools) were developed and the riparian buffer zone became more established. Given the surficial geology and the little change to land use in the area, it is anticipated that the watercourse is largely controlled by the underlying bedrock. The desktop analysis suggests that Marlborough Creek is generally stable and will not likely experience significant changes in channel form or function in the future.

A rapid geomorphological assessment was conducted during a field investigation on April 20, 2021. **Reach MC-1** was confirmed as a single-thread channel with an established riffle-pool sequence. Channel substrate was characterized by clay/silt and sand along the banks, with the addition of gravel and cobble sized clasts along the bed (riffles) and sporadic boulder sized clasts throughout the reach. Additional boulder sized clasts were also observed in the floodplain of the reach. A fragmented riparian buffer of established tree and grass species occurs about 1 to 4 times the channel width on either side of the channel throughout the reach. Emergent aquatic vegetation also contributes to high encroachment (~80%) along **Reach MC-1**. **Reach MC-1** was therefore classified as stable with limited evidence of channel adjustment.

To determine the meander belt width (i.e., erosion hazard) extent for the creek, the amplitude of two (2) meander bends were measured along Marlborough Creek. Meander amplitudes ranged between 39.2 and 60.5 metres. A 10% safety factor was applied to the largest meander amplitude (60.5 m) to account

for changes to creek morphology over time. With this 10% factor of safety, the calculated meander belt width is 67 m.

Given the results of the rapid assessment, including no evidence of erosion, cohesive substrate characteristics along channel banks and bedrock outcrops contributing to the overall stability of the watercourse, a meander belt width of 67 metres is appropriate and conservative in nature. A map presenting the final meander belt width delineation is provided in **Appendix F.**

We trust this report meets your current requirements. Should you have any questions, please contact the undersigned.

Respectfully submitted,

Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP Director, Principal Geomorphologist

Kat Woodrow, M.Sc. Manager of Watershed Studies

6 References

Brooks, G.R. 2019. Sensitive clay landslide inventory map and database for Ottawa, Ontario; Geological Survey of Canada, Open File No. 8600.

Chapman, L.J. and Putnam, D.F. 2007. Physiography of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 228.

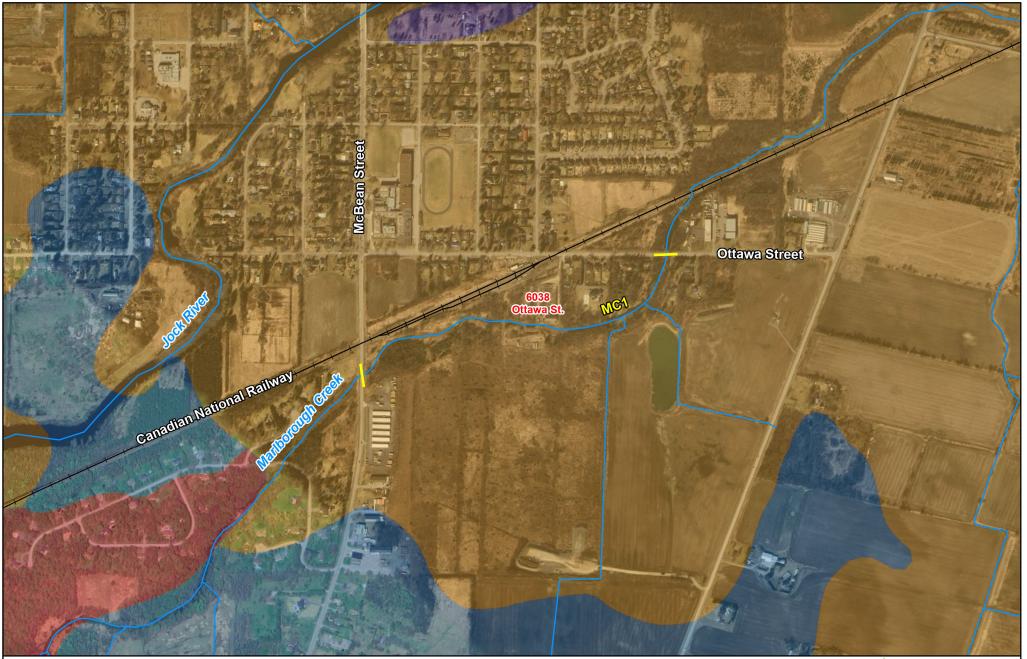
Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Leopold, L.B., Wolman, M.G., and J.P. Miller. 1964. Fluvial Processes in Geomorphology. New York: Dover Publications Inc. 522 pp.

Mayne, P. W., Cargill, E., & Miller, B. 2019. Geotechnical characteristics of sensitive Leda clay at Canada test site in Glouchester, Ontario. AIMS Geosciences, 5(3), 390–114.

Ministry of Natural Resources (MNR). 2002. Technical Guide – River and Stream Systems: Erosion Hazard Limit.


Montgomery, D.R. and J.M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109 (5): 596-611.

Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario. Ontario Geological Survey. Miscellaneous Release – Data 128-REV.

Richards, C., Haro, R.J., Johnson, L.B. and Host, G.E. 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology, 37: 219-230.

Toronto and Region Conservation Authority (TRCA). 2004. Belt Width Delineation Procedures.

Appendix A: Surficial Geology Mapping

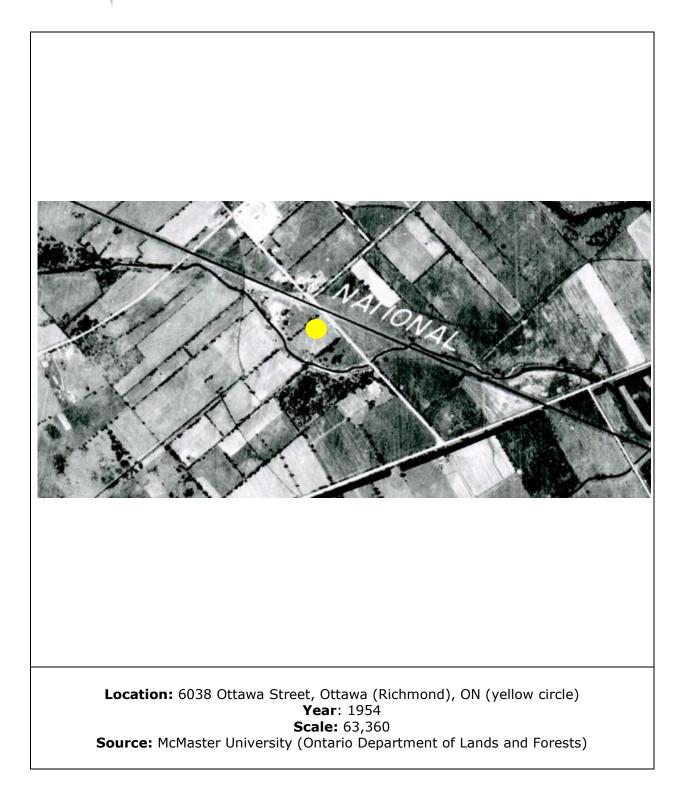
Legend

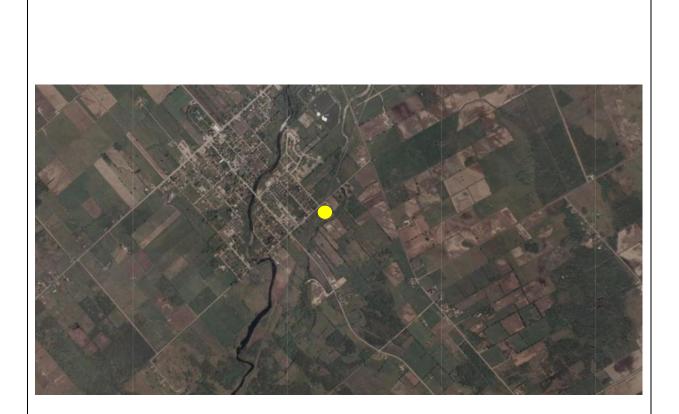
- —— Railway
- 2- Watercourse
- Surficial Geology

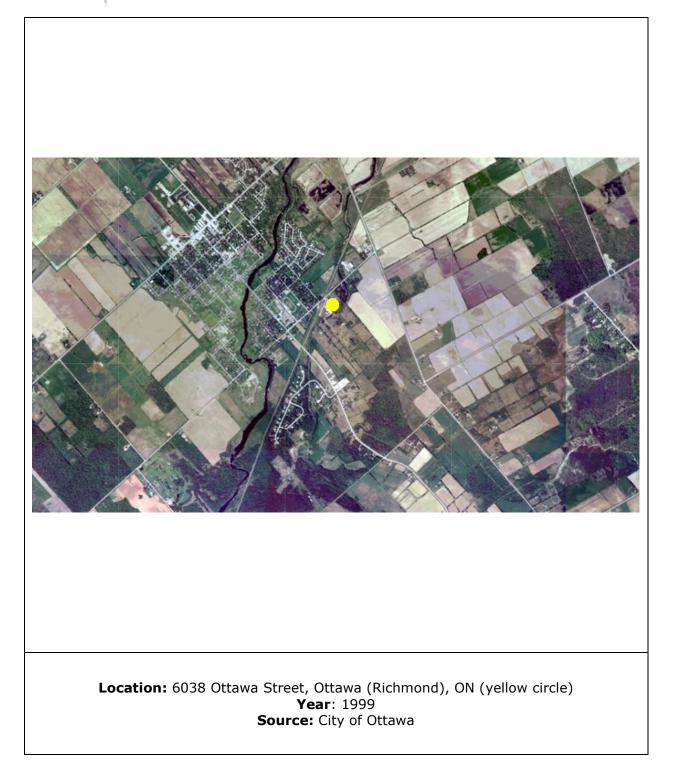
10a,Offshore marine deposits (clay, silt)

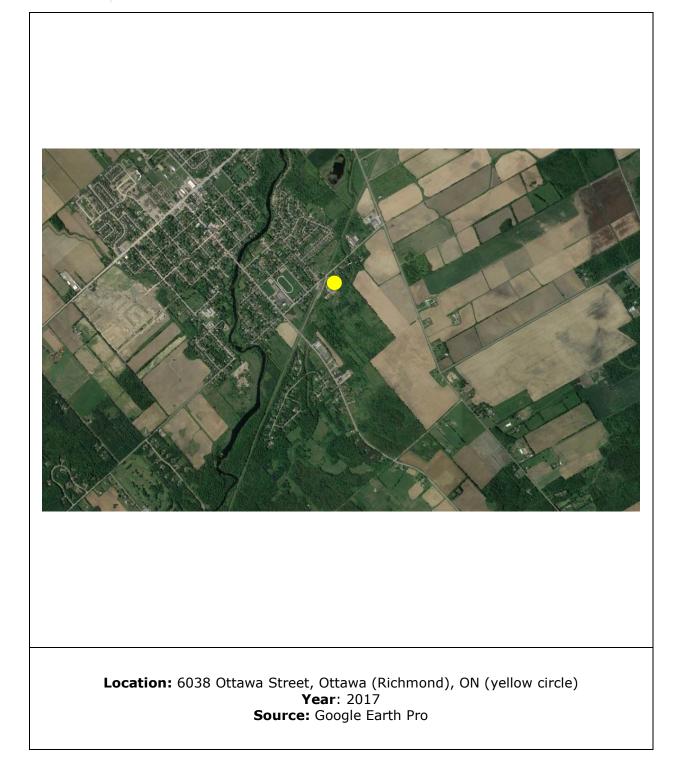
19,Alluvial deposits (clay,silt,sand)
3,Bedrock (limestone, dolomite)
5b,Till (sandy silt diamicton)

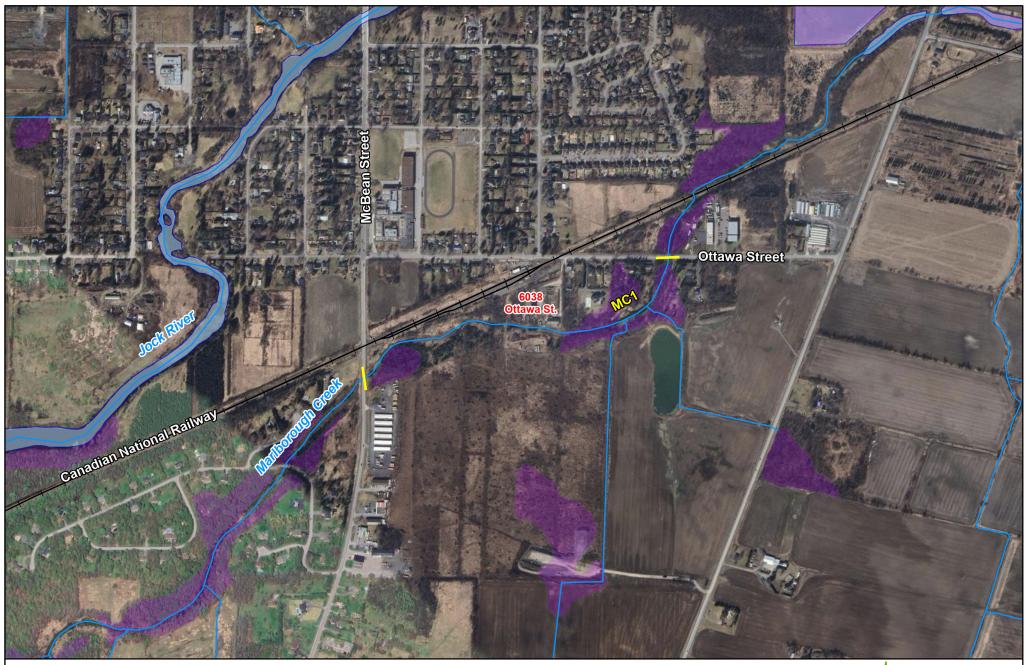
Surficial Geology


Marlborough Creek 6038 Ottawa Street Richmond, Ontario



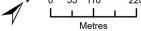

Hillshade: MNRF, 2020. Reach Break and ID: GEO Morphix Ltd., 2021. 0.5 m Contour: DSEL, 2021. Surficial Geology, Watercourse and Railway: MNRF, 2024/2021. PNZ5011 Printed: March 2025. . Drawn by: K.W., L.D., G.U.


Appendix B: Historical Aerial Imagery



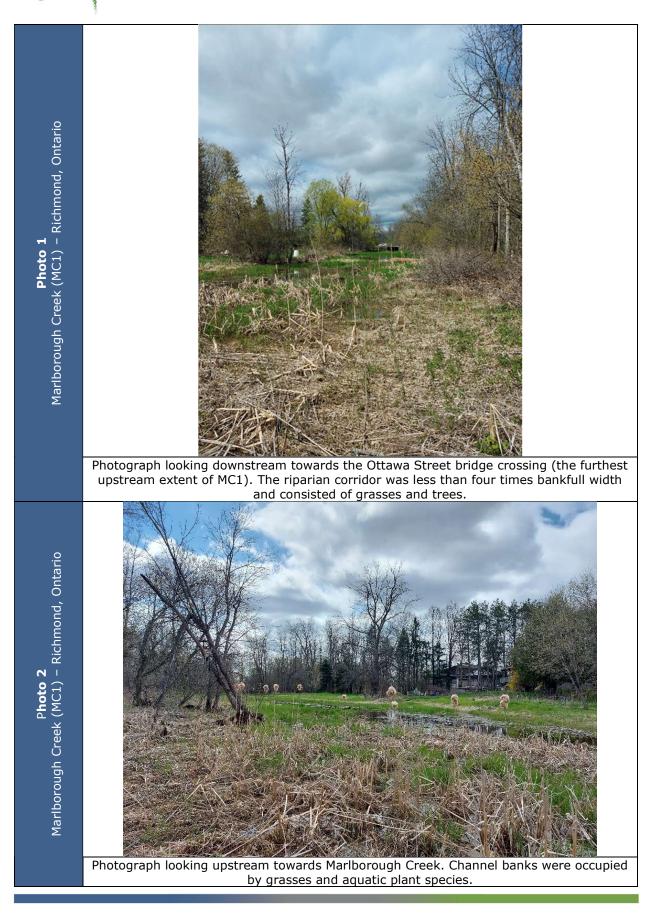
Location: 6038 Ottawa Street, Ottawa (Richmond), ON (yellow circle) Year: 1976 Source: City of Ottawa

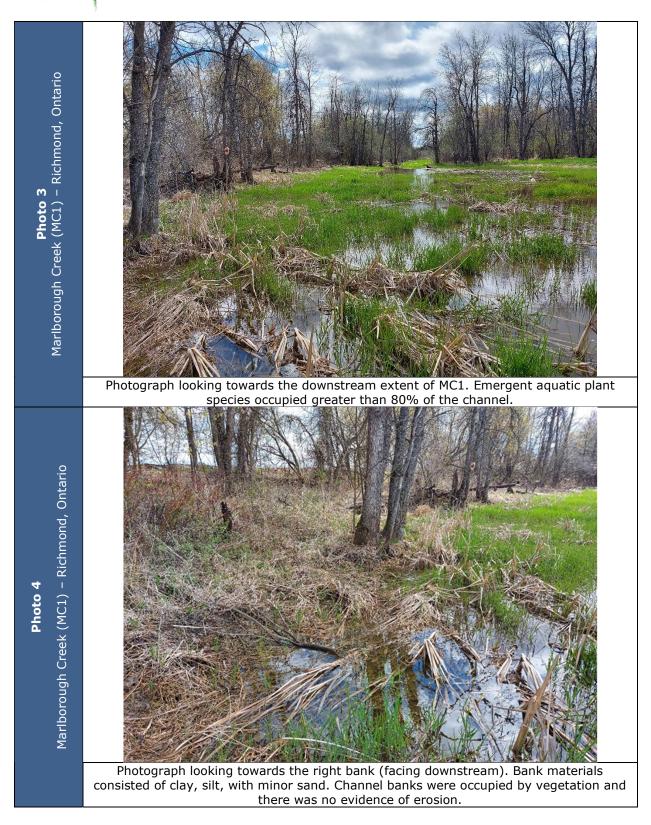
Appendix C: Study Area and Reach Delineation Mapping

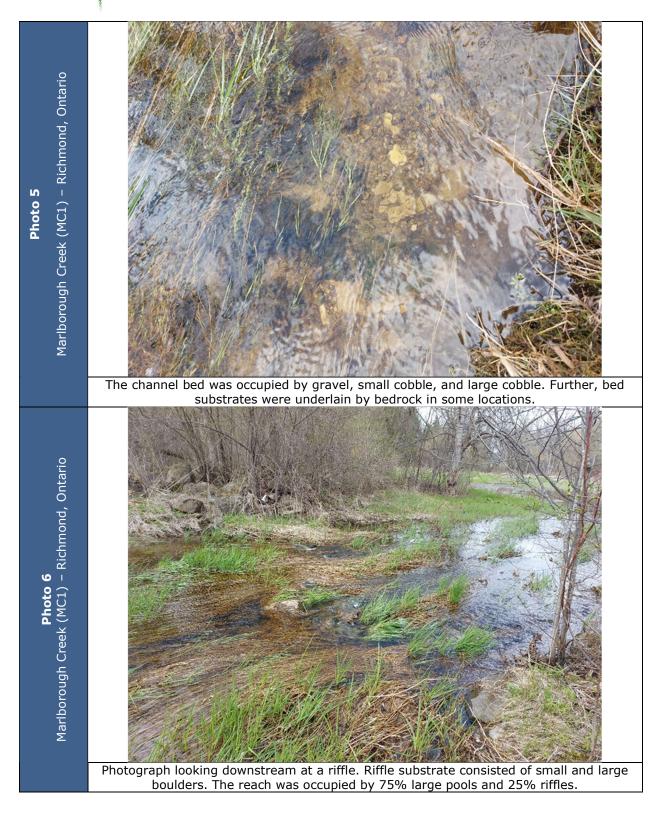

Legend

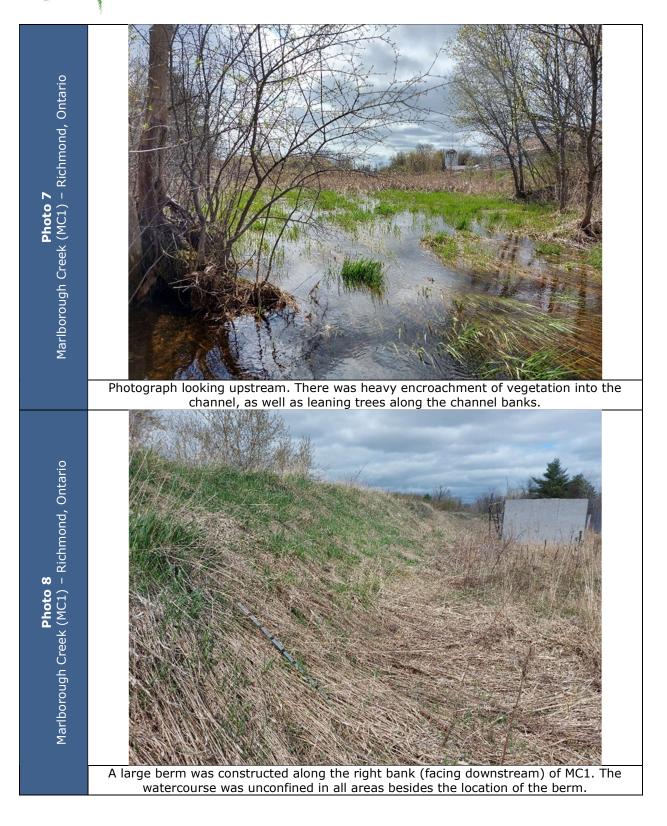
Reach Break and ID Mea - Railway 2 Watercourse Waterbody Evaluated Wetland Not Evaluated Wetland

Study Area Marlborough Creek 6038 Ottawa Street

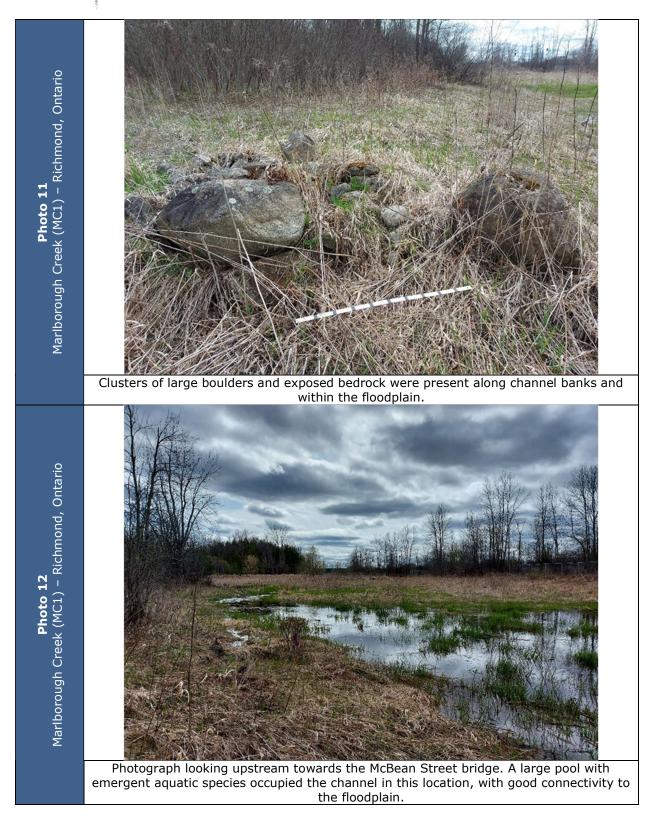

Richmond, Ontario


GEO M O R P H I X™ 55 110 220




Imagery: Google Earth Pro, 2024. Reach Break and ID: GEO Morphix Ltd., 2021. 0.5 m Contour: DSEL, 2021. Wetland, Waterbody, Watercourse and Railway: MNRF, 2024/2021. Printed: March 2025. PN25011. Drawn by: K.W., L.D., G.U.

Appendix D: Field Photographs



Appendix E: Field Observations

Project Code: PN21012

Reach Ch	naracteristics
-----------------	----------------

Weather: Overcast, 8 degrees C Location: Richmond, Ontario Field Staff: JM Watershed/Subwatershed: Jock River UTM (Upstream) 435509.70 m E, 5003650.78 m N UTM (Downstream) 435599.88 m E, 5004339.76 m N Land Use 27 Valley Type 3 Channel Type 12 Channel Zone (Table 4) 2 Flow Type (Table 5) 1 Groundwater Evidence: N/A Riparian Vegetation Mature (>Staff) 1 Coverage of Reach (%) (%) (Table 5) 0 Mature (>Staff) 0 Odour (Table 16) 1 Species: XI Fragmented 4-10 IX Established (5-30) 4 4 Present in Cutbank XI Low WD/Som: Present in Cutbank XI Low Woderate 1 1 Turbidity (Table 17) 2 Channel Characteristics Sinuosity (Degree) Gradiet Number of Channels Clay/Silt Sand Gravel Coble Boulder Parent Roottets Gradiel 9) 1 (Table 11) 1 (Table 12) 1/3 Riffle Substrate	Date:	April 20, 2021	Strean	n/Reach:	Marlborough	n Creek/MC-	·1	,		
UTM (Upstream) 435209.70 m E, 5003650.78 m N UTM (Downstream) 435599.88 m E, 5004339.76 m N Land Use 27 Valley Type 3 Channel Type (Table 3) 12 Channel Zone (Table 4) 2 Flow Type (Table 5) 1 Groundwater Evidence: N/A Riparian Vegetation Age Class (yrs): Encroachment: (Table 6) Age Class (yrs): Encroachment: (Table 6) Type (Table 2) Coverage of Reach (%) 80 Woody Debris Water Quality Species: XI Fragmented 4.10 X Established (5-30) 4 The sent in Channel Moderate 1 Note: No present High 1 Catallity (Table 17) Z Channel Characteristics Sinuosity (Degree) Gradient Number of Channels Clay/Sit Sand Gravel Cobble Boulder Parent Rootests Sinuosity (Type) Sinuosity (Degree) Gradient Number of Channels Clay/Sit Sand Gravel Cobble Boulder Parent Rootests Channel Characteristics Imabli 1 (Table 12) I/3<	Weather:	Overcast, 8 degrees C		on:	Richmond, C	Ontario				
Land Use 2/7 Valley Type 3 Channel Type 12 Channel Zone (Table 4) Flow Type (Table 5) Evidence: N/A Riparian Vegetation Matheway Systems Age Class (yrs): Encroachment: (Table 6) Matheway Systems Water Quality Matheway Systems Age Class (yrs): Encroachment: (Table 6) Matheway Systems Water Quality Matheway Systems Age Class (yrs): Encroachment: (Table 6) Matheway Systems Water Quality Channel Zone (Table 6) Aquatic/Instream Vegetation Water Quality Matheway Systems Age Class (yrs): Encroachment: (Table 7) Matheway Systems Water Quality Continuous A ge Class (yrs): Encroachment: (Table 7) Matheway Systems Water Quality Continuous A ge Class (yrs): Encroachment: (Table 7) Water Quality (Table 17) Channel Characteristics Sinuosity (Degree) Gradient Number of Channels Clay/Silt Sand Gravel Obbit <	Field Staff:	JM	Water	shed/Subwatershed:	Jock River					
Approximate Contract of the state of	UTM (Upstream)	435209.70 m E, 5003650.78 m N	UTM (Downstream)	435599.88 r	n E, 500433	9.76 m N			
Dominant Type: Coverage: Channel widths Age Class (yrs): Encroachment: (Table 6) 1/3 None 1 -4 Immature (<5) (Table 7) Species: X Fragmented 4 -10 X Established (5-30) 4 Present in Cubank X Low WDJ/50m: Turbidity (Table 17) Cattails Continuous > 10 Mature (>30) 4 Channel Characteristics Sinuosity (Degree) Gradient Number of Channels Clay/Silt Sand Gravel Coble Boulder Parent Rootlets (Table 9) 1 (Table 10) 2 (Table 11) 1 (Table 12) 1/3 Riffle Substrate Image: Sinuosity (Table 14) Image: Sinuosity (Table 15) Image: Sinuosity (Table 14) Image: Sinuosity (Table 15) Image: Sinuosity (Table 14) Image: Sinuosity (Table 14) Image: Sinuosity (Table 14) Image: Sinuosity (Table 14) Image: Sinuosity (Table 15) Image: Sinuosity (Table 14) Image: Sinuo Sinue Sinuosity (Table 14							N/A			
Trable 6) 1/3 None None 1.4 Immature (<s)< td=""> (Table 7) Species: X Fragmented 4.10 X Established (5-30) 4 Woody Debris Density of WD: Turbidity (Table 17) Cattails Continuous > 10 Mature (>30) 4 Modey Debris Density of WD: Turbidity (Table 17) Channel Characteristics Modey Debris Density of WD: 1 Turbidity (Table 17) 2 Sinuosity (Type) Sinuosity (Degree) Gradient Number of Channels Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets (Table 9) 1 (Table 10) 2 (Table 11) 1 (Table 12) 1/3 Riffle Substrate X X Image: Cobble Society (Cobble Society (Co</s)<>	Riparian Vegetation			Aquatic/Instream Veg	getation		Water Q	uality		
Sinuosity (Type) Sinuosity (Degree) Gradient Number of Channels Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets (Table 9) 1 (Table 10) 2 (Table 11) 1 (Table 12) 1/3 Riffle Substrate Image: Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets Entrenchment Type of Bank Failure Downs's Classification Pool Substrate Image: Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets (Table 13) 1 (Table 14) 1 (Table 15) S/d Bank Material Image: Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets Bankfull Width (m) 1 (Table 15) S/d Bank Material Image: Clay/Silt Image: Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets Bankfull Width (m) 1 (Table 15) S/d Bank Bank Angle Bank Erosion Image: Clay < S%	(Table 6) 1/3 Species: X	Prage: widths Age Class (yrs): Encroachmen None \square 1-4 Immature (<5) (Table Fragmented \square 4-10 \square Established (5-30) $\boxed{4}$	-	Woody Debris Present in Cutbank Present in Channel	Density of 🛛 Low	WD: WDJ/50m:		1 Turbidity		
(Table 9)1(Table 10)2(Table 11)1(Table 12)1/3Riffle Substrate \Box	Channel Characteristi	CS								
EntrenchmentType of Bank FailureDowns's ClassificationPool Substrate \square \square \square \square \square (Table 13)1(Table 14)1(Table 15)S/dBank Material \square </th <th>Sinuosity (Type)</th> <th>Sinuosity (Degree) Gradient Nun</th> <th>ber of C</th> <th>Channels</th> <th>Clay/Silt</th> <th>Sand Gra</th> <th>vel Cobble</th> <th>Boulder</th> <th>Parent</th> <th>Rootlets</th>	Sinuosity (Type)	Sinuosity (Degree) Gradient Nun	ber of C	Channels	Clay/Silt	Sand Gra	vel Cobble	Boulder	Parent	Rootlets
$ \begin{array}{c} \begin{array}{c} \textbf{(Table 13)} \end{array} & \textbf{(Table 14)} \end{array} & \textbf{(Table 15)} \end{array} & \textbf{s/d} \end{array} & \textbf{Bank Material} \end{array} & \textbf{Bank Angle} & \textbf{Bank Erosion} \\ \begin{array}{c} \textbf{Bankfull Width (m)} \\ \textbf{Estimated using laser} \\ \textbf{distance measurer} \\ \textbf{Bankfull Depth (m)} \end{array} & \textbf{10.75} & \textbf{7.53} & \textbf{4.0} \end{array} & \textbf{Wetted Width (m)} \end{array} & \textbf{-} & \textbf{-} & \textbf{Bank Angle} & \textbf{Bank Erosion} \\ \begin{array}{c} \textbf{Mathematical Using laser} \\ \textbf{distance measurer} \\ \textbf{Bankfull Depth (m)} \end{array} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{Bank Angle} & \textbf{Bank Erosion} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{Wetted Depth (m)} \end{array} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{Mathematical Using laser} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{Mathematical Using laser} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \hline \textbf{-} & \textbf{-} \\ \hline \textbf{-} & \textbf$	(Table 9) 1	(Table 10) 2 (Table 11) 1 (Tab	ole 12)	1/3 Riffle Substra	ite 🗆		X X			
Bankfull Width (m) Estimated using laser distance measurer Bankfull Depth (m)10.757.534.0Wetted Width (m)Bank Angle \square Bank Erosion \square Notes: No evidence of erosi \square Notes: No evidence of erosi \square Bankfull Depth (m)Bank Angle \square Bank Erosion \square Notes: No evidence of erosi \square Notes: No evidence of erosi \square Notes: No evidence of erosi \square Bankfull Depth (m)Bankfull Depth (m)<	Entrenchment	Type of Bank Failure Downs's Classification		Pool Substra	ite 🛛					
Bankfull Wulli (III) 1.010 1.0000 1.0000 1.0000 <	(Table 13) 1	(Table 14) 1 (Table 15) s/d		Bank Material	X			X		
Pool Depth (m) - Riffle Length (m) 1-2 Undercuts (m) N/A Comments: Velocity (m/s) Not measured Wiffle ball / ADV / Estimated Wiffle ball / ADV / Estimated	Estimated using laser distance measurer Bankfull Depth (m) Riffle/Pool Spacing (n Pool Depth (m)	- - - Wetted Depth (m) - - Wetted Depth (m) 75 - 20 % Riffles: 25 % Pools: 75 - Riffle Length (m) 1-2 Undercuts (m)	N/#	ander Amplitude: _{in fie}	⊠ 0 ⊠ 30 □ 60 measured □ 11	- 30 ⊠ 0 - 60 □ 0 - 90 □	< 5% 5 – 30% 30 – 60%			

Additional bankfull width measurements:

Completed by: _____ Checked by: __KW

7.5 m

10 m

2.3 m > 10 m

GEO

MORPHIX George photogy Earth Science Observations

	aracteristics	Project Code:	PNATUIA
Date:	Aprilao, 2021	Stream/Reach:	Marlborough Greek (MCI)
Weather:	Overcast, 8°C	Location:	Marlborough Creek (MCI) Richmond, Ontanio
Field Staff:	JM	Watershed/Subwatershed:	JOCKRIVER
Features Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut bank Example to the second to th	e flow w	Additional Notes: $\frac{1}{2}$	3.3m 3.3m 3.3m 4 4 4 4 4 4 4 4

* Good connectivity between channel + floodplain

Completed by: \underline{M} Checked by: \underline{K}

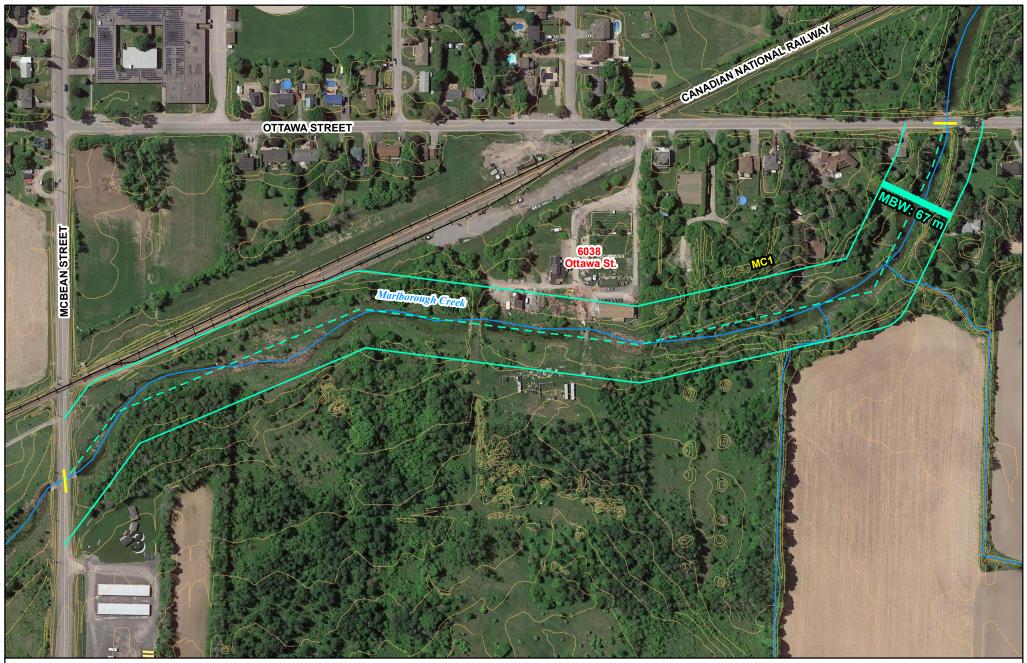
Date:	April 20, 2021 Stream / Reach: Marlborough				Creek/MC-1							
Weather:	Overcast, 8 degrees C Watershed/ Subwatershed: Jock River											
Field Staff:	JM		Loca	tion:	Richmond, C	Intario						
	Geomorphological Indicator						Present?					
Process	No.							Factor Value				
	1	Lobate bar					х					
Evidence of Aggradation	2	Coarse materials in r	iffles embec	lded		х						
	3	Siltation in pools					Х					
	4	Medial bars					Х	1/7				
(AI)	5	Accretion on point ba	ars				Х					
	6	Poor longitudinal sor	ting of bed r	materials			Х					
	7	Deposition in the ove										
					Sum of indices =	1	6	0.1				
	1	Exposed bridge footi	ng(s)				х					
Evidence of	2	Exposed sanitary / st	orm sewer	/ pipeline / etc.		Ν	I/A					
	3	Elevated storm sewe	1	1								
	4	Undermined gabion b		N/A	0/7							
	5	Scour pools downstre		Х								
Degradation (DI)	6	Cut face on bar form		Х								
()	7	Head cutting due to I		Х								
	8	Terrace cut through		Х								
	9	Suspended armour la	ayer visible i	in bank			Х					
	10	Channel worn into ur	ndisturbed o	verburden / bedrock			х					
					Sum of indices =	0	7	0				
	1	Fallen / leaning trees	s / fence pos	sts / etc.		Х						
	2	Occurrence of large of	х		1							
	3	Exposed tree roots		Х								
	4	Basal scour on inside		х								
Evidence of	5	Basal scour on both s		х	2/7							
Widening (WI)	6	Outflanked gabion ba	٢	1/A								
()	7	Length of basal scour > 50% through subject reach					Х					
	8	Exposed length of pr	eviously bur	ried pipe / cable / etc		١	J∕A]				
	9	Fracture lines along t	Х		_							
	10	Exposed building fou	Ν									
					Sum of indices =	2	5	0.28				
	1	Formation of chute(s)				Х					
Evidence of Planimetric Form	2	Single thread channel to multiple channel					Х	1/7				
	3	Evolution of pool-riffle form to low bed relief form					Х					
	4	Cut-off channel(s)					Х					
Adjustment	5	Formation of island(s	Х	1	-							
(PI)	6	Thalweg alignment o		х								
	7	Bar forms poorly form		х								
		· · ·			Sum of indices =	1	6	0.14				
Additional note	s:			Stability In	dex (SI) = (AI+D	+ W +	PI)/4 =	0.14				
			Condition	In Regime	In Transition/ St		Ín Adjus	tment				
			Senation					ont				

₫ 0.00 - 0.20

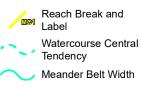
SI score =

0.41

0.21 - 0.40


Rapid Stream Assessment Technique

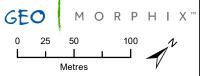
Project Code: PN21012


Date:	April 20, 2021	Stream/Reach:		Marlborough Creek/MC-1				
Weather:	Overcast, 8 degrees C	Richmond, Ontario						
Field Staff:	JM	Watershed/Subwate	rshed:	Jock River				
Evaluation Category	Poor	Fair	Fair		Excellent			
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed Stream bend areas highly 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common Stream bend areas 	stable • Infreque sloughir failure	o of bank network ent signs of bank ng, slumping or bend areas stable	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure Stream bend areas very 			
Channel	unstable • Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) • Bank overhang > 0.8-1.0 m	unstable • Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) • Bank overhang 0.8-0.9m	 Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for large mainstem areas) Bank overhang 0.6-0.8 m 		 stable Height < 0.6 m above stream (< 12 m above stream bank for large mainstem areas) Bank overhang < 0.6 m 			
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	 Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile 		 Exposed tree roots old, large and woody Generally of recent large tree falls per stream mile 			
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material 		Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material			
	Channel cross-section is generally trapezoidally- shaped	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally V-Xr U-shaped		 Channel cross-section is generally V- or U-shaped 			
Point range	□ 0 □ 1 □ 2	□ 3 □ 4 □ 5	□ 6	6 7 8	□ 9 🖄 10 □ 11			
	• > 75% embedded (> 85% embedded for large mainstem areas)	 50-75% embedded (60- 85% embedded for large mainstem areas) 	 25-49% embedded (35- 59% embedded for large mainstem areas) 		Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)			
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 		 High number of deep pool 61 cm deep) 122 cm deep for large mainstem areas) Pool substrate composition 30% sand-silt 			
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	and/or `	bed streak marks `banana″-shaped nt deposits non	 Streambed streak marks and/or "banena"-shaped sediment deposits absent 			
2 0000000	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small local yead areas of fresh sand deposits along top of low banks 		 Fresh, large sand depositions rare or absent from channel No evidence of fresh sediment deposition on overbank 			
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	well-veg		 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand 			
Point range	□ 0 □ 1 □ 2	□ 3 □ 4		35 🖄 6	□ 7 □ 8			

Date:	April 20, 2021	Reach: MC-1	Pi	Project Code: PN21012			
Evaluation Category	Poor	Fair	Goo	d	Excellent		
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40- 60% of bottom chann width (45-65% for la mainstem areas) 	rge (66-90% for a mainstem area	nel width of bo rge 90%	ted perimeter > 85% ottom channel width (> o for large mainstem s)		
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, rifi and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate 	runs and pools Relatively diver and depth of flo 	rse velocity ow of flo	es, runs and pool tat present presert and depth ow present (i.e., slow, shallow and deep er)		
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sa 5-24% cobble 	 Riffle substrate composition: g gravel, coble, material 25-49% cobble 	ood mix of com and rubble grav with	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble 		
Habitat	 Riffle depth < 10 cm for large mainstem areas 	 Riffle depth 10-15 cm large mainstem areas 			e depth > 20 cm for e mainstem areas		
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools generally 46 cm deep (61-91 c for large mainstem areas) with little or n overhead cover/struct 	m cm deep (91-1) large mainstem o some overhead	22 cm for cm of areas) with large good	cm deep (> 122 cm for		
	 Extensive channel alteration and/or point bar formation/enlargement 	Moderate amount of channel alteration an moderate increase in point bar formation/enlargeme	increase in poir formation/enla	or slight sign nt bar form	No channel alteration or significant point bar formation/enlargement		
	 Riffle/Pool ratio 0.49:1 ; ≥1.51:1 	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool retro ; 1.11-1.3:	• 0.7-0.89:1 • Riffle	Riffle/Pool ratio 0.9-1.1:1		
	 Summer afternoon water temperature > 27°C 	 Summer afternoon w temperature 24-27°C 			• Summer afternoon water temperature < 20°C		
Point range	□ 0 □ 1 □ 2	□ 3 □ 4		8 6	□ 7 □ 8		
	 Substrate fouling level: High (> 50%) 	 Substrate fouling leve Moderate (21-50%) 	el: X Substrate fouli Very light (11-2		strate fouling level: < underside (0-10%)		
Watar Quality	Brown colourTDS: > 150 mg/L	Grey colourTDS: 101-150 mg/L	Slightly grey coTDS: 50-100 m		Clear flow TDS: < 50 mg/L		
Water Quality	 Objects visible to depth < 0.15m below surface 	Objects visible to dep 0.15-0.5m below surf			Objects visible to depth > 1.0m below surface		
	Moderate to strong organic odour Slight to moderate organic odour		Slight organic o	odour • No c	• No odour X		
Point range	0 0 1 2	□ 3 □ 4	. 5	⊠ 6	□ 7 □ 8		
Riparian Habitat	 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly woode but with major localiz gaps 		long major fore	 Wide (> 60 m) mature forested buffer along both banks 		
Conditions	• Canopy coverage: <50% shading (30% for large mainstem areas)	Canopy coverage: 50 60% shading (30-446 for large mainstem areas)		ng (45-59% >80	 Canopy coverage: >80% shading (> 60% for large mainstem areas) 		
Point range	□ 0 □ 1	⊠ 2 □ 3		□ 5	□ 6 □ 7		
Total overall s	core (0-42) = 30	Poor (<13)	Fair (13-24)	Good (25-34) <mark>X</mark>	Excellent (>35)		

Appendix F: Meander Belt Width Delineation Mapping

Legend


·── Watercourse +──+ Railway

0.5 m Contour

Meander Belt Width

Marlborough Creek

6038 Ottawa Street Richmond, Ontario

Imagery: Google Earth Pro, 2018. Reach Break and Label, MBW, and Central Tendency: GEO Morphix Ltd., 2021. 0.5 m Contour: DSEL, 2021. Watercourse and Railway: MNRF, 2021. Printed: February 2021. PN21012. Drawn by: M.H., J.M., P.V.