

Geotechnical Investigation

Proposed Mixed-Use Development

5970 and 6083 Ottawa Street Ottawa, Ontario

Prepared for Tamarack (Richmond) Corporation

Report PG4216-1 Revision 4 dated March 14, 2025

Table of Contents

	• • •	PAGE
1.0	Introduction	3
2.0	Proposed Development	3
3.0	Method of Investigation	4
3.1	Field Investigation	4
3.2	Field Survey	6
3.3	Laboratory Testing	7
3.4	Analytical Testing	7
3.5	Hydraulic Conductivity (Slug) Testing	7
4.0	Observations	9
4.1	Surface Conditions	9
4.2	Subsurface Profile	9
4.3	Groundwater	13
4.5	Hydraulic Conductivity Testing Results	16
5.0	Discussion	17
5.1	Geotechnical Assessment	17
5.2	Site Grading and Preparation	17
5.3	Foundation Design	
5.4	Design for Earthquakes	
5.5	Basement Slab/Slab on Grade Construction	
5.6	Pavement Structure	
5.7	Stormwater Management Facilities	
6.0	Design and Construction Precautions	31
6.1	Foundation Drainage and Backfill	31
6.2	Protection of Footings Against Frost Action	
6.3	Excavation Side Slopes	
6.4	Pipe Bedding and Backfill	
6.5	Groundwater Control	
6.6	Winter Construction	
6.7	Corrosion Potential and Sulphate	
6.8	Landscaping Considerations	
6.9	Slope Stability Analysis	
7.0	Recommendations	40
8.0	Statement of Limitations	41

Appendices

- Appendix 1Soil Profile and Test Data Sheets
Symbols and Terms
Atterberg Limit Testing Results
Grain-Size Distribution and Hydrometer Testing Results
Consolidation Testing Results
Analytical Testing Results
Hydraulic Conductivity Results
- Appendix 2Figure 1 Key Plan
Groundwater Monitoring Levels
Drawing PG4216-2 Test Hole Location Plan
Drawing PG4216-3 Permissible Grade Raise Plan
Drawing PG4216-4 Bedrock Contour Plan
Drawing PG4216-5 Designated Silty Clay Areas

1.0 Introduction

Paterson Group (Paterson) was commissioned by Tamarack (Richmond) Corporation to conduct a geotechnical investigation for the proposed mixed-use development to be located at 5970 and 6038 Ottawa Street in the Village of Richmond, Ontario (reference should be made to Figure 1 - Key Plan presented in Appendix 2).

The objectives of the investigations were to:

- determine the subsoil and groundwater conditions based on available subsoil information and borehole investigation.
- provide geotechnical recommendations pertaining to the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. Investigating the presence or potential presence of contamination on the proposed development was not part of the scope of work. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

Paterson understands that the proposed development will consist of a series of single and townhouse style residential dwellings with basement levels. Commercial and school buildings of slab-on-grade construction, a park and a communal well are also expected to be part of the proposed development. Paterson anticipates a portion of the buildings located throughout the proposed development will have basements equipped with sump pumps.

Associated access lanes, roadways, landscaped areas, and a stormwater management facility are also anticipated as part of the development. It is also understood that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

A field investigation program was completed at the subject site by Paterson on December 13, 2018. At that time, a total of ten (10) boreholes were advanced to a maximum depth of 9.7 m or auger refusal. Supplemental investigations were completed by this firm on February 27, 2019 and on March 19, 22 and 23, 2021. The supplemental investigations consisted of eleven (11) test pits and eleven (11) boreholes advanced to a maximum depth of 3.8 below existing grade, respectively. A bedrock delineation program was also carried out on April 20 and December 1, 2020, consisting of a total of 87 probe holes to the bedrock surface.

A field program for groundwater monitoring was conducted from March 19 to March 23, 2021 and consisted of fifteen (15) boreholes, advanced to a maximum depth of 3.7 m below existing grade. All boreholes were equipped with monitoring wells. The most recent field investigation was completed by this firm on December 16 to December 19, 2024 and March 6 to March 7, 2025, and consisted of advancing twenty (20) boreholes and thirteen (13) test pits to maximum depths of 6.8 and 3.0 m, respectively.

The test holes were distributed in a manner to provide general coverage of the subject site taking into considerations site features. The test hole locations are shown on Drawing PG4216-2 – Test Hole Location Plan included in Appendix 2.

The boreholes were completed using a track mounted auger drill rig operated by a two-person crew while the test pits were excavated using a hydraulic shovel. The bedrock probe holes were advanced using a track-mounted, pneumatic drill rig. All fieldwork was conducted under the full-time supervision of personnel from our geotechnical division under the direction of a senior engineer. The drilling procedure consisted of augering and coring to the required depths at the selected locations and sampling the overburden, while the test pits procedure consisted of excavating to the required depth at the selected location and sampling the overburden.

Sampling and In Situ Testing

Soil samples collected from the boreholes were either recovered directly from the auger flights (AU), collected using a 50 mm diameter split-spoon (SS) sampler, using core recovery barrels, or 73 mm diameter thing walled (TW) Shelby tubes in conjunction with a piston sampler. Grab samples (G) were collected from the test pits at selected intervals. Rock cores were obtained using 47.6 mm inside diameter coring equipment.

All samples were visually inspected and classified on site. The auger, split-spoon and grab samples were placed in sealed plastic bags. Shelby tubes were sealed at both ends on site and protected from disturbances over the entire process. Rock cores were placed in cardboard boxes. All samples were transported to our laboratory for examination and classification. The depths at which the auger, splitspoon samples, Shelby tube samples, rock core samples, and grab samples were recovered from the test holes are shown as AU, SS, TW, RC, and G, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing, using a vane apparatus, was carried out at regular intervals of depth in cohesive soils.

Overburden thickness was evaluated by a dynamic cone penetration testing (DCPT) completed at BH9. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The thickness of the overburden was also evaluated by the use of probeholes at several test hole locations. This technique consisted of advancing augers until refusal to augering was reached by the drill rig.

Rock samples were recovered from boreholes BH 9-24 using a core barrel and diamond drilling techniques. The recovery value and Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are presented on the borehole log. The recovery value is the length of the bedrock sample recovered over the length of the drilled section.

The RQD value is the total length of intact rock pieces longer than 100 mm over the length of the core run. The values indicate the bedrock quality.

The subsurface conditions observed at the test hole locations were recorded in detail in the field. Our findings are presented in the Soil Profile and Test Data sheets in Appendix 1.

Groundwater Monitoring

Monitoring wells were installed at boreholes BH 1-21 to BH 11-21 and BH 9-24 to BH 12-24. Flexible polyethylene standpipes were installed at boreholes BH 1 to BH 4 and BH 6 to BH 10. Monitoring wells and standpipes were installed to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. Groundwater level observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data sheets in Appendix 1.

Monitoring Well Installation

Typical monitoring well construction details are described below:

- Slotted PVC screen at the base of each borehole.
- □ 32 or 51 mm diameter PVC riser pipe from the top of the screen to the ground surface.
- □ No.3 silica sand backfill within annular space around screen.
- Bentonite hole plug placed directly above PVC slotted screen.
- Clean backfill from top of bentonite plug to the ground surface.

Refer to the Soil Profile and Test Data sheets in Appendix 1 for specific well construction details.

3.2 Field Survey

The test hole locations were selected by Paterson to provide general coverage of the proposed development, taking into consideration the existing site features and underground utilities. The location and ground surface elevation at each borehole and test pit location were provided by Stantec Geomatics Ltd during the initial investigation, and by Paterson for the supplemental investigations.

The test hole locations and ground surface elevations at each test hole location are referenced to a geodetic datum. The location of the test holes and ground surface elevations at each test hole location are presented on Drawing PG4216-2 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil and bedrock samples were collected from the subject site during the investigations and were visually examined in our laboratory to review the results of the field logging. A total of twelve (12) soil samples were submitted for grain size distribution and hydrometer analysis, fourteen (14) soil samples were submitted for Atterberg Limits testing, three (3) samples submitted for consolidation testing and two (2) soil samples were submitted for linear shrinkage testing. All recovered samples during the latest field investigation were submitted for moisture testing.

The results of our testing are presented in Subsection 4.2 and on the associated testing sheets presented in Appendix 1.

Sample Storage

All samples procured from the 2024 and 2025 field investigations will be stored in the laboratory for a period of one (1) month after the issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

3.5 Hydraulic Conductivity (Slug) Testing

Hydraulic conductivity (slug) testing was conducted at the monitoring wells located within the proposed stormwater management facility (SWMF) footprint to evaluate the hydraulic properties of the overburden material and bedrock within the area of interest at the subject site.

The analysis was carried out using AQTESOLV Pro Version 4.5 aquifer analysis developed by HydroSOLVE Inc, which processes the data using the method developed by Hvorslev (1951).

Assumptions inherent to the Hvorslev method include a homogeneous and isotropic aquifer of infinite extent with zero-storage assumption, and a screen length significantly greater than the monitoring well diameter. The assumption regarding aquifer storage is considered to be appropriate for groundwater inflow through the overburden aquifer. The assumption regarding screen length and well diameter is considered to be met based on a screen length of 1.5 m and a diameter of 0.03 to 0.05 m.

While the idealized assumptions regarding aquifer extent, homogeneity, and isotropy are not strictly met in this case (or in any real-world situation), it has been our experience that the Hvorslev method produces effective point estimates of hydraulic conductivity in conditions similar to those encountered at the subject site.

The Hvorslev analysis is based on the line of best fit through the field data (hydraulic head recovery vs. time), plotted on a semi-logarithmic scale. The results of testing are further discussed in Subsection 4.5.

4.0 Observations

4.1 Surface Conditions

The subject site generally consists of agricultural lands in the east portion and undeveloped and vacant lands in its west portion. Marlborough Creek is also observed to meander along the northern boundary of the property. The Canadian National Railway Corridor is located beyond the creek following the general direction of the watercourse.

The ground surface across the subject site is generally flat, with a gradual upward slope towards its southwest portion. The site is approximately up to 600 mm lower than the neighboring roads and the adjacent properties. The northern portion of the site is bordered by a shallow (up to 2 m high) downward slope toward Marlborough Creek.

4.2 Subsurface Profile

Generally, the subsurface profile encountered at the test hole locations consisted of topsoil underlain by a compact to dense glacial till deposit and by a deposit of silty clay and further by glacial till throughout the east portion of the subject site.

The silty clay deposit, where encountered, generally consisted of very stiff to stiff brown silty clay with depths ranging between 2 and 5 m below the existing ground surface. The brown silty clay was observed to be underlain by firm grey silty clay at the location of boreholes BH 4-24, BH 11-24, BH 3A-21, BH 11-21, BH 10, and test pits TP 2 to TP 8.

Estimation of clay sensitivity (ratio of in-situ undisturbed to remoulded shear strength) was completed based on the information obtained during the field investigations undertaken throughout the subject site. The undrained shear strength of the silty clay ranges between 48 and exceeding 250 kPa (beyond range of employed shear vanes) while the remoulded shear strength was observed to range between 10 and 109 kPa, the sensitivity was estimated to range between 1.4 and 11.2.

The glacial till deposit was generally observed to consist of compact to dense silty sand and/or silty clay with gravel, cobbles and boulders. Practical refusal to drill and excavation was encountered at multiple locations throughout the subject site. Bedrock surface elevations are presented in Drawing PG4216-4 - Bedrock Contour Plan in Appendix 2.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Atterberg Limits

Atterberg Limits testing was completed on fourteen (14) recovered fine-grained samples at selected locations throughout the subject site. The results of the Atterberg Limits testing are presented in Table 1 and Appendix 1 and classified in accordance with the Unified Soil Classification System (USCS).

Table 1 – Summary of Atterberg Limits							
Test Hole	Sample	Depth (m)	LL (%)	PL (%)	PI (%)	WC (%)	Classification
BH 4-24	SS4	2.3-2.9	65	29	36	57.0	СН
BH 12-24	SS2	1.5-2.1	54	25	29	53.5	СН
BH 14-24	SS1	2.3-2.9	32	22	10	36.4	CL
BH 3A-21	SS2	3.1-3.6	48	22	26	44.5	CL
BH 2	SS2	0.6-1.2	35	21	14	37.1	CL
BH 3	SS3	1.4-2.0	29	19	10	20.0	CL
BH 8	SS2	0.8-1.4	29	19	10	20.7	CL
TP 2	G3	1.8-2.0	33	21	12	28.5	CL
TP 3	G4	2.2-2.4	33	21	12	33.0	CL
TP 4	G6	3.0-3.2	52	21	31	38.5	СН
TP 5	G6	3.0-3.2	51	23	28	40.7	СН
TP 6	G5	2.5-2.7	36	19	17	29.5	CL
TP 7	G6	3.0-3.2	27	21	6	25.4	CL-ML
TP 8	TP 8 G5 2.5-2.7 54 16 29 43.1 CH						
Notes: LL: Liquid Limit; PL: Plastic Limit; PI: Plasticity Index; WC: Water Content; CH: Inorganic Clay of High Plasticity CL: Inorganic Clay of Low Plasticity CL-ML: Inorganic Silt with Some Clay with Low Plasticity							

Shrinkage Testing

Linear shrinkage testing was completed on two (2) selected samples. The results are summarized in Table 2.

Table 2 – Linear Shrinkage Results						
Borehole	Sample	Depth (m)	Shrinkage Limit	Shrinkage Ratio		
TP 6	G5	2.5-2.7	20.0	1.93		
BH 3A-21	SS1	2.3-2.9	22.2	17.36		

The results of the shrinkage limit testing are consistent with clay soils Paterson has encountered and tested on other sites in the Ottawa area.

Consolidation Testing

Generally, the post-construction settlement of a clay deposit is evaluated based on its compressibility characteristics. A method to evaluate these characteristics is by completing unidimensional consolidation tests on satisfactorily undisturbed soil samples collected from thin-walled Shelby tubes. A total of four (3) consolidation tests were completed from the Shelby tubes collected during the current investigation. The results of the consolidation testing are presented on the Consolidation Test sheets in Appendix 1 and discussed in Section 5.3.

A total of three (3) consolidation tests were completed from the Shelby tubes collected during the current investigation. The results of the consolidation tests are presented in Table 7 and in Appendix 1.

Value p'_c is the preconsolidation pressure of the sample and p'_o is the effective overburden pressure of the test sample. The values C_{cr} and C_c are the recompression and compression indices, respectively. These soil parameters are a measure of the compressibility of the soil due to stress increases below and above the preconsolidation pressures.

Table 7 – Consolidation Test Results						
Borehole	Sample	Depth (m)	p' _c (kPa)	p'₀ (kPa)	C _{cr}	Cc
BH 3B-21	TW1	3.38	300.0	56.7	0.009	0.687
	TW2	4.06	176.4	60.5	0.006	0.247
BH 12A-24	TW2	4.27	146.0	54.8	0.012	0.420
Notes: p'c: Preconsolidation pressure; p'o: Effective overburden pressure; Ccr: Recompression indice; Cc: Compression indice.						

The values of p_c , p'_o , C_{cr} and C_c are determined using standard engineering testing procedures and are estimates only given the natural variations o the in-situ soils and limited sample size.

Reference should be made to Consolidation Test data sheets provided in Appendix 1 of this report.

Grain Size Distribution and Hydrometer Testing

Grain size distribution (sieve and hydrometer analysis) testing was completed on twelve (12) selected soil samples. The results of the grain size analysis are summarized in Table 3 and presented on the Grain-Size Distribution and Hydrometer Testing Results Sheets in Appendix 1.

Table 3 – Summary of Grain Size Distribution Analysis							
Test Hole	Sample	Depth (m)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	MC (%)
BH 5-24	SS3	3.1-3.7	17.9	47.8	34.3	0.0	9.3
BH 11-24	SS4	3.8-4.4	18.0	43.6	28.9	9.5	12.8
BH 12-24	SS6	6.8-6.9	1.8	69.0	27.5	1.7	13.0
BH 14-24	SS3	3.8-4.4	23.8	47.2	23.0	6.0	8.9
TP 4	G6	3.0-3.2	0.0	0.9	59.6	39.5	30.3
TP 6	G5	2.5-2.7	0.0	0.2	84.8	15.0	21.6
TP 8	G5	2.5-2.7	0.0	6.1	54.4	39.5	29.9
TP 9	G1	1.2-1.6	15.9	42.5	4	1.6	-
TP 11	G4	2.5-2.7	6.5	64.5	29	9.0	-
BH 1D	SS3	1.5-2.1	0.3	13.8	73.5	12.4	22.5
BH 5D	SS3	1.5-2.1	0.0	1.5	76.0	22.5	33.9
BH 10D	SS3	1.5-2.1	0.0	3.3	46.2	50.5	46.8
Notes: MC: Moisture Content							

Bedrock

Bedrock was cored in BH 9-24 with an average RQD value ranging from 92 to 74 %. The recovery values ranged between 100 and 83% at the selected borehole. The bedrock is therefore considered to range between excellent and very good quality.

Based on available geological mapping, the bedrock in the subject area consists of dolomite of the Oxford Formation with an overburden drift thickness of 1 to 10 m depth.

Reference should be made to Drawing PG4216-4 – Bedrock Contour Plan in Appendix 2 for the test hole locations and depth where bedrock was encountered and/or where refusal to augering had been encountered.

4.3 Groundwater

Groundwater levels were measured on December 28, 2018, February 27, 2019, March 31, 2021, and January 19, 2025 within the installed monitoring wells and piezometers. Depths of sidewall groundwater infiltration, as observed during the test pit investigation were also recorded. The majority of the test pits were dry upon completion with the exception of some minor infiltration noted where test pits were carried out below the long-term groundwater table. The measured groundwater levels and observed groundwater infiltration are presented in Table 4 below. However, it is important to note that groundwater readings can be influenced by surface water perched within the borehole backfill material.

Table 4 – Summary of Groundwater Levels						
Tost Holo	Observation	Surface	Measured L	Data Data ada d		
Test hole	Method	(m)	Depth (m)	Elevation (m)		
2018 Investi	gation (Boreholes	with Piezome	eters)			
BH1	Piezometer	93.37	0.61	92.76		
BH2	Piezometer	94.23	0.77	93.46		
BH3	Piezometer	94.76	0.62	94.14		
BH4	Piezometer	97.71	1.10	96.61		
BH5	Piezometer	97.45	-	-	December 28,	
BH6	Piezometer	94.70	0.73	93.97	2018	
BH7	Piezometer	94.88	0.83	94.05		
BH8	Piezometer	94.03	1.28	92.75		
BH9	Piezometer	93.78	0.70	93.08		
BH10	Piezometer	93.37	0.48	92.89		
2019 Investigation (Test Pits)						
TP1	Test Pit Sidewalls	94.63	3.5	91.1		
TP2	Test Pit Sidewalls	94.42	Dry to 3.7	-	February 27, 2019	
TP3	Test Pit Sidewalls	94.48	3.5	91.0		

Table 4 – Summary of Groundwater Levels						
	Observation	Surface	Measured L	Data Data dat		
Test Hole	Method	(m)	Depth (m)	Elevation (m)		
TP4	Test Pit Sidewalls	93.63	1.0	92.6		
TP5	Test Pit Sidewalls	94.28	1.2	93.1		
TP6	Test Pit Sidewalls	94.03	1.8	92.2		
TP7	Test Pit Sidewalls	94.46	1.8	92.7		
TP8	Test Pit Sidewalls	94.53	1.9	92.6		
TP9	Test Pit Sidewalls	97.18	Dry to 1.8	-		
TP9A	Test Pit Sidewalls	97.48	Dry to 2.4	-		
TP10	Test Pit Sidewalls	95.63	Dry to 0.9	-		
TP11	Test Pit Sidewalls	94.45	Dry to 2.8	-		

	Observation	Surface	Measured G	aroundwater evel	
Test Hole	Method	Elev. (m)	Depth (m)	Elevation (m)	Date Recorded
2021 Investi	gation (boreholes w	vith monitor	ing wells)		
	Manitaring Wall	04.04	0.15	94.09	March 31, 2021
DHID-21	wontoning wen	94.24	1.82	92.42	June 7, 2021
BH1S-21	Monitoring Woll	94 24	0.16	94.08	March 31, 2021
DITI3-21	Worntoning wen	34.24	1.80	92.44	June 7, 2021
BH2-21	Monitoring Well	93 91	0.32	93.59	March 31, 2021
0112-21	Worntoring wen	30.31	1.08	92.83	June 7, 2021
BH3-21	Monitoring Well	93.91	-	-	-
BH4D-21	Monitoring Woll	94 51	0.29	94.22	March 31, 2021
DH4D-21	wontoning wen	94.01	1.09	93.42	June 7, 2021
BH45-21	Monitoring Well	9/ 51	0.30	94.21	March 31, 2021
DI 140-21		94.01	1.05	93.46	June 7, 2021
BH5-21	Monitoring Well	94.21	0.30	93.91	March 31, 2021
0113 21			1.03	93.18	June 7, 2021
BH6-21	Monitoring Well	94.04	0.26	93.78	March 31, 2021
BIIO EI	Monitoring Won		1.09	92.95	June 7, 2021
BH7D-21	Monitoring Well	93 62	-	-	-
51110 21	internitering tren	00.02	1.15	92.49	June 7, 2021
BH7S-21	Monitoring Well	93.62	-	-	-
5	inoritoring troi	00.02	1.01	92.61	June 7, 2021
BH8-21	Monitoring Well	94.05	0.49	93.56	March 31, 2021
5110 21	inoritoring troi	0 1.00	0.80	93.25	June 7, 2021
BH9-21	Monitoring Well	94.21	0.68	93.53	March 31, 2021
		•	1.23	92.98	June 7, 2021
BH10D-21	Monitoring Well	94.08	0.72	93.36	March 31, 2021
		0	2.96	91.12	June 7, 2021
BH10S-21	Monitorina Well	94.08	0.49	93.59	March 31, 2021
			1.54	92.54	June 7, 2021
BH11-21	Monitoring Well	93.92	0.13	92.81	March 31, 2021
			1.22	91.72	June 7, 2021

Table 4B – Summary of Groundwater Levels							
Test Hole	Observation	Surface	Measured G Level	roundwater	Date Recorded		
restrible	Method	(m)	Depth (m)	Elevation (m)	Date necorded		
2024 Investi	gation (Boreholes v	with Monitor	ing Wells)				
BH 9-24	Monitoring Well	94.18	0.92	93.26	January 9, 2025		
BH 10-24	Monitoring Well	94.18	0.94	93.24	January 9, 2025		
BH 11-24	Monitoring Well	93.82	1.98	91.84	January 9, 2025		
BH 12-24	Monitoring Well	93.93	1.08	92.85	January 9, 2025		

Groundwater levels are subject to seasonal fluctuations and therefore could vary during the time of construction. The groundwater conditions observed at the borehole and test pits were recorded in detail in the field. Our groundwater observations are also presented in the Soil Profile and Test Data sheets in Appendix 1.

Groundwater Monitoring Program (Silty Clay Area)

In addition to the groundwater readings noted above, the results of the groundwater fluctuations and correlated precipitation events for each monitoring well location between April 8, 2021 and April 21, 2023 have been summarized in Figure 1 through Figure 11 attached to Appendix 2 of this report. The boreholes were distributed in a manner to provide general coverage within the areas where silty clay was encountered.

4.5 Hydraulic Conductivity Testing Results

Hydraulic conductivity (slug) tests were conducted at five (5) monitoring well locations on January 9, 2025, to evaluate the hydraulic properties of the overburden material and bedrock at the test locations. The hydraulic conductivity results are shown in Table 5 below and summarized in Appendix 1.

Table 5 – Summary Of Hydraulic Conductivity Testing Results							
Test Hole	Ground Elev. (m)	Testing Depth (m)	Testing Elevation (m)	K (m/sec)	Test Type	Material at Testing Depth	
	0/ 19	5560	99 69 99 19	5.18x10 ⁻⁴	Falling Head	Bodrook	
BH 9-24	94.10	5.5-0.0	00.00-00.10	5.07x10 ⁻⁴	Rising Head	Deulock	
BH10-24	94.18	1.5-2.9	92.68-91.28	1.27x10 ⁻⁷	Falling Head	Silty Sand/ Glacial Till	
	02.82	5065	00 00 07 00	5.30x10 ⁻⁶	Falling Head	Glasial Till	
DH 11-24	93.02	5.0-0.5	00.02-07.32	5.69x10 ⁻⁶	Rising Head	Giaciai Tili	
BH 12-24	03.03	54-68	88 53 87 13	3.28x10 ⁻⁶	Falling Head	Glacial Till	
DIT 12-24	33.33 5.4-0.8 00.53-07.13		2.91x10 ⁻⁶	Rising Head			
	04.09	0006	01 00 00 40	9.25x10 ⁻⁶	Falling Head		
	94.00	2.2-3.0	91.00-90.40	1.00x10 ⁻⁵	Rising Head		

The measured hydraulic conductivity (K) values of the bedrock and glacial till ranged between approximately 5.07×10^{-4} to 5.18×10^{-4} m/sec and 1.27×10^{-7} to 1.00×10^{-5} m/sec, respectively. The results are consistent with similar materials Paterson has encountered on other sites and typical published values for bedrock and glacial till.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered suitable for the proposed development. It is expected that the proposed buildings will be founded on conventional shallow footings placed on undisturbed, very stiff silty clay, compact to dense silty sand, compact to dense glacial till, clean, surface sounded bedrock bearing and an approved engineered fill layer over one of the aforementioned surfaces.

Where a deposit of silty clay is present below services and foundations of proposed buildings, a grade raise restriction will apply to grading throughout that area of the subject site. Permissible grade raise recommendations are discussed in Subsection 5.3. If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill and/or other measures will be advised by Paterson to reduce the risks of unacceptable long-term post-construction total and differential settlements. Reference should be made to Drawing PG4216-5 - Designated Silty Clay Areas for the location of the clay deposit.

Depending on the extent of the proposed basement level and depths of services, bedrock might be encountered during excavation and construction. All contractors should be prepared for bedrock removal, and handling and removing boulders and oversized boulders throughout the subject site.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding, and other settlement sensitive structures. Care should be taken not to disturb adequate bearing soils below the founding level during site preparation activities. Disturbance of the subgrade may result in having to sub-excavate the disturbed material and the placement of additional suitable fill material. Due to the relatively shallow depth of the bedrock surface within the southwest portion of the site, bedrock removal will be required to accommodate site services and building foundations.

Bedrock Removal

Bedrock removal can be accomplished by hoe ramming where only a small quantity of the bedrock needs to be removed. Sound bedrock may be removed by line drilling and controlled blasting and/or hoe ramming.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in proximity to the blasting operations should be completed prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Vibration Considerations

Construction operations are the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipment could be the source of vibrations: hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the source of detrimental vibrations on the nearby buildings and structures. Therefore, all vibrations are recommended to be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). The guidelines are for current construction standards.

Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended to be completed to minimize the risks of claims during or following the construction of the proposed buildings.

Noise vibration monitoring could be conducted during construction activities to monitor that vibrations are within the permissible parameters. If vibrations were encountered to be above permissible limits, recommendations should be provided at that time to minimize or limit the vibrations produced by the activities at the subject site.

It should be noted that if vibrations were a concern for the subject site, a preconstruction survey would be recommended to be completed to minimize the risks of claims during or following the construction of the proposed building.

Overbreak in Bedrock

Sedimentary bedrock formation, such as limestone, dolomite and shale, contain bedding planes, joints and fractures, and mud seams which create natural planes of weakness within the rock mass. Although several factors of a blast may be controlled to reduce backbreak and overbreak, upon blasting, the rock mass will tend to break along natural planes of weakness that may be present beyond the designed blast profile.

However, estimating the exact amount of backbreak and overbreak that may occur is not possible with conventional construction drill and blast methods. Backbreak should be expected to occur along the perimeter of the building excavation footprint with conventional drill and blast bedrock removal methods. Further, overbreak is expected to occur throughout the lowest lifts of blasting due to the variable bedding planes and planes of weakness in the in-situ bedrock.

It is very difficult to mitigate significant overblasting given the constraints posed by footing geometry and spacing with respect to the zone of influence of blasts and the bedrocks in-situ characteristics. Depending on the methodology undertaken by the contractor, efforts taken to minimize backbreak and overbreak may add significant time and costs to the excavation operations and is not guaranteed to completely eliminate the potential for backbreak and overbreak. Overbreak below footings should be in-filled with lean-concrete and approved by Paterson prior to placing concrete.

As such, volume estimates of bedrock to be removed may not be reflective of the actual volume of bedrock that may be required to be removed at the time of construction. This may result in additional materials, such as imported fill and concrete, required to make up for additional rock loss. It is recommended that the blasting operations be planned and conducted under the supervision of a licensed professional engineer who is an experienced blasting consultant.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II material, or blast rock fill approved by the geotechnical consultant. This material should be tested and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the buildings should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil could be placed as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in lifts with a maximum thickness of 300 mm and compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of the SPMDD.

Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless used in conjunction with a composite drainage membrane connected to a perimeter drainage system.

Consideration could be given to re-using site-generated soils for fill to build-up the subgrade for structures such as the proposed buildings and subgrade for service trenches. From a geotechnical perspective, site-generated workable soil fill free of organic debris (topsoil, logs, stumps, etc.), inorganic material and/or stones/cobbles larger than 200 mm in their longest dimension meeting the aforementioned conditions are considered suitable for re-use throughout the subject site. Wet site-generated fill, such as grey silty clay or grey glacial till soils will be saturated and expected to be difficult to re-use as the high-water contents make compacting impractical without an extensive drying period. Therefore, those soils are not anticipated to be suitable for this purpose.

Prior to considering site-generated soil for the above-noted purposes, Paterson field personnel must review, test (i.e., grain-size and proctor testing) and confirm the fill is in accordance with the above-noted recommendations. Once reviewed and approved by Paterson personnel, care should be taken during storage, placement and compaction of the site-generated fill to maintain the material in an unfrozen state and at a moisture content which is suitable for compaction.

Soils intended for re-use which become frozen and/or which have excessive moisture content will not be considered suitable for re-use at the subject site. Precautions must be taken if placement of this material is completed during winter months. The introduction of frozen material is expected to result in poor performing areas that will require repairs due to long-term thawing and higher than tolerable amounts of settlement. Paterson personnel should complete periodic inspections during fill placement to ensure that snow and ice quantities are minimized.

Provided the fill is considered acceptable for placement by Paterson personnel at the time of construction, the approved soil fill may be placed in maximum 300 mm thick loose lifts, compacted using a suitably sized vibratory sheepsfoot roller to a minimum of 98% of the materials SPMDD, in dry and above-freezing conditions.

Consideration may also be given to re-using the site-generated cobbles, boulders and bedrock for re-use if crushed to meet suitable gradation requirements. If considered, it is recommended to crush these materials to produce a well-graded crushed stone fill material matching the envelope of an OPSS Granular B Type I or Type II with a maximum particle size of 50 mm.

Testing and approval by Paterson during the crushing stages would be required to verify the adequacy of the material being produced for re-use. If the site-crushed material does not yield sufficiently well-graded material, Paterson may advise combining the material with sand, OPSS Granular A or other material to improve the material gradation. This fill is advised to be placed in loose lifts no greater than 300 mm thick and compacted to a minimum of 98% of the materials SMPDD using a suitably sized smooth-drum compactor.

The placement of site-generated fill should be reviewed and approved by Paterson field personnel at the time of construction. Where this fill layer is placed below building footprints, it would be recommended to be capped with a minimum 300 mm thick layer of OPSS Granular A crushed stone compacted to a minimum of 98% of the materials SPMDD.

Frozen material may not be considered for the above-noted purposes. This process should be reviewed and approved by Paterson field personnel upon completion of each lift and who are experienced in reviewing the placement of soil fill in this manner.

In-Filling Existing Ditches and Stormwater Management Ponds

If in-filling of existing ditches and pond was required, it is recommended that infilling operations be completed in a stepped fashion within the lateral support of the proposed buildings. The fill should consist of clean imported granular fill, such as OPSS Granular A or OPSS Granular B Type II material. The steps should have a minimum horizontal length of 1.5 m and minimum vertical height of 500 mm and should be compacted using suitable compaction equipment to a minimum 98% of the material's SPMDD.

Alternatively, the backfill material can consist of dry, workable brown silty clay placed in maximum 300 mm thick lifts and compact each layer using a suitably sized sheepsfoot roller making several passes. The placement of the silty clay backfill should be completed in dry conditions and above freezing temperatures, reviewed and approved by Paterson at the time of placement. The fill layers are recommended to be capped with a minimum 300 mm thick layer of OPSS Granular A crushed stone compacted to a minimum of 985 of the materials SPMDD and directly below the design footing elevation for overlying structures.

5.3 Foundation Design

Bearing Resistance Values

It is expected that the proposed buildings will be founded on conventional spread footings placed on undisturbed, very stiff silty clay, compact to dense silty sand, compact to dense glacial till, clean, surface sounded bedrock bearing and an approved engineered fill layer over one of the aforementioned surfaces. Using continuously applied loads, footings for the proposed buildings can be designed using the bearing resistance values presented in Table 6.

A geotechnical resistance factor of 0.5 was applied to the bearing resistance values at ULS. The bearing resistance values are provided on the assumption that the footings will be placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Where sandy subgrade is observed to be in a loose state of compactness, it is recommended to be proof-rolled under dry conditions and above freezing temperatures by an adequately sized roller making several passes to achieve optimum compaction levels. The compaction program should be reviewed and approved by Paterson field personnel.

Bearing resistance values for footing design should be confirmed on a per lot basis by Paterson field personnel at the time of construction.

The bearing resistance values at SLS for shallow footing bearing on the above noted soils will be subjected to potential post-construction total and differential settlements of 25 and 15 mm, respectively.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer. Footings bearing on an acceptable bedrock bearing surface and designed using the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements. Overbreak in bedrock located directly below footings should be in-filled with lean-concrete and approved by Paterson prior to placing concrete.

Table 6 - Bearing Resistance Values					
Bearing Surface	Bearing Resistance Value at SLS (kPa)	Factored Bearing Resistance Value at ULS (kPa)			
Compact to Dense Silty Sand	100	150			
Very Stiff Silty Clay/Clayey Silt	150	225			
Compact to Dense Glacial Till	150	225			
Engineered Fill Over Acceptable Soils	150	225			
Clean, Surface Sounded Bedrock	-	500			
Note: Pad footings, up to 5 m wide, and strip footings, up to 3 m wide, can be designed using the above-noted bearing resistance values placed over an undisturbed, very stiff silty clay bearing surface. These values are considered standard limitations for the types of buildings being considered throughout the subject site and are not expected to limit design ar construction					

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to a soil bearing medium when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V, passes only through in situ soil or engineered fill of the same or higher capacity as the soil. Adequate lateral support is provided to bedrock bearing medium when a plane extending down and out from the bottom edges of the footing at a minimum of 1H:6V (or flatter) passes only through sound bedrock or a material of the same or higher capacity as the bedrock, such as concrete. A heavily fractured, weathered bedrock and/or overburden bearing medium will require a lateral support zone of 1.5H:1V (or flatter).

Bedrock/Soil Transition

Where a building is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the footings placed on soil bearing medium to reduce the potential long-term total and differential settlements associated with the compressibility of the two bearing mediums. It is recommended that the upper 0.5 m of the bedrock at the bedrock/soil transition area be removed for a minimum length of 2 m on the bedrock side and replaced with compacted OPSS Granular A or Granular B Type II material. The fill layer should be placed in maximum 300 mm thick loose lifts and compacted to 98% of the materials SPMDD.

The width of the sub-excavation should be at least the proposed footing width plus an additional 500 mm across the footing footprint. Additional steel reinforcement, if not already considered as part of the design, should extend at least 3 m beyond both sides of the 2 m long transition and placed in the top part of the footings and foundation walls. Paterson will identify where this condition may arise during the detailed design and grading plan review stage once detailed design details are available for this assessment.

Permissible Grade Raise Restrictions

Where a deposit of silty clay is present below services and foundations of proposed buildings, a grade raise restriction of 2 m is recommended. Locally higher grade restrictions may be accommodated in areas where clay deposits are limited to the

hard to very stiff brown silty clay layer, and would be assessed on a case-by-case basis.

Estimates of the applicable restrictions are expected to greatly exceed reasonably expected grade raise heights but may be considered as being in the range of 2 to 3 m or higher depending on the thickness of the clay layer. However, these would be reviewed, assessed and advised upon by Paterson once that detailed grading is available for review and to confirm as acceptable.

If higher grade raises than the permissible grade raises identified herein are identified during the detailed design stage, preloading with or without a surcharge, lightweight fill and/or other measures would be advised upon by Paterson to mitigate the potential for unacceptable long-term post-construction total and differential settlements.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as a seismic **Site Designation X**_c for the foundations bearing on a compact to dense glacial till and/or bedrock. A higher site class, such as X_A or X_B , is applicable for footings bearing on the bedrock surface. However, a site-specific seismic shear wave test will be required to confirm the higher seismic site classifications. Foundations founded upon the clay deposit area may be designed using a seismic **Site Designation X**_D.

Reference should be made to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements. Based on Paterson's review of the in-situ soils compactness and stiffness for non-cohesive and cohesive soils, the subsoils underlying the subject site are not considered susceptible to liquefaction or cyclic softening, respectively. This considers all laboratory testing results identified in Section 4.2 of this report, subsurface information identified on the Soil Profile and Test Data Sheets and current methodologies identified in the 5th editions of the Canadian Foundation Engineering Manual (CFEM).

5.5 Basement Slab/Slab on Grade Construction

With the removal of all topsoil and fill, containing deleterious or organic materials, the native soil or engineered fill specified by Paterson field personnel will be considered to be an acceptable subgrade surface on which to commence backfilling for basement floor slab or slab on grade construction.

Where the subgrade consists of silty sand in a loose state of compaction a suitablysized vibratory drum roller should complete several passes over the subgrade surface as a proof-rolling program, reviewed and approved by Paterson at the time of construction. Any poor performing areas under proof rolling or soft areas should be removed and reinstated with an engineered fill, such as OPSS Granular A or Granular B Type II placed in maximum 300 mm thick loose lifts and compacted to a minimum of 98% of the material's SPMDD.

Any soft areas identified during the construction phase should be removed as based on Paterson field personnel's recommendations and backfilled with appropriate backfill material. OPSS Granular A or Granular B Type II are recommended for backfilling below floor slabs.

For structures of slab-on-grade construction, the upper 200 mm of sub-floor fill is recommended to consist of OPSS Granular A crushed stone. For structures with basement slabs, the upper 200 mm of sub-floor fill may consist of 19 mm clear crushed stone. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the materials SPMDD. All grade raise fill used to raise the subgrade to the underside of the slab-on-grade should be placed in maximum 300 mm thick loose layers of upper 200 mm thick loose lifts. Soil fill reviewed and approved by Paterson during the construction phase would be advised to be compacted using a suitably sized vibratory sheepsfoot roller and as advised in Subsection 5.2 of this report.

5.6 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car-only parking areas, local roadways and arterial roadways with bus traffic, if required.

Table 8 – Recommended Pavement Structure – Car Only Parking Areas/Driveways					
Thickness (mm)	Material Description				
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete				
150	BASE - OPSS Granular A Crushed Stone				
300	SUBBASE - OPSS Granular B Type II				
SUBGRADE – Either in situ soils or OPSS Granular B Type I or II material placed over in situ soil.					

Thickness (mm)	Material Description
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
400	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either in situ soils or OPSS Granular B Type I or II material placed over in situ soil	

Table 10 - Recommended Pavement Structure – Collector Roadway with Bus Traffic	
Thickness (mm)	Material Description
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete
50	Upper Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete
50	Lower Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete
150	BASE - OPSS Granular A Crushed Stone
550	SUBBASE - OPSS Granular B Type II
SUBGRADE - Either in situ soils or OPSS Granular B Type I or II material placed over in situ soil	

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for local roadways and parking areas. Minimum Performance Graded (PG) 64-34 asphalt cement should be used for arterial roadways with bus traffic. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or II material.

If bedrock is encountered at the subgrade level, the total thickness of the pavement granular materials (base and subbase) could be reduced to 300 mm. The upper 300 mm of the bedrock surface should be reviewed and approved by Paterson field personnel prior to placing the base and subbase materials. Care should be exercised to ensure that the bedrock subgrade does not have depressions that will trap water which would be subject to heaving and thawing due to freezing below the finished pavement structure.

Temporary Access Roads and Construction Traffic

Paterson anticipates that the earthworks contractor will require several haul roads, staging areas and other temporary access lanes to facilitate construction traffic. Paterson also anticipates construction traffic will be directed over unpaved access paths constructed using the base and subbase layers identified in the above-noted tables and will be used throughout the duration of the construction phase. Omitting the asphalt layer, the above-noted pavement designs are not considered suitable to support temporary construction traffic without requiring additional measures to remediate the proposed base and subbase layers to accommodate the placement of asphalt to complete the pavement design.

Therefore, provisions should be carried to either reinstate temporary construction access and haul roads prior to placing asphalt or improve the durability of the temporary unpaved construction access and haul roads to minimize additional efforts for preparing the base course for the placement of asphalt once construction traffic would no longer be required. Examples of scenarios that would require these provisions would consist of areas which construction traffic results in rutting and compromising subgrade soils, placement of subbase layers directly over subgrade shortly following periods of spring thaw, snowmelt and rainfall events or over service trenches that may consist of poorly compacted backfill.

For planning purposes, temporary construction haul roads and working pads should be planned to be 600 mm of crushed stone consisting of a 500 mm of a combination of OPSS Granular B Type I or Type II crushed stone and/or blast-rock covered with a minimum 50 to 100 mm thick layer of OPSS Granular B Type II or OPSS Granular A crushed stone (to provide suitable surface for vehicle tires) over a Paterson-reviewed and -approved subgrade. These types of roads should also be underlain by a non-woven geotextile layer, such as Terraifx 200R, where they would be integrated into the final pavement structure and accommodate the placement of asphalt to minimize pumping of fines into the subbase layer. Cowpathing site-generated soil may also be considered to provide suitable haul and access roads.

Temporary access roads that will not support heavy truck traffic (i.e., conventional light-duty vehicles only) may be prepared using a minimum of 150 mm of OPSS Granular A and 400 mm of OPSS Granular B Type II crushed stone. However, provisions should be carried to provide a non-woven geotextile separation layer, such as Terrafix 200R, over the subgrade soils to lessen the amount of fines that migrate into the subbase layers in response to a combination of construction traffic and seasonal fluctuations in the subgrades performance. Provisions should also be carried to scarify and replace the upper 100 to 150 mm of these areas with clean OPSS Granular A crushed stone prior to placing asphalt.

Provisions should also be carried by the earthworks contractor to suitably compact trench backfill placed over services when reinstating servicing trenches below areas proposed to support paved areas. Since it is anticipated this material would consist of workable brown silty clay, silty sand or glacial till fill (and not wet, non-workable grey silty clay or saturated materials) it is recommended to place this material in maximum 400 mm thick loose lifts compacted using a suitably sized vibratory sheepsfoot roller making several passes under the supervision of Paterson field personnel. The subgrade surface is also recommended to be provided with a layer of bi-axial geogrid, such as Terrafix TBX2500, to improve the stiffness of the reinstated trench backfill subgrade for supporting the final pavement structures.

These efforts would be reviewed, approved and advised upon by Paterson field staff during the construction program. Further, Paterson should review design, tender and construction documents associated with temporary and permanent pavement design throughout those phases of the project.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

Where silty clay is anticipated at the pavement subgrade level, consideration should be given to installing subdrains during pavement construction. The subdrain inverts should be approximately 300 mm below subgrade level, and the subgrade surface should be crowned to promote water flow to the drainage lines.

5.7 Stormwater Management Facilities

It is expected stormwater management facilities (SWMF), such as ponds and associated infrastructure, will be considered as part of the proposed development. Design details for those facilities are not currently known at the time of preparing this report. However, these facilities are considered feasible throughout the subject site. Design details associated with these facilities should be reviewed and assessed by Paterson during the preliminary and detailed design stages when details are available at that time.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Basement and Partial Basement Structures

Foundation Drainage

It is recommended that a perimeter foundation drainage system be provided for the proposed structures provided with a basement level. The system should consist of a 100 to 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The clear stone should be wrapped in a non-woven geotextile. The pipe should have a positive outlet, such as a gravity connection to the storm sewer or sump pit. The foundation walls are recommended to be covered with a drainage geocomposite, such as CCW Miradrain 2000 or Delta-Teraxx, connected to the perimeter foundation drainage system.

Foundation Backfill – Non-Sump Gravity Foundation Drain

Backfill against the exterior sides of the foundation walls should consist of free draining non frost susceptible granular materials, such as clean sand or OPSS Granular B Type I granular material, or site generated workable soils placed in maximum 400 mm thick loose lifts and compacted using suitably sized compaction equipment. If consideration is given to backfilling the structures with crushed stone, Paterson should be advised of this during the tender process to review and advise on impacts to grade raise restrictions.

Foundation Backfill – Basements Equipped with Sump Pump Systems

Backfill against the exterior sides of the foundation walls should consist of workable, brown silty clay extending a minimum of 1.5 m away from and along the perimeter of the foundations and in accordance with recommendations provided in Subsection 5.2 of this report. The clay backfill must be implemented in conjunction with a drainage geocomposite and foundation drainage system connected to a dedicated sump pump system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, <u>are not</u> recommended to be used for this purpose where sump pump systems are considered.

Slab-On-Grade Structures

Foundation Drainage

The perimeter foundation drainage system identified for basement structures is considered optional for slab-on-grade structures. Consideration should be given to implementing it below areas supporting hardscaping/settlement sensitive structures (i.e., driveways and pathways) to maintain the service life of these surfaces where the supporting subsoils consist of silty clay. Where implemented, the system should consist of a 100 to 150 mm diameter perforated corrugated plastic pipe wrapped in a geosock and surrounded by 150 mm of 19 mm clear crushed stone. The clear stone should be wrapped in a non-woven geotextile. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

The perimeter drainage pipe may be placed against the structure and with the invert placed a minimum of 600 mm below the subgrade of the overlying hardscaping and upon Paterson-reviewed and-approved compacted soil backfill to ensure adequate drainage of the overlying granular fill layer is provided from precipitation events and/or spring meltwater.

In this configuration, provided the backfill overlying the pipe consists of crushed stone fill associated with the hardscaping, a composite foundation drainage board will not be required. The installation of the perimeter drainage system should be reviewed by Paterson personnel at the time of construction.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free draining non-frost susceptible granular materials (such as clean sand or OPSS Granular B Type I granular material) or site-generated workable soils placed in maximum 400 mm thick loose lifts and compacted using suitably sized compaction equipment. If consideration is given to backfilling the structures with crushed stone, Paterson should be advised of this during the tendering stage to review and advise on impacts to grade raise restrictions.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

Foundations which are founded directly on clean, surface-sounded bedrock with no cracks or fissures, and which is approved by Paterson at the time of construction, is not considered frost susceptible and does not require soil cover. Where the bedrock is considered frost susceptible (i.e., weathered bedrock with soil in-filled fractures), foundation insulation will need to be provided if located within the depth of frost penetration, or, the frost susceptible bedrock will need to be removed and replaced with lean concrete (minimum 17 MPa 28-day strength).

6.3 Excavation Side Slopes

The side slopes of excavations in the overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavations to be undertaken by opencut methods (i.e. unsupported excavations).

Unsupported Side Slopes

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The slope cross-sections recommended are for temporary slopes.

The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress. Excavation side slopes should also be protected from erosion by surface water and rainfall events by the use of tarpaulins or other means of erosion protection along their footprint in conjunction with dry conditions at the slope toes.

Excavation side slopes in sound bedrock can be completed with almost vertical side walls. A minimum of 1 m horizontal ledge should be left between the bottom of the overburden and the top of the sound bedrock surface to provide an area for potential sloughing.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

The pipe bedding for the sewer and water pipes should consist of at least 150 mm of OPSS Granular A crushed stone. However, when the bedding is located within firm, grey silty clay or upon bedrock subgrade, a minimum of 300 mm of OPSS Granular A should be placed for bedding for sewer or water pipes. The material should be placed in a maximum 225 mm thick loose lifts and compacted to a minimum of 99% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 225 mm thick lifts and compacted to a minimum of 99% of its SPMDD.

It should generally be possible to re-use the moist (not wet) site-generated fill above the cover material if the excavation and filling operations are carried out in dry weather conditions (and as described in Subsection 5.2 and Subsection 5.6 of this report). Wet site-generated fill will be difficult to re-use, as the high-water contents make compacting impractical without an extensive drying period and is not expected to be able to re-used readily.

Any stones greater than 200 mm in their longest dimension should be removed from these materials prior to placement. Well fractured bedrock should be acceptable as backfill for the lower portion of the trenches when the excavation is within bedrock provided the rock fill is placed only from at least 300 mm above the top of the service pipe and that all stones are 300 mm or smaller in their longest dimension.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

Bedrock/Soil Transitions

In areas where the service subgrade transitions from soil to bedrock, it is recommended that the founding medium be inspected in the field to determine how steeply the bedrock surface, where encountered, drops off. A transition treatment is generally recommended to be provided where the bedrock slopes steeper than 3H:1V. At these locations, the bedrock should be excavated, and a minimum 500 mm thick layer of bedding, such as OPSS Granular A crushed stone, be placed to provide a 3H:1V transition from the bedrock subgrade toward the soil subgrade. This treatment will reduce the propensity for bending stresses to occur in the service pipe alignments.

It is recommended that this condition be reviewed in the field by Paterson personnel at the time of excavation and construction of site services. Paterson field personnel may advise on appropriate treatments where pipe subgrade transition between soil and bedrock surfaces.

Glacial Till to Clay Deposit Transitions

In areas where site servicing trenches advance across transitions between relatively shallow deposits of glacial till (shallow relative to bedrock surface) and deeper deposits of clay, glacial till soils consisting of predominantly fine-grained fines matrixes and high in-situ moisture levels will be difficult to place bedding materials upon. It is expected these soils will be in a relatively loose state of compactness and be readily disturbed by vibrations induced by compaction equipment. It would be expected that satisfactory dewatering efforts would be undertaken ahead of the trenching works to ensure efforts may be undertaken in the dry.

It is recommended that provisions be carried to provide localized bedding layers that may exceed 150 to 300 mm (i.e., in the range of 500 mm to 1 m and potentially higher) to place the bedding material upon compact to dense glacial till soils that would underlie the shallower looser material. Thickened bedding layers would be recommended to consist of OPSS Granular B Type I or II crushed stone and/or suitably-fragmented and -sized blast rock, if available. During the detailed design phase, Paterson will review all site servicing drawings to identify areas where the above-noted transition zone treatment would be expected to be considered.

Backfilling Within Trench Boxes

When the bedding and cover material is placed within the confines of a trench box and steel plates, it is recommended that the trench box be placed tightly against the outside of the trench walls and remains approximately 300 mm above the obvert level of the service pipe.

The vertical excavation sidewalls within the lower portion of the trench (below the obvert level of the pipe) can be supported using steel plates extended down to the bottom of the trench. The steel plates can be extended below the base of the excavation to prevent basal heave, in conjunction with adequate dewatering measures when located below the groundwater table.

To minimize the potential for disturbance of the bedding and cover material and subsequent settlement of the service pipe during the removal of the steel plates, it is recommended that the bedding layer be re-compacted tightly against the trench sidewalls upon removal/lifting of the steel plate up to the top of the bedding layer and prior to placing the pipe. This is recommended to mitigate settlement of the pipe that would results from removing the plates without re-compacting the fill that would be left unconfined to the sides of the trench. This procedure would be repeated for the springling and cover layers until the steel plates are removed.

It is generally recommended that this procedure be reviewed by Paterson field personnel at the time of construction.

6.5 Groundwater Control

Groundwater Control for Building Construction

It is anticipated that groundwater infiltration into the excavations through the clayey overburden materials should be low to moderate and controllable using open sumps. Higher infiltration rates are anticipated to be encountered within the glacial till and below the bedrock surface. It is recommended that dewatering in support of site services and excavations undertaken below the groundwater table throughout the glacial till deposit and bedrock formations be assessed by a professional hydrogeologist during the detailed design stage.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Permit to Take Water

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Under winter conditions, if snow and ice is present within the blast rock or other fill below future basement slabs, then settlement of the fill should be expected and support of a future basement slab and/or temporary supports for slab pours will be negatively impacted and could undergo settlement during spring and summer time conditions. The geotechnical consultant should complete periodic inspections during fill placement to ensure that snow and ice quantities are minimized in settlement-sensitive areas.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. These results are indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The results of the chloride content, pH and resistivity indicate the presence of a non-aggressive to slightly aggressive environment for exposed ferrous metals at this site. No further requirements are needed to be considered for this item.

6.8 Landscaping Considerations

Tree Planting Restrictions

Paterson completed a soils review of the site to determine applicable tree planting setbacks, in accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines) for trees planted within a public right-of-way (ROW). Atterberg limits testing was completed for recovered silty clay samples at selected locations throughout the subject site. Grain size distribution and hydrometer testing was also completed on selected soil samples. The above-noted test results were completed on samples taken at depths between the anticipated underside of footing elevation and a 3.5 m depth below finished grade. The results of our testing are presented in Tables 1 and 2 in Subsection 4.2 and in Appendix 1.

Based on the results of the Atterberg limit testing mentioned above, the plasticity index was found to be less than 40% in all the tested clay samples. In addition, based on the clay content found in the clay samples from the grain size distribution test results, moisture levels and consistency, the silty clay across the subject site is considered low to medium potential for soil volume change.

The following tree planting setbacks are recommended throughout the subject site where silty clay was encountered, and as depicted in Drawing PG4216-3 - Permissible Grade Raise Plan. Large trees (mature height over 14 m) can be planted within these areas provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). Tree planting setback limits may be reduced to **4.5 m** for small (mature height up to 7.5 m) and medium size trees (mature tree height 7.5 to 14 m), provided that the conditions noted below are met:

□ The underside of footing (USF) is 2.1 m or greater below the lowest finished grade must be satisfied for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan as indicated procedural changes below.

- □ A small tree must be provided with a minimum of 25 m³ of available soil volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- □ The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.
- □ The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surround the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree).

It is well documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils that shrink on drying can result in long-term differential settlements of the structures. Tree varieties that have the most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and, as such, they should not be considered in the landscaping design.

6.9 Slope Stability Analysis

Due to the presence of Marlborough Creek along the northern property line, a slope stability assessment was completed for the slope located along the north property line of the subject site. Based on the existing topographic information, the creek's south side slope ranges in height between 1.5 to 2.5 m. The bottom of the water course was found to be at an elevation of 92 m while the average top of slope was found at an elevation of 94 m. The horizontal length of the slope face including the flood plain was estimated to range between 16.5 and 65.5 m. It is our understanding that the proposed development is expected to raise the overall site grade between 1 to 1.5 m above existing grade.

The subsurface profile across the subject slope face is expected to consist of brown silty clay along the east portion of the site overlying glacial till and bedrock. The slope along the west portion of the site is expected to consist of glacial till overlying bedrock. Based on our assessment of the above information, the existing slope is expected to have an inclination between 6H:1V and 26H:1V. The slope inclination may be increased upon the completion of the proposed development with slopes ranging between 4.5H:1V and 16.5H:1V. Therefore, the subject slope is considered stable and acceptable from a geotechnical perspective with no restrictions/setbacks required to protect the slope as result of developing the subject site.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that a material testing and observation services program including the following aspects be performed by the geotechnical consultant.

- Grading plan review from a geotechnical perspective, once the final grading plan is available.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- □ Sampling and testing of the bituminous concrete including mix design reviews.
- Review and installation of the foundation drainage system.

A report confirming that these works have been conducted in general accordance with Paterson's recommendations could be issued upon the completion of a satisfactory material testing and observation program by the geotechnical consultant.

All excess soil must be handled as per Ontario Regulation 406/19: On-Site and Excess Soil Management.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with Paterson's present understanding of the project. Paterson requests permission to review the grading plan once available. Paterson's recommendations should be reviewed when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and the test hole log are furnished as a matter of general information only. Test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests to be notified immediately to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Tamarack (Richmond) Corporation, or their agent(s), is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Report Distribution:

- Tamarack (Richmond) Corporation (email copy)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ATTERBERG LIMITS TESTING RESULTS

GRAIN SIZE DISTRIBUTION AND HYDROMETER TESTING RESULTS

CONSOLIDATION TESTING RESULTS

ANALYTICAL TESTING RESULTS

HYDRUALIC CONDUCTIVITY RESULTS

COORD. SYS.: UTM ZONE 18 EASTING: 435	5369.0	3			NORTHIN	IG : 50	03654.34	ELEVATION	N: 95.31		
PROJECT: Proposed Mixed-Use Development								FILE NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig											
REMARKS:					DATE: N	/larch 6	5, 2025		БП 1-2 3		
				S	AMPLE		PEN. RES	SIST. (BLOWS/0.3 50mm DIA. CONE	5m) E)		
			Ġ			ENT	20 40) 60	80	N NELL	_
SAMPLE DESCRIPTION	LOT	-	NC NC	%) X		ILNO	△ REMOULDED S ▲ UNDRAINED S	SHEAR STRENG	TH (kPa) [H (kPa)		m) N
	ATA I	E (m	AN	OVER	RQE	ER C (%)	20 40) 60	80	STRL	(ATIO
	STR/	DEPI	ТҮРЕ	REC	N OR	WATI			LL (%)	MON	ELEV
							20 40) 00	00		-
GLACIAL TILL: Brown silty clay, some gravel and	<u> </u>	-	X5								95
sand ,cobbles and boulders	V V V V V V V V	-									-
GLACIAL TILL: Compact, brown silty sand, trace		1-	SS	64	2-8-50-/				1.	03 m ¥ 2025-	-03-12 -
clay and gravel ,cobbles and boulders		-			00/0.2						94 -
BEDROCK: Good to excellent quality limestone		-	-						· · · · · · · · · · · · · · · · · · ·		-
		2-	S	100	RQD 78						-
		-									93-
		-						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
		2									-
		-	0.2	100						3.05	5m <u>-</u>
		-	ž								92-
		-									-
		4-									-
4.57m [90.75m]		-	S	100	RQD 100				· · · · · · · · · · · · · · · · · · ·		91—
End of Borehole		-								4.5/	'm _ -
		5-									-
(GWL at 1.03 m depth - March 12, 2025)		=									90 -
		-									-
		6-									-
		-									89-
		-						•••••			-
		7-									-
		-									88-
		-									-
		-									-
		8-							· · · · · · · · · · · · · · · · · · ·		
		-									8/-
		-									-
		9-							· · · · · · · · · · · · · · · · · · ·		-
		-						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		86
		-									-
		<u>10</u> -							יבה דעופ פטרי		
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	ort. PA		OF PATE	irsu JP IS	NOT RESP	ONSIBL	E FOR THE UNAUTHO	RIZED USE OF 1	THIS DATA.	PAGE: 1	/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5568.9	3			NORTHIN	IG : 50	03478	3.60		ELE	VATION	I: 96.60			
PROJECT: Proposed Mixed-Use Development ADVANCED BY: Track Mounted Drill Rig										FILE N	10. :	PG42	216		
REMARKS:					DATE: N	/larch 6	6, 202	5		HOLE	NO. :	BH 2-	-25		
				S	AMPLE			■ P	EN. RES	SIST. (BLC	OWS/0.3	m)			
			<i></i>			INT		20	4(0	60	80		N KELL	
SAMPLE DESCRIPTION	гот	-	N N D	(%) X		ONTE			JLDED S AINED S	SHEAR S SHEAR S	TRENGT	íH (kPa) H (kPa)			N (m)
	ATA F	TH (m		OVER	R R R	ER C (%)		20	4(0	60	80		STRL	ATIO
GROUND SURFACE	STR	DEP.	ТҮР	REC	N OF	WAT		PL (%)	WAIE		:NI (%) 60	LL (%))	MON	ELEV
TOPSOIL 0.28m [96.32m]															8 =
FILL: Brown silt, with gravel, with gravel, trace clay,		-	₹ N					· · · · · · · · · · · · · · · · · · ·							- - -
Sand and crushed stone 0.69m [95.91m],		-	<u> </u>	100	RQD 53					-	· · ·	-			× 30 -
BEDROCK: Fair to good quality limestone		1-	£										1.	21 m ▼ 20	
Good quality below 2.6 m dopth		-						· · · · · ·					: 		
		-	C 2	86	RQD 36										- 90 -
		2-											 		
		-													
		-												리티	_ 94 _
		3_						····							
		-	RC 3	100	RQD 76										- 3.43m
		-								-		-			93-
		4_							•••						
		-	4									-			
		-	RC	97	RQD 83			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			92-
4.95m [91.65m]		5													4.95m _
		-								-			:		
(GWL at 1.21 m depth - March 12, 2025)		-													91-
		6-													-
		-								-	· · ·	-	:		-
															90-
		7-						:				• • •			-
		· -													-
		-													89-
		- -								-					-
		-								-		-			-
		-						····							88-
		_								-		-			-
		9_								· · · · · · · · · · · · · · · · · · ·					
		-													Q7_
		10 -								-					
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF PATE	ERSO		ND THE	E CLIE	NT FOR	WHOM	IT WAS F	RODUC	ED. THIS	SHEE	T SHOL	JLD BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSO	N GRO	UP IS	NOT RESP	ONSIBL	E FOF	R THE UI	NAUTHO	RIZED U	SE OF T	HIS DATA	۹.		1/1
														I AGE.	17.1

COORD. SYS.: UTM ZONE 18 EASTING: 435	5522.7	4			NORTHIN	G : 50	0388	5.37		ELE	VATIO	N: 95.76		
PROJECT: Proposed Mixed-Use Development										FILE	NO. :	PG421	6	
ADVANCED BY: Track Mounted Drill Rig								_)5	
REMARKS:					DATE: N	larch 6	, 202	25		HULL	. NO	БП Э-2	25	
				S	AMPLE			■ P	EN. RES DCPT (5	iIST. (BL i0mm DI	.OWS/0.3	3m) E)		
						IN		20	40)	60	80		
SAMPLE DESCRIPTION	LOT	_	N N	Y (%)		ONTE			ULDED S	HEAR S		TH (kPa) TH (kPa)		U (U
	Ι.	щ Н	ANI	Ner N	RQD	ER C (%)		20	4()	60	80	TOR	ATIO
	STRA	DEPT	ΓΥΡΕ	SEC	N OR	NATE		PL (%)	WATE		ENT (%)	LL (%)		
GROUND SURFACE	0,				2	>		20	4() :	60	80		
Loose brown CLAVEY SILT trace sand	XX	-	Ø5					· · ·						
		-	∽					· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••			-
- Trace gravel by 0.7 m depth		1-	M	75	2225									
1.45m [04.21m]		-	\square	15	4									8 3
Compact, brown SILTY SAND, trace gravel		-	\square							••••				
······································		-	SS 3	83	5-11-15-17									94-
		2-			26				••••••					
2.41m[93.35m]2.41m[93.35m]		-	N SS	100	50-/-/-/ 50/0.1			· · · · · · · · · · · · · · · · · · ·					2.38 m 2 202	25-03-12 -
BEBROOK. Excelent to fail quality infestone		-												93
		3-	5						•••••••••••••••••••••••••••••••••••••••		•••			
		-	L R	100	RQD 90								3	.35m –
		-						· · ·						92-
		4-												-
		-	7											-
		-	ы В	74	RQD 56									-
4.90m [90.86m]		5											4	.8 ^{8m}
End of Borehole		-												-
(GWI at 2.38 m denth - March 12, 2025)		-												-
		-												90-
		6-												-
		-												-
		-												89-
		7—								•••••				-
		-						· · ·						-
		-						 			•••••••••••••••••••••••••••••••••••••••	•••••		
		8-												88-
		-												-
		-									•••••••			-
		-								÷				87-
		9-								· · · · · · · · · · · · · · · · · · ·				
		-						: : :						
								· · ·			· · ·			86
		10 - PERTV							WHOM		PRODUR			
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ORT. PA	TERSC	ON GRO	UP IS	NOT RESP	ONSIBL	E FO	R THE UI	VAUTHO	RIZED L	JSE OF	THIS DATA.		1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	522.7	4			NORTHIN	IG: 50	03885.37	ELEVATION	1: 95.76	
PROJECT: Proposed Mixed-Use Development								FILE NO. :	PG4216	
ADVANCED BY: Track Mounted Drill Rig										
REMARKS:					DATE: N	March 6	5, 2025	HOLE NO. :	BH 3A-2	5
				S	AMPLE		PEN. RES	SIST. (BLOWS/0.3	m)	
						E	DCPT (5	50mm DIA. CONE 0 60	:) 80	1
	ы		ġ	(%)		LEN		SHEAR STRENG	TH (kPa)	MOL (U
SAMPLE DESCRIPTION	Ъ	<u>ا</u>	Q	Ϋ́	R	CO %		HEAR STRENGT	H (kPa)	
	RATA	TH	м М	No.	R R(LER (20 40 PI (%) WATE	0 60 R CONTENT (%)	<u> 80 </u>	NITC NSTF
GROUND SURFACE	STF	DEF	ž	RE	o z	M	20 40	0 60	80	ELE Com
For soil profile refer to BH 3-25										
		-							·····	
		-								95 -
		1_								0.89m
		-							· · ·	
		-						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		- -							1	.88 m 2025-03-12
		2								
End of Borehole		-							· · · · · · · · · · · · · · · · · · ·	2.41m
		-								93-
(GWL at 1.88 m depth - March 12, 2025)		3_								
(-							· · ·	
		-								
										92-
		4 -								
		-							· · · · · · · · · · · · · · · · · · ·	
		-							· · ·	91-
		5_						•••••		
		-								
		-								
		6								90-
		-								-
		-								
		-								89-
		7-							· · · ·	
		-								
		-						•••••	· · · · · · · · · · · · · · · · · · ·	
		8_							· · · · · · · · · · · · · · · · · · ·	88-
		-								
										87-
		9_								
									· · · · · · · · · · · · · · · · · · ·	00
		10 -								00
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH		PERTY		RSO					ED. THIS SHE	ET SHOULD BE
	JR I. PA									PAGE: 1/1

COORD. SYS.: UTM ZONE 18 EASTING: 435	5611.53	3			NORTHIN	IG : 50	0372	7.26		ELEVATIO	N: 97.14		
PROJECT: Proposed Mixed-Use Development										FILE NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig						larah 6	202	05		HOLE NO. :	BH 4-25		
REMARNS.						archio	, 202	.0 ■ P	EN RES	IST (BLOWS/0	3m)		
				S					DCPT (5	50mm DIA. CON	E)	-	
	F		ġ	(%		TENT	Δ	20 REMO	40 11 DED 5) 60 Shear Streng	80 3TH (kPa)		Ê
SAMPLE DESCRIPTION	PLO	Ê	Q Q	ERY (°	8	CON (%		UNDR	AINED S	HEAR STRENG	TH (kPa)	RING) NO
	RATA	PTH (Б A	COVE	R R C	ER 0		20 PL (%)) 60 R CONTENT (%)	80 LL (%)		EVAT
GROUND SURFACE	STI	DE	Σ	Ä	z	AN		20	4(0 60	80	₽ S S	Ξ
_ TOPSOIL and organics0.25m [96.89m]/	~ ~ ~ ~		- <i>x</i>					· · ·					97 —
GLACIAL TILL: Compact, brown silty clay, with	~ ~ ~ ~ ~	-	¥⊠?										-
- gravel, trace sand ,cobbles, boulders0.76m[96.38m]/		-	- - -	85	ROD 85								-
BEDROCK : Good to fair quality limestone		1	~						· · · · · · · · · · · · · · · · · · ·				96-
		-						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			-
		-	C 2	68	RQD 58								-
		2-)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		95 -
		-						· · · · · · · · · · · · · · · · · · ·					-
		-						· · ·					-
		3-)					 94 —
		-	RC 3	76	RQD 58			· · ·				3.45	 - m -
		-						· · ·			:	3.76 m 2025-	- - - 03-12
		4 —						: : }	•••••••••••••••••••••••••••••••••••••••		·····		-
		-						· · ·					93-
		-	RC 4	100	RQD 54			· · · · · · · · · · · · · · · · · · ·					-
5.03m [92.11m]		5-										4.98	m _
End of Borehole		-						· · ·					92-
(C)ML at 2.76 m donth March 12, 2025)		-											-
(GWL at 5.76 III deptil - March 12, 2025)		6-						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			-
		-						· · ·					91-
		-						 			· · · · · · · · · · · · · · · · · · ·		-
		-						· · ·					-
		-						· · · · · · · · · · · · · · · · · · ·					90 -
		-											-
		-						· · ·					-
		8-						· · · · · · · · · · · · · · · · · · ·					89-
		-						· · · · · · · · · · · · · · · · · · ·					-
		-						· · ·					-
		9-						· · · · · · · · · · · · · · · · · · ·					88-
		-											-
													-
													-
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	E PROF ORT. PA	TERSC	OF PATE	JP IS	NOT RESP	ONSIBL	E FOI		NAUTHO	RIZED USE OF	THIS SHE	PAGE 1	/ 1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5856.2	0			NORTHIN	IG : 50	0366	5.21		ELEVAT	ION: 95.53		
PROJECT: Proposed Mixed-Use Development										FILE NO.	: PG42'	16	
ADVANCED BY: Track Mounted Drill Rig									-				
REMARKS:					DATE: N	/larch 7	, 202	25		HOLE NO	.: BH 5-2	25	
				5	SAMPLE			■ P	EN. RES	IST. (BLOWS	6/0.3m)		
						F		20	DCPT (5	0mm DIA. CO	ONE) 80	E	
	5		ġ	(%		TEN	Δ	REMO			NGTH (kPa)	NO N	Ê
SAMPLE DESCRIPTION	PLC	Ê	ģ	RV (9	CON (UNDR	AINED S	HEAR STRE	NGTH (kPa)) NO
	ATA	Ŧ	ΕĂ		3 RQ	R €R		20	40) 60 P CONTENT	80		VATI
	STR	E	ΤΥΡ	REC	ŌN	WAT		PL (%)			(%) LL (%)	CON CON	
TOPSOIL			\overline{X}	-				20	+0	, 00			5 -
		-	XI∎	2								0.34 m ¥ 202	25-03-12 _
0.00		-	<u> </u>										95 —
GIACIAL TILL: Compact brown silty sand some		1-	\mathbb{N}_{2}	1 07	0 40 47 00								3 -
gravel and cobbles, trace clay		-	\bigwedge	3 01	29								8 =
BEDDOCK: Excellent quality limestone		-	U U	8 0	50-/-/-/								94 –
BEDROCK. Excellent quality inflestone		-	-	-	50/0.05								
		2_	L L L	2 100	RQD 100			1 1					
		-										EEE	-
		-						· · · · · · · · · · · · · · · · · · ·					93-
		3_						ļ					-
			50.9	2 100	RQD 100					· · ·			-
		-		-								3.	4 _{3m} –
		-											=
		4_						· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••				-
		-	e C										-
		-	a d	2 100	J RQD 95								91-
4.95m [90.58m]		5_										4	95m -
End of Borehole													
													90-
(GWL at 0.34 m depth - March 12, 2025)										· · ·			
		6											
													=
		-						5 	•••••••••••••••••••••••••••••••••••••••				89-
		7_											
								: 					88-
								· · ·					
		8_						· · · · · · · · · · · · · · · · · · ·					
													-
		-								·····	······································		87-
		_											-
		9_											-
								· · · · · · · · · · · · · · · · · · ·					86_
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH READ IN CONJUNCTION WITH ITS CORRESPONDING REP	E PROF ORT. PA	TERSO	JF PAT N GRC	ERS()UP IS	S NOT RESP	AND THE ONSIBL	= ULII E FO	ENTFOR R THE UI	VVHOM I NAUTHO	IT WAS PRO	DUCED. THIS S OF THIS DATA.	SHEET SHOU	LD RE
										、		PAGE:	1/1

COORD. SYS.: UTM ZONE 18 EASTING: 435	817.8	5				NORTHIN	G : 50	0447	71.80		El	LEVATIO	N: 94.12		
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig						D.475			05		но		BH 6-25		
REMARKS:						DAIE: M	larch /	, 202	25				DII 0-23		
					S	AMPLE			• •	DCPT (5	50mm	DIA. CON	sm) E)		
					~		ENT		20	4()	60	80	NELL	÷
SAMPLE DESCRIPTION	PLOT	÷.		ž L	۶Y (%	0	ONT		REMO UNDR	ULDED S AINED S	SHEAI SHEAF	R STRENG R STRENG	TH (kPa) FH (kPa)		n (m
	ATA	ц Е		A	OVEF	r Rai	ER 0		20	4()	60	80	STRI	ATIC
	STR	DEP		1	REC	N OF	WAT		PL (%)	WAIE		60	LL (%)	MON	ELE
TOPSOIL and organics									20	40		00	00		94 –
GLACIAL TILL: Compact, brown silty clay, some		-	Ķ	AU 1											-
sand, trace gravel	<u> </u>												0.	61 m. <u>▼</u> 2025-1	_ 03-12 _ _
GLACIAL TILL: Dense to very dense, brown sandy	7 7 7 7 7 7 7 7 7 7 7 7	1-	X	SS 2	79	6-17-13-17							· · · ·		03_
silt, with gravel, cobbles and boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	\square			30									
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	∇	e								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~	2-	X	SS	46	10-21-34-27 55									-
<u>CLACIAL TILL:</u> Compact brown silty sand trace		-							· · ·					ÊÊ	92-
gravel and cobbles , boulders		-	X	SS 4	75	7-9-11-11									-
		-	$ \rangle$			20			· · ·						-
		3-	∇	5									· · · · · · · · · · · · · · · · · · ·	3.05	^m y1_
		-	X	SS	83	9-12-13-12 25			· · ·			· · · · · · · · · · · · · · · · · · ·			-
- Grey by 3.73 m depth		-	\square						· · ·						-
		4-	X	SS (43	3-8-50-/ 58/0-25									90 —
4.57m [89.56m]		-				50/0.25							· · · · · · · · · · · · · · · · · · ·		-
End of Borehole		=							· · · · · · · · · · · · · · · · · · ·	· · ·		· · ·		4.57	m _ -
		5-							· · · · · · · · · · · · · · · · · · ·		•••••		· · · · · · · · · · · · · · · · · · ·		
Practical refusal to augering at 4.57 m depth		=													-
(C)ML at 0.01 m double. March 10, 2025)		-								•••••••••••••••••••••••••••••••••••••••		••••••	· · · · · · · · · · · · · · · · · · ·		-
(GVVL at 0.61 m depth - March 12, 2025)		6-													-
		-							· · ·						88-
															-
		7_											· · · · · · · · · · · · · · · · · · ·		-
		' <u>-</u>							· · ·						87 —
		=							· · · · · · · · · · · · · · · · · · ·		····		·····		-
															-
		8-											· · · · · · · · · · · · · · · · · · ·		86 -
		-							· · · · · · · · · · · · · · · · · · ·						-
		-							· · ·				· · ·		-
		9-													85 —
		-											· · ·		-
		-													-
										14/101		0.0000			-
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	= PROF DRT. PA		OF F DN G	ROU	rsu PIS	NOT RESPO		E FO		NAUTHO	RIZE	S PRODUC D USE OF	THIS SHEL THIS DATA.		1 RF

SOIL PROFILE AND TEST DATA

COORD. SYS.: UTM ZONE 18 EASTING: 433	5747.9	4				NORTHIN	G : 500)4424	.67		E	LEVATIO	DN: 94.61			
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	PG421	16		
ADVANCED BY: Track Mounted Drill Rig														7 /		
REMARKS:						DATE: D	ecemb	er 16,	2024			LE NO.		24		
					S	AMPLE			∎ F	EN. RE	SIST. (50mm	BLOWS/0 DIA. COI).3m) NE)			
							ENT		20	4	0	60	, 80		z	_
SAMPLE DESCRIPTION	LOT	-			X (%	-	ILNO	∆ ▲	REMO	ULDED	SHEAI Sheaf	R STREN	GTH (kPa) GTH (kPa)		IER ICTIC	m N
	AT I	LH (J	AN		0 VEF	r RQI	ER 0 (%)		20	4	0	60	80		OME:	/ATIO
	STR	EP.	L A		REC	N OF	WAT	F	²L (%)	WATE		NTENT (%	6) LL (%)		PIEZ	ELE
TOPSOIL 0.23m [94.38m]					_			:	20	4	iU	00	00			-
GLACIAL TILL: Compact, brown silty sand, with		-	臤	4U 1			24		c		· · · · · ·					-
gravel, trace clay, cobbles and boulders		-	Ħ							-						94 —
		1-	XI	SS 2	58	Р	22		0		;; ;					-
		-	Д							-	· · ·					-
		-	\square	3												93-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2-	M	SS	/5	5-7-9-8 16	12	•	<u>, ר</u>		: 					-
		-								-	· · ·					-
		-														92-
Dance by 2.0 m depth	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3-											· · · · · · · · · · · · · · · · · · ·			-
- Dense by 5.0 m depth		-	М	4	67	7 13 21 21	13		`	-	· · ·					-
		-	\square	ŝ	07	34	13		.	••••••	· · · ·	•••••				91-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-								-						-
	~ ~ ~ ~ ~	4-														-
- Grev by 4.6 m depth		-														
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	M	S 5	8	6-5-8-20	8	о								90 -
		5-	Д	S	-	13				•••						-
		-						· · · · · · ·					· · · · · · · · · · · · · · · · · · ·			-
	V V V V V V V V V V V V	-								-	· · ·					89-
		6-						· · · · · · · · · · · · · · · · · · ·		•••	· · · · · · · · · · · · · · · · · · ·					-
		-	XI	SS 6	58	8-12-13-6	10	o			· · ·					-
6.71m [87.90m]	<u> </u>	-	А			25				-	· · ·					88-
End of Borenole		7-							· · · · · · · · · · · · · · · · · · ·		: :					-
		-						:		-	· · ·					-
		-								•••						87-
		8-														-
		-								-	· · ·					-
		-														86-
		_ 														-
		-								-	· · ·					-
		-						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							85-
		10 -								-	· · ·					-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF P/	ATER	RSO	N GROUP A	ND THE	CLIE	NT FOR	WHOM	IT WA	S PRODI	JCED. THIS S	SHEET	SHOULI	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	urt. Pa	TERSC)n gf	ROUE	- IS	NOT RESPO	ONSIBLI	EFOR	THE U	NAUTHO	URIZEI	USE OF	THIS DATA.	F	PAGE: 1	1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5865.23	3				NORTHIN	G : 500)444	8.81			EL	EVAT	ION:	94.0	7		
PROJECT: Proposed Mixed-Use Development												FILE	NO.	: 1	PG4	216		
ADVANCED BY: Track Mounted Drill Rig							h	1	c	14	ł	ноі	F NO	•	RH (2-24		
REMARKS:						DATE: D	ecemb	ern	0, 202	24 DEN 1		ст /Б			\ \	-------------		
					SA	AMPLE	ţ		2	DCP	T (50 40) mm l	DIA. CO 60	ONE)) 80			
SAMPLE DESCRIPTION	РLOT	(E	ON DN		ERY (%)	Q	CONTE %)	∆ ▲	REM UNI	IOULDE DRAINE	D SI	HEAR IEAR	STRE	NGTH NGTH	l (kPa (kPa))	ETER	(m) NO
	RATA	PTH (E A			DR RC	ТЕR С		20 PL (%)) WA	40 TER	CON	60 TENT	(%)	<u>80</u> LL (9	%)	ZOM	EVAT
GROUND SURFACE	STI	DE	Ě		х П	z	A		2)	40	0	60	(,,,	80		8	
TOPSOIL, trace sand and gravel	~ ~ ~ ~			-			16		0			-			-			94
GLACIAL TILL: Compact to dense, brown silty sand,	~ ~ ~ ~ ~	-	섰	A							•••••							
with gravel, cobbles and boulders		-		5														
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	X	SS 5	8	11-11-11-24 22	11		0									93-
	~ ~ ~ ~ ~	-	\square							· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·			<u>.</u>		-
	~ ~ ~ ~ ~		XI	SS 5	8	9-18-23-20	11		0						-			-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2-	\square			41												92-
	0 0 0 0 0 0 0 0 0 0 0 0	-																
0.05	~ ~ ~ ~ ~	-							· · · ·	-		-			-			
Compact to dense, brown SILTY SAND, trace gravel		3-	\square	4														91-
3.66m [90.41m]		-	Х	s 2	25	16-14-13-13 27	23			0								
GLACIAL TILL: Dense, grey silty sand, with gravel,	▼	-							· · ·			-			-			-
cobbles and boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4-										••••						90-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-														· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~	-	\square	0.5		6 14 25 21		~				-			-			-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5_	\square	S s	00	39	9		, 	•••••	· · ·	••••	· · · · · · · · · · · · · · · · · · ·					89-
	~ ~ ~ ~ ~	-																-
	~ ~ ~ ~ ~	-							· · ·	-		-			-			-
	~ ~ ~ ~ ~	6																88-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	X	880	3	9-19-25-24	10	Ċ	5						-			
6.71m [87.36m]	~ ~ ~ ~ ~	-	Д			44						-			-			
End of Borehole		7_									· · · :							87-
		-								-								
		-												-	-			
		8-								· · · · · · · · · · · · · · · · · · ·								86-
		-							· · ·	-		-			-			
		-																
		9-											· · · · · · ·					85
														-				-
		-							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					-
		10 -									:			-	-			-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	E PROF	PERTY	of P/ N GF	ATERS	102 15	N GROUP A	ND THE		ENT FOR	DR WHO	DM IT		S PROL	DUCE	D. THI IS DA	IS SHEE TA.	T SHOUL	.D BE
					.01							0			.5 01	.,	PAGE:	1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5899.3	1				NORTHIN	G : 50	0426	64.51			ELEVATIO	N: 94.06			
PROJECT: Proposed Mixed-Use Development												FILE NO. :	PG42	16		
ADVANCED BY: Track Mounted Drill Rig											F			•		
REMARKS:						DATE: D	ecemb	er 1	6, 202	24		HOLE NO. :	BH 3	-24		
					S	AMPLE			•	PEN.	RESI	ST. (BLOWS/0.	3m) -`			
							F		2	0 DCP	40	60	=) 80			
SAMPLE DESCRIPTION	ы		Ő		(%)		NTE	Δ	REM	IOULDI	ED SI	HEAR STRENG	TH (kPa)		TION NOI	Ē
	⊿ F) (E	QNA		ΈRΥ	ð	с (%)	•		DRAINE	ED SH 40	HEAR STRENG	TH (kPa)		AETE RUC	lon
	RAT	PTH	E		ŝ	OR R	ATER		PL (%	5) WA	ATER	CONTENT (%)	00 LL (%))		EVA
GROUND SURFACE	ST	ä	≥	-	R	z	8		2	0	40	60	80		≣ 8	ᆸ
TOPSOIL, trace clay		· -	$\overline{\mathbf{x}}$	-			39				0					94 _
Hard, brown SILTY CLAY			X	A						•••••						=
														>250		=
		1 1-	Х	SS	100	Р	37				0		Δ80		▲	93-
1.45m[92.61m]			\square													-
GLACIAL TILL: Compact, brown silty clay, with	~ ~ ~ ~ ~		M	23	50	P	31									=
gravel, trace sand, cobbles and boulders	v v v v v v v v v v v v	2_	\wedge	ő	50	Г	51			Ŭ						92-
2.29m [91.77m]	<u> </u>															-
gravel trace clay occasional cobbles	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Х	SS 4	58	4-9-7-4	12		0							-
graver, race day, occasional connect	~ ~ ~ ~ ~	3_				16								: 		
			\bigvee	5	50	0 4 45 40	10		~	-						91-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~		\wedge	SS	50	8-4-15-19 19	12		0					: 		=
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									-			-			=
	~ ~ ~ ~ ~	4-							· · · · · ·	•••••						90-
																-
- Grey by 4.6 m depth	~ ~ ~ ~ ~ ~ ~ ~ ~ ~		\square	9						-			-			=
		5_	Ň	SS	42	3-17-4-6 21	11		0	• • • • • •						89-
	~ ~ ~ ~ ~ ~									-						-
	~ ~ ~ ~ ~															-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6-														
	~ ~ ~ ~ ~			2												88
6 71m [87 35m]			Å	SS	42	15-28-13-12 41	14		0							
End of Borehole													-			-
		7-														87-
																-
										-						
		8_											:			86-
									· · ·				-			-
		-								•••••				· · · · · · · · ·		=
		9_														05
										-						00-
														· · · · · · · ·		=
		10											-			-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF P/	ATEF	RSO	N GROUP A	ND THE	E CLI	ENT F	OR WH	OM IT	T WAS PRODU	CED. THIS	SHEE	T SHOUL	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSO	N GF	ROU	P IS	NOT RESPO	ONSIBL	E FO	R THE	UNAU	THOF	RIZED USE OF	THIS DATA	۹.		
															PAGE:	1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTIN	G : 435891	.01			NORTHIN	G : 50	04133.10	ELEVATION	: 93.78	
PROJECT: Proposed Mixed-Use Develop	oment							FILE NO. :	PG4216	
ADVANCED BY: Track Mounted Drill Rig										
REMARKS:					DATE: D	ecemb	per 19, 2024	HOLE NO. :	BH 3A-21	
				S	AMPLE		PEN. RE	SIST. (BLOWS/0.3r	n)	
						5	20 DCPT (50mm DIA. CONE) 0 60	80	
	6		ġ	(%)		LE V		SHEAR STRENGT	H (kPa)	m IION
		Ē	g	ERY	8	<u>%</u> دا		SHEAR STRENGT	H (kPa)	RUC.
	RAT/	PTH	L A H	S S	R R	TER)	PL (%) WATE	R CONTENT (%)	50 LL (%)	
GROUND SU	RFACE	В	Σ	RE	z	M	20 4	0 60	80	
For soil profile refer to BH 3-21										
		-								93-
		1-								
		-								
								• • • • • • • • • • • • • • • • • • • •		
		2-						· · · · · · · · · · · · · · · · · · ·		92-
2.29m [9	1.49m]	-								
Very stiff, brown SILTY CLAY		8	Μ.,	-	Б	52		A ⁴³	>121	
			Mű	8 100		52				91-
		3-	\square				/	· · · · · · · · · · · · · · · · · · ·	>121	
				g 100	Р	44	²² 🔬 34	- 0		
3.73m[9	0.05m]		Д					· · · · · · · · · · · · · · · · · · ·		
Firm, grey SILTY CLAY										90-
		-	X	g 75	Р	42	Δ10	0 48		
4.88m [8	8.90m]	8	M		2411	36	0		>121	. 89-
GLACIAL TILL: Dense, grey silty clay, trace sar	id, <u>v v</u>	5	Mű	6 100	5	12	0			
gravel, cobbles and boulders		· ⊽ -	\square							
		· ⊽ ·	Xv	294	2-5-27-50	12	0	· · · · · · · · · · · · · · · · · · ·		
5.87m [8	7.91m] <u>* * *</u>	 	H		32					88 -
		-						· · · · · · · · · · · · · · · · · · ·		
		-								87 -
		7-								
								· · · · · · · · · · · · · · · · · · ·	·····	
		8-								- 08
		-								
		-								85-
		9-								
										0/
		10								84-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEE				TERSC					ED. THIS SHEE	T SHOULD BE
				JUF 13						PAGE: 1/1

SOIL PROFILE AND TEST DATA

COORD. SYS.: UTM ZONE 18 EASTING: 43	5936.4	1				NORTHIN	G : 50	0409	9.07		EL	EVATIO	N: 93.87		
PROJECT: Proposed Mixed-Use Development											FILE	E NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig									0004		ноі	FNO ·	BH /-2/		
REMARKS:						DAIE: L	ecemb	er 16	, 2024				2m		
					S	AMPLE			- r	DCPT (50mm	DIA. CON	E)		
	⊢		d	5	(9		TENT	^	20 REMO		0 Shear	60 STRENG	80 TH (kPa)	N	Ê
SAMPLE DESCRIPTION	PLO	Ê			ERV (°	R	CON.		UNDR	AINED S	SHEAR	STRENG	TH (kPa)	ETER	I) NO
	RATA	PTH (Р Р	1	Sol	DR RC	, CER		20 PL (%)	4 WATE	0 IR CON	60 ITENT (%)	80 LL (%)	NSTF	EVAT
GROUND SURFACE	STI	DE	Σ		Ä	z	W		20	4	0	60	80	불양	Ξ
0.25m [93.62m] /			×.	L L			43	-	-		0				-
Hard, brown SILTY CLAY		-	X	◄					•••••						-
		-		2				-	-				>249		93-
		1	X	SS	50	Р	36			0			280	Î	-
	IX.														-
		-	XI	SS 3	100	Р	50		-		8	50	>249	+	92-
		2-	\square										· · · · · · · · · · · · · · · · · · ·		-
- Very stiff by 2.3 m depth		-	\square	4		_				29		A665	179		-
		-	Ŵ	SS	100	Р	57	-	-		/				01_
		3-	\square				07		· · · · · · · · · · · · · · · · · · ·		/		>121		91 -
3.50m [90.37m]		-	XI	SS 5		Ρ	31		-	∆ ²⁹ ⁰	<u> </u>			•	-
GLACIAL TILL: Compact, grey silty sand, with clay,		-	\square				44		-		0				-
gravel, cobbles and boulders		4-	М	90	100	D	31		· · · · · · · · · · · · · · · · · · ·	0	: 	•••••			90-
		-	\square	ő	100	Г	8	0	-						-
		-	\square												-
		5-	XI	SS 7	50	2-6-9-5	10	Ċ)						89-
		-	\square			15			-		-				
		6-										· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		88-
		-	\square	8											-
6.71m [87.16m]		-	M	SS	67	3-3-3-2 6	14		0				· · · · · · · · · · · · · · · · · · ·		-
End of Borehole		-							-						87-
									-		-				-
		-							· · · · · · · · · · · ·						-
		-							-						86-
		8-													-
		-													-
		-							-						85
		9-							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		-
		-											· · · · · · · · · · · · · · · · · · ·		
		-													
		10 -			200						IT \\/\^	יי וחחפס	רבה דעופ פערי	 ד פווחויי	
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	ORT. PA	TERSC	OF PA	ROUF	PIS	NOT RESP	ONSIBL	E FOF	R THE U	NAUTHC	RIZED	USE OF	THIS DATA.		ם חב
														PAGE	1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5994.6	1				NORTHIN	IG : 50	0395	6.27		E	LEVATION	N: 93.90		
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig															
REMARKS:						DATE: D)ecemb	per 1	6, 2024		HC	DLE NO. :	BH 5-24		
					S	AMPLE			■ F	EN. RE	SIST.	(BLOWS/0.3	im)		
							F		20	DCP1 (50mm 10	60	:) 80		
SAMPLE DESCRIPTION	Б		Ş		(%)		NTE	Δ	REMO	ULDED	SHEA	AR STRENG	TH (kPa)	TION TION	<u>٤</u>
	⊿ F	Ē			ſΕRΥ	ð	С %				SHEA	R STRENG	FH (kPa) 80	AETE RUC	NOI
	RAT	PTH	L L	2	SOV	DR R	ATER (PL (%)	WATE	ER CO	ONTENT (%)	LL (%)		EVA
GROUND SURFACE	ST	ä	2	-	R	z	≥ ≥		20	4	0	60	80	≣8	
TOPSOIL 0.25m [93.65m] /			$\overline{\mathcal{A}}$	-			39			с)				-
Hard, brown SILTY CLAY		-	X	A					· · · · · · · · · · · · · · · · · · ·		• • • •				-
		-							· · ·				>249		93-
		1											▲89		
													· · · · · · · · · · · · · · · · · · ·		-
			M	0.2	100	Б	52		4 20			<u>_</u>	149		
		2_	\wedge	ő	100	Г	52		····· · · · · · · · · · · · · · · · ·			v			92-
													>121		-
		-								∆ 29	• • • • • • • • •				-
2.90m [91.00m]	\$,	3_									: ;				91-
gravel cobbles and boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	\bigvee	33	40	4540	9	c	>	-	•				=
- Grev by 3.4 m depth	~ ~ ~ ~ ·	-	\wedge	SS	42	4-5-4-6 9	11		0						-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~										•				90-
	~ ~ ~ ~ ~ ~ ~ ~	4-								••••••••	<u>.</u>				
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		-
- Dense by 4.6 m depth	~ ~ ~ ~ ·	-	\square	4		_ / /									-
	~ ~ ~ ~ ~	5-	Ň	SS		5-10-29-24 39	9	C)						89-
5.36m [88.54m]	<u> </u>	-							· · ·		•				-
End of Borehole		-									· · · · · · ·				-
Practical rational to augoring at 5.26 m donth		6							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		88-
Fractical relusar to augering at 5.50 m depth															
		=													
		-													87-
		7													
		-										· · · · · · · · · · · · · · · · · · ·			
		=								-	•				-
		8-									:		· · · · · · · · · · · · · · · · · · ·		86-
		=							· · ·						
		=								•••••••••••••••••••••••••••••••••••••••	· · · · · · ·				
		9_													85-
									· · ·		•				
									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		10 -							· · ·		•				84 -
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF P	ATE	RSO	N GROUP A		E CLI	ENT FOF	WHOM	IT W	AS PRODUC	ED. THIS SHEE	ET SHOUL	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSC	N G	ROU	P IS	NOT RESP	ONSIBL	E FO	R THE U	NAUTHO	ORIZE	D USE OF 1	THIS DATA.		
														PAGE:	1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

PROJECT: Proposed Musek-Use Development ADVANCED BY: Track Mounted Drill Rig RRMARKS: FUE NO:: PG2416 SAMPLE DESCRIPTION SAMPLE DESCRIPTION <t< th=""><th>COORD. SYS.: UTM ZONE 18 EASTING: 435</th><th>5422.6</th><th>8</th><th></th><th></th><th></th><th>NORTHIN</th><th>G: 50</th><th>0387</th><th>9.79</th><th></th><th></th><th></th><th>ELE\</th><th>ATION</th><th>1: 94</th><th>.24</th><th></th><th></th></t<>	COORD. SYS.: UTM ZONE 18 EASTING: 435	5422.6	8				NORTHIN	G: 50	0387	9.79				ELE\	ATION	1: 94	.24		
ADVANCED BY: Track Mounted Drill Rig REMARKS: DATE: December 17, 2024 DUE NO: EH6-24 SAMPLE DESCRIPTION (COUND SUFFACE (COUND SUFFACE (COU	PROJECT: Proposed Mixed-Use Development												F	ILE N	0. :	PG	4216		
REMARKS: DATE: December 17, 2024 POLE MOLESC (BUNRD 30) DEFT (500m DL CONE) 30 40 60 80 DEFT (500m DL CONE) 30 40 60 80 DEFT (500m DL CONE) 30 40 60 80 DEFT (500m DL CONE) 30 40 60 80 PL (6) MORA 500 80	ADVANCED BY: Track Mounted Drill Rig												-				0.04		
SAMPLE DESCRIPTION SAMPLE PP. RESIST (NOV803.0h) COUND SURFACE GLACAL TILL: Compact grey subs and, with gravel, COUND SURFACE C.S. TARKS (NOV803.0h) COUND	REMARKS:						DATE: D	ecemb	er 1	7, 20	24		H	OLE	NO. :	BH	6-24		
SAMPLE DESCRIPTION USE						S	AMPLE				P	EN. RE DCPT	SIST (50m	. (BLC	WS/0.3	m)			
SAMPLE DESCRIPTION Description <thdescription< th=""></thdescription<>					.			LN I			20		40		60	80		z	_
Image: control subscription Image: control subscription <t< td=""><td>SAMPLE DESCRIPTION</td><td>LOT</td><td></td><td></td><td></td><td><u>۲ (%)</u></td><td>_</td><td>ONTE</td><td></td><td>RE</td><td></td><td></td><td>SHE</td><td>AR ST</td><td></td><td>TH (kP TH (kP</td><td>a)</td><td>CTIO</td><td>N (m</td></t<>	SAMPLE DESCRIPTION	LOT				<u>۲ (%)</u>	_	ONTE		RE			SHE	AR ST		TH (kP TH (kP	a)	CTIO	N (m
CROUND SURFACE PA		ATA F	<u>ш</u> Н	AND		Ř	RQD	ER C (%)			20		40		60	80	u)	OME	ATIO
Obsolute stands Image: Second stands Imag		STRA	DEPT			ы С	N OR	NATE		PL (%)	WAT	ER C	ONTE	NT (%)	LL	(%)		ELEV
4.300 (Action 11LL: Compact, brown sandy day, with sitt, see and boulders 38 0 39 0 94 GLACIAL TILL: Compact, grey salty sand, with gravel, cobbles and boulders 4 1 1 1 1 0 93 GLACIAL TILL: Compact, grey salty sand, with gravel, cobbles and boulders 4.51m (845m) 5 100 P 30 0 90 GLACIAL TILL: Compact, grey salty sand, with gravel, cobbles 5 5 6 111 9 0 90 GLACIAL TILL: Compact, grey salty sand, with cobbles 6 7 6 7 8 81-19-19 9 0 88 GLACIAL TILL: Compact, grey salty sand, with cobbles 6 7 6 7 8 81-19-19 9 0 88 GLACIAL TILL: Compact, grey salt, with cobbles 6 7 6 7 8 88<	GROUND SURFACE			Ħ	-	-	-	-		:	20		40	:	60	80			
GLACIAL TILL: Compact grey silly sand, with gravel, obbies and boulders 4.57m [8:67m] 5 5 3-3-3-2 14 0 91 GLACIAL TILL: Compact grey silly sand, with gravel, obbies and boulders 6 7 7 7 7 7 8 81-13-16-19 9 0 0 880 GLACIAL TILL: Compact grey silly sand, with gravel, obbies and boulders 6 7 7 7 7 8 81-13-16-13 19 0 880 GLACIAL TILL: Compact grey silly sand, with gravel, obbies and boulders 6 7 7 8 81-13-16-13 19 0 0 880 GLACIAL TILL: Compact grey silly sand, with gravel, obbies and boulders 7 7 8 8 19 0 0 880	GIACIAL TILL: Compact brown sandy clay with silt	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	X.	AU 1			39			-		0						94 —
4.50 1 1 1 1 1 1 1 0 30 0 0 93 4.50 1 1 1 1 1 1 1 0 92 4.50 1 1 1 1 0 1 0 92 4.50 1 1 1 0 0 1 1 0 92 6.00 1 1 1 0 0 0 1 91 6.00 1 1 1 0 0 0 0 91 90 1 1 1 0 0 0 91 90 1 1 1 0 0 0 0 0 0 91 90 1 1 1 1 1 0 0 0 0 0 90 6.00 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	gravel, cobbles and boulders		-							· · · · · ·			•••••						-
4.57m (86.57m) 2 2 2 2 2 2 3 3 0 0 0 93 4.57m (86.57m) 2 2 2 2 2 2 3 0 0 93 4.57m (86.57m) 3 3 3 3 3 5 14 0 0 93 GLACIAL TILL: Compact grey sithy sand, with gravel, cobbles and boulders 4 4 5 5 5 5 5 10 2.3-16.43 19 9 0 88 88 GLACIAL TILL: Compact grey sand, with gravel, cobbles 5 5 5 5 5 5 10 2.3-16.43 19 9 0 88	g.a.o., control and non-		1-	М	201	100	P	30				0							-
4 5 50 3-3-3-2 14 0 92- 4 5 50 3-3-3-2 14 0 92- 4 5 92 6-8-3-2 13 0 91- 6 5 92 6-8-3-2 13 0 90- GLACIAL TILL: Compact grey sity sand, with gravel, and boulders 91- 92- 92- 92- 6 5 92 6-8-3-2 13 0 90- GLACIAL TILL: Compact grey sity sand, with gravel, and boulders 91- 92- 92- 92- 6 92- 92- 92- 92- 92- 92- 92- GLACIAL TILL: Compact grey sand, with cobbles 92-			-	\square	' \	100		50			-	ļ	-	÷	· · ·	-	-		93-
4.5/m [84.6m] 4.5/m [87.5m] 92 6- 1 0 91 GLACIAL TILL: Compact grey sitly sand, with gravel, and boulders 91			-	\mathbb{H}	_						 		· · · · · · · · · · · · · · · · · · ·	• • • • • • •			· · · · · · · · · · · · · · · · · · ·		-
4-57m [8957m] 3 5 92 6-8-3-2 13 0 91- GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders 5 5 83 8-13-18-19 9 0 90- GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders 5 5 83 8-13-18-19 9 0 88- GLACIAL TILL: Compact grey silty sand, with gravel, cobbles 5 5 83 8-13-18-19 9 0 88- GLACIAL TILL: Compact grey sand, with cobbles 6 5 5 10 2-3-16-43 19 0 88- Bad boulders 6 5 5 10 2-3-16-43 19 0 88- Ind of Borehole 7 8 8 19 0 88- 88- 9 9 10 10 10 10 10 10 10 10 10			_	XI	SS	50	3-3-3-2	14		0	-	-	-	÷			-		-
4.57m 89.67m 3 5 92 6-8-3-2 13 0 91 GLACIAL TILL: Compact grey sitly sand, with gravel, cobbles and boulders 4.57m 89.67m 92 6-1 13 9 0 90 GLACIAL TILL: Compact grey sitly sand, with gravel, cobbles and boulders 6 5 83 8-13-16-19 9 0 88 GLACIAL TILL: Compact grey sitly sand, with cobbles and boulders 6 5 10 2-3-16-43 19 0 88 Band boulders 6.7/m 87.5m 7 6 5 10 2-3-16-43 19 9 0 88 Band boulders 6.7/m 87.5m 7 6 7 8 8 86 88 86 88 86 88 86 <t< td=""><td></td><td></td><td>2</td><td>H</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>92 -</td></t<>			2	H			0												92 -
4.57m [38.37m] 3 5 92 6-8-3-2 13 0 91 GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders 5 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			-								· · · · · ·								-
4.57m [85/7m] 3 7 13 0 91 GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders 4 5 83 8-13-18-19 9 0 90 GLACIAL TILL: Compact, grey sand, with cobbles 5 5 5 5 5 5 5 6 9 0 90 GLACIAL TILL: Compact, grey sand, with cobbles 6 7 5 5 5 5 5 5 6 8 80			-								-		-	-	· · ·				-
4.57m [867m] 4 1 0 91 GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders 5 5 5 5 5 5 1 9 0 88 88- 88 88- 88 88- 88 <td< td=""><td></td><td></td><td>3-</td><td>\square</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>			3-	\square							 		 						-
4.57m [80.57m] 4 GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders			-	XI	SS 4	92	6-8-3-2	13		0									91-
457m [88,67m] GLACIAL TILL: Compact grey silty sand, with gravel, cobbles and boulders 6.10m [88,14m] 4.57m [80,67m] 6.10m [88,14m] 5.10m [88,14m] 5.10		~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	\square			11												-
4.57m [89.67m] Image: Constraint of the second			4-										: 						-
4.57m [89.67m] v v v GLACIAL TILL: Compact grey silty sand, with gravel, v v v v v v 0 obbles and boulders v v v 6.10m [88.14m] v v v 0 obbles e 10m [88.14m] v v v v e 10m [98.14m] v v v v e 10m			=								-	-	-						90 -
GLACIAL TILL: Compact grey sind, with grave, or very compact grey sind, with cobbles 5	4.57m [89.67m]	<u> </u>	-	\square							 		 						-
GLACIAL TILL: Compact, grey sand, with cobbles and boulders 6.10m [88.14m] v v v v v v v v v v v v 0 31 31 89 End of Borehole 7 6 7 6 88 <td>GLACIAL TILL: Compact grey silty sand, with gravel,</td> <td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td> <td>5</td> <td>XI</td> <td>SS 5</td> <td>83</td> <td>8-13-18-19</td> <td>9</td> <td>С</td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	GLACIAL TILL: Compact grey silty sand, with gravel,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5	XI	SS 5	83	8-13-18-19	9	С	>									-
6.10m [88.14m] VVVV 6 GLACIAL TILL: Compact, grey sand, with cobbles and boulders 6.71m [87.53m] VVVV End of Borehole 7 8 8 9 9 9 9 9 10 10 10		~ ~ ~ ~ ~		\square			31				-	-	-	÷			-		89-
6.10m [88.14m] 6.10m [88.14m] 9 6 9 10 2.3-16.43 19 0 88 and boulders 6.71m [87.53m] 9 0 0 88 9 10 2.3-16.43 19 0 88 88 9 10 10 10 19 0 88 88 88 88 88 88 88 88 88 9 10 10 10 10 10			=																-
GLACIAL TILL: Compact, grey sand, with cobbles 0 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>· · ·</td><td></td><td></td><td></td><td>-</td></t<>			-								-		-	-	· · ·				-
and boulders 6.71m [87.53m] Image: Constraint of the second	<u>6.10m [88.14m]</u>		6-	\square						• • • • •			•••••				· · · · · · · · · · · · · · · · · · ·		-
End of Borehole	and houlders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	XI	9 SS 1	100	2-3-16-43	19		(S								00
Image: Second control of Borenoie 7 - 1 87 - 1 <td>6.71m [87.53m]</td> <td>~ ~ ~ ~</td> <td>-</td> <td>\square</td> <td></td> <td></td> <td>19</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>÷</td> <td>· · ·</td> <td>-</td> <td>-</td> <td></td> <td>-</td>	6.71m [87.53m]	~ ~ ~ ~	-	\square			19				-	-	-	÷	· · ·	-	-		-
			7_								: : :		: 						-
			=								-	-	-	-					87 —
			-													•••••	· · · · [· · · · · ·		-
			8-										:						-
			-								-	-	-	÷	· · ·	-	-		86
			=										· · · · · ·	·		•••••	· · · · · · · · · · · · · · · · · · ·		-
											-	-	-	÷			-		-
			9_																85-
			=																-
-			40								-	-	-				-		-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHOM IT WAS PRODUCED. THIS SHEFT SHOULD BE	DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	L E PROF		ULL OF PA		soi	N GROUP A		CLIF	ENT I	OR	WHON	/ IT V	VAS P	RODUC	ED. T	HIS SHF	ET SHOUI	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.	READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSC	ON GR	ROUP	PIS	NOT RESPO	ONSIBL	E FOI	R TH	EUN	IAUTH	ORIZ	ZED US	SE OF T	HIS D	ATA.	PAGE	1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5600.2	1				NORTHIN	G : 50	0403	31.	42			E	ELEV	/ATIOI	N: 9	3.94			
PROJECT: Proposed Mixed-Use Development													FII	E N	0. :	P	G42	16		
ADVANCED BY: Track Mounted Drill Rig																_	-	•		
REMARKS:						DATE: D	ecemt	per 1	7,	2024			НС	DLE	NO. :	В	H 7-	24		
					S	AMPLE				■ F	PEN.	RES	IST.	(BLO	WS/0.3	3m)				
							E			20	DCF	יד (5 40	0mn)	n DIA (. CONE 30	E) 8	0			
	5		ġ		(%)		NEL N	Δ	I	REMO	ULDI	ED S	, SHE/	AR ST	RENG	TH (I	«Pa)		LION NOI	Ē
SAMPLE DESCRIPTION	Ъ	Ē	g		Ϋ́	B	0 2 (§	•		UNDR	AINE	ED S	HEA	RST	RENG	TH (k	Pa)			NO
	RATA	H			<u>S</u>	R R(۳ ۳		P	20	w	40 ATEI) R CC		50 NT (%)	<u>ع</u> ا	0 L (%)		ZOM	EVAT
GROUND SURFACE	STI	B	È		Ä	N	M			20		40)	э <u></u>	50	8	0		뽑응	
TOPSOIL 0.20m [93.74m]		. =	$\overline{\mathcal{A}}$	5			0.4		:					-						-
GLACIAL TILL: Brown silty sand, with gravel,	~ ~ ~ ~ ~	-		₹			34				C)								=
cobbles and boulders	~ ~ ~ ~ ~	-							-		-			-	· · ·					-
		1-	XI	SS 2	75	13-20-12-8	10		0						:					93-
		=	\square	0		32				-	-			-	· · ·					-
 Increasing clay content by 1.5 m depth 		=													· · · · · · · · · · · · · · · · · · ·					-
	~ ~ ~ ~ ~ ~ ~ ~	2	XI	SS	75	4-8-4-4	11		0					-	:					92-
						12					-			-	: :					-
	~ ~ ~ ~ ~	-																		-
		=									-			-						
- Increasing sand content by 3.0 m depth	~ ~ ~ ~ ~ ~ ~ ~	3-							÷.											91-
		-	XI	SS 4	83	1-20-23-16	9		0					-						=
- Grey by 3.5 m deptn 3.71m [90.23m]	<u> </u>	-	\square			43														
End of Borehole		4-] 						90-
		-									-			-			· · ·			-
Practical refusal to augering at 3.71 m depth		=							÷						:; :		· · · · · · · · ·			-
											-			-						80-
		5-													· · · · · · · · · · · · · · · · · · ·					09 -
		-													· · ·					-
										-	-			-	· · ·					-
		6-																		88-
		=									-			-						-
		-																		-
										÷				-	:					87-
																				-
																				-
		=									-			-						=
		8-																		86-
		=									-			-						-
																	· · · · · · · ·			-
		9_																		85-
														-						
											•••			-	· · · · · · · · · · · · · · · · · · ·					-
		10 -												-						-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY		ATEF	RSOI	N GROUP A	ND THE	E CLI	IEN	TFOR	R WH	OM I	IT W	AS PI	RODUC	CED.	THIS	SHEE	T SHOUL	04 _D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSC	N GF	ROUF	P IS	NOT RESPO	ONSIBL	E FC	DR -	THE U	NAU	тно	rize	ED US	SE OF	THIS	DATA		D4.65	
																			PAGE:	1/1

SOIL PROFILE AND TEST DATA

COORD. SYS.: UTM ZONE 18 EASTING: 435	5672.2 ⁻	1			NORTHIN	I G : 500	03946	.75		EL	EVATIO.	N: 94.52		
PROJECT: Proposed Mixed-Use Development										FILE	NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig							4-			ноі				
REMARKS:					DATE: L	ecemb	ber 17,	2024						
				S	AMPLE			■ P	EN. RES DCPT (!	SIST. (E 50mm l	BLOWS/0. DIA. CON	3m) E)		
			ä			ENT		20	4	0	60	80	z	_
SAMPLE DESCRIPTION	LOT	÷	2 D	<u>۲</u> (%		LNO			JLDED S	SHEAF SHEAR	STRENG	iTH (kPa) TH (kPa)	IER ICTIC	m) N
	ATA	л) Н	AN	OVEF	RQE	ER C (%)		20	4	0	60	80	OME.	/ATIO
	STR/	DEP.	ΤΥΡΕ	REC	NOF	WAT	P	² L (%)	WATE		60) LL (%)	PIEZ	ELE
									4	0	00	00		-
GLACIAL TILL: Compact, brown silty sand, with clay,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	A K			22		0						- 10
gravel, cobbles and boulders	0 0 0 0 0 0 0 0 0 0 0 0 0	-												
	~ ~ ~ ~ ~	1—		33	4-9-5-3	25		с				· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	Д,		14			-						-
	~ ~ ~ ~ ~ ~	-	~ ~											93-
	$\nabla \nabla \nabla \nabla$	2-	Ns	67	6-5-4-6 9	14	•••••	0						-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-						-						-
	~ ~ ~ ~ ~	-										· · · · · · · · · · · · · · · · · · ·		92-
Increasing conditions by 2.0 m donth	$\nabla \nabla \nabla \nabla$	3-	-											-
- increasing sand content by 5.0 in deptin	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	Ss Z		12-50-/-/	11	0)						-
3.53m [90.99m]	~ ~ ~ ~	-			50/0.00									91-
End of Borenole								-		-				-
Practical refusal to augering at 3.53 m depth		4										· · · · · · · · · · · · · · · · · · ·		-
		-									· · · ·	· · · · · · · · · · · · · · · · · · ·		90 -
		-						-						-
		5-												-
		-										· · · · · · · · · · · · · · · · · · ·		89-
		-						-						-
		6												-
		-						-		-				-
		-												88-
		7-												-
		-						-						-
		-						· · · · · [· · · ·				· · · · · · · · · · · · · · · · · · ·		87 –
		8-												-
		-												-
		-												86-
														-
		9 												-
		-										· · · · · · · · · · · · · · · · · · ·		85-
		- - 10 -								-				-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY		RSC				NT FOR	WHOM	IT WAS		CED. THIS SHEE		D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT	ort. Pa	TERSC	N GROU	JP IS	NOT RESP	ONSIBLI	E FOR	THE UN	IAUTHC	ORIZED	USE OF	THIS DATA.	PAGE: '	1/1

COORD. SYS.: UTM ZONE 18 EASTING: 435	5719.68	3			N	NORTHIN	IG : 50	0401	5.59		ELE	EVATIO	N: 94.18			
PROJECT: Proposed Mixed-Use Development											FILE	NO. :	PG42	16		
ADVANCED BY: Track Mounted Drill Rig														24		
REMARKS:						DATE: L	Decemb	er 1	7, 2024			= NO	рп э-	•24		
					SA	MPLE			■ P	EN. RES DCPT (!	SIST. (BI 50mm D	LOWS/0.3 IA. CONI	3m) E)			
			Ġ				ENT		20	4	0	60	80		NELL	_
SAMPLE DESCRIPTION	LOT	÷	N N	101 24	%) X	•	DNT			JLDED S	SHEAR SHEAR S	STRENG STRENG	iTH (kPa) TH (kPa)			M (m
	ATA I	ы Н	AN		Ц С	RQL	ER C (%)		20	4	0	60	80		STRL	ATIO
	STR	DEP.	ΤYPE		2	N OF	WAT		PL (%)	WATE		ENT (%)	LL (%)		MON	ELE
TOPSOIL 0.25m [93.93m]					+					4	0	00	00		XX	94 -
Hard, brown SILTY CLAY		-	۲				31		· · · · · · · · · · · · · · · · · · ·	0				· · · · · · · ·		-
		-] _E	=
		1-		2 S	8	Р	25		0				Δ	21 9 .9	12 m ¥ 202	5-01-09 -
		-	Д`						· · ·		-					93-
Compact, brown SILTY SAND, with clay, gravel,		-	\square	m			23		0				· · · · · · · · · · · · · · · · · · ·		3 E	
cobbles and boulders		2-	1	တ္တ 10	00	2-5-5-3 10	17		0							-
GLACIAL TILL: Dense, brown silty sand, with gravel,		-							· · ·							92-
cobbles and boulders	~ ~ ~ ~ ~	-							· · · · · · · · · · · · · · · · · · ·				• • • • • •			-
2.97m [91.21m]		3_							· · · · · · · · · · · · · · · · · · ·						3 8	
BEDROCK: Excellent to good quality limestone		- -		_					· · ·		-				1 E	91-
		-		ິບ 10	00	RQD 90										
		-							· · ·		-					-
		4-												(90-
		-													4	52m
		-			00				· · ·		-					-
		5-		œ '`					· · · · · · · · · · · · · · · · · · ·							80_
		-							· · ·		-					09
		-		~												-
6 17m [88 01m]		6-		සි ₈	3	RQD 74									6.0	05m –
End of Borehole		-							· · ·		-					88-
		-														-
(GWL at 0.92 m depth - January 9, 2025)		7-														=
		-							· · ·							87-
		-							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			-
		-							· · ·							-
		- 0														86-
		-												: : : :		-
		-							· · ·		-					-
		9-														85-
		-												: 		-
		-							· · ·		-					-
		10 - FRTV								WHOM		PRODU		SHEE	T SHOU	
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	ORT. PA	TERSO	ON GR	OUP	ISN	IOT RESP	ONSIBL	E FOI	R THE UN	AUTHC	DRIZED	USE OF	THIS DATA	۵. ۱۳۲۲		
															PAGE:	1/1

COORD. SYS.: UTM ZONE 18 EASTING: 435	5719.6	8			NORTHIN	NG: 500	04015	5.59		ELE	VATION	1: 94.18		
PROJECT: Proposed Mixed-Use Development										FILE	NO. :	PG421	16	
ADVANCED BY: Track Mounted Drill Rig					D.475 -	. .	10	0004			NO ·		24	
REMARKS:					DATE: L	Jecemb	er 18	, 2024			. NO		· Z 4	
				S.	AMPLE			• P	EN. RES DCPT (5	0mm DI	A. CONE	im) E)		
	L		Ġ			ENT	•	20	40		60	80		
SAMPLE DESCRIPTION	PLOI	Ê	ž	RY (%			▲		JLDED S AINED S	HEAR S	TRENG	TH (KPa) TH (kPa)		U NC
	ATA	TH (r	E AN	OVE	R RQ	IER (%		20	40		60	80		VATIO
GROUND SURFACE	STR	DEP	Τ	REC	0 Z	NAI	r	20	40		60	80	NON NO	
For soil profile refer to BH 9-24														94 -
		-								· · · · · .				-
		=						-		-			0.94 m V 2	- - 025-01-09
		1												93-
		-												1.45m -
		-						-						-
		2-					•••••					· · · · · · · · · · · · · · · · · · ·		92-
		-												-
2.07m [01.21m]		=						-	· · ·	-				-
End of Borehole		3-								····				2.97m -
		-								:				
Practical refusal to augering at 2.97 m depth		=						-		-				-
(GWL at 0.94 m donth January 9, 2025)		4-					•••••	•••••	•••••••••••••••••••••••••••••••••••••••	· · · · · . :		· · · · · · · · · · · · · · · · · · ·		90-
(GWE at 0.94 m depth - January 9, 2023)		-												
		-						-	· · ·	-				-
		5_												-
		=						-	· · ·					09-
														-
		6								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-
		=						-						88-
		-										· · · · · · · · · · · · · · · · · · ·		-
		7—												-
		=						-		-				87-
							•••••			•••••	••••••••			-
		8-												-
		-						-		-				86-
		=												-
		9_												-
		-						-		-				85-
		=						· · · · · · · · · · · · · · · · · · ·		•••••				
		10 -							· · ·					-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	e prof Drt. pa	PERTY	OF PATE	rso JP IS	N GROUP / NOT RESP	AND THE PONSIBLE	E CLIEI E FOR	NT FOR	WHOM I NAUTHO	IT WAS RIZED L	PRODUC	ED. THIS S THIS DATA.	SHEET SHO	ULD BE

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation 5970 and 6038 Ottawa Street, Ottawa, Ontario

COORD. SYS.: UTM ZONE 18 **ELEVATION: 93.82** EASTING: 435692.30 NORTHING: 5004138.10 **PROJECT:** Proposed Mixed-Use Development FILE NO. : PG4216 ADVANCED BY: Track Mounted Drill Rig HOLE NO.: BH11-24 **REMARKS:** DATE: December 18, 2024 PEN. RESIST. (BLOWS/0.3m) SAMPLE DCPT (50mm DIA. CONE) MONITORING WELL 20 40 80 60 CONTENT CONSTRUCTION ġ %) ELEVATION (m) **REMOULDED SHEAR STRENGTH (kPa)** STRATA PLOT Δ SAMPLE DESCRIPTION RECOVERY UNDRAINED SHEAR STRENGTH (kPa) ۸ **LYPE AND DEPTH** (m) N OR ROD % WATER (80 20 40 60 PL (%) WATER CONTENT (%) LL (%) 20 80 GROUND SURFACE 40 60 TOPSOIL 0.25m [93.57m] 30 Ò Very stiff, brown SILTY CLAY A 93 180 3 100 Р 0 47 92 SS V 2 Δ14 9' 3 >12 26 C ∕∆72 ന - Grey by 3.4 m depth ŝ 75 Ρ 22 0 3.66m [90.16m] GLACIAL TILL: Loose to dense, grey silty sand, with 90 4 SS 4 clay, gravel, cobbles and boulders 67 0 0-1-1-/ 15 2 ۱O 89 67 2-3-3-5 12 0 SS 5 6 88 6 10m SS 6 **v v** 42 13-21-50-/ v v 11 Ö ~ ~ 6.53m [87.29m] 71/0.23 End of Borehole 87 7 Practical refusal to augering at 6.53 m depth (GWL at 1.98 m depth - January 9, 2025) 86 8 85 9 84 10 DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHOM IT WAS PRODUCED. THIS SHEET SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA. PAGE: 1/1

PROJECT: Drepsed Mixed Lies Development	
FILE NO.: PG4216	
ADVANCED BY: Track Mounted Drill Rig	
REMARKS: DATE: December 18, 2024 HOLL NO BH 12-24	
SAMPLE PEN. RESIST. (BLOWS/0.3m) DCPT (50mm DIA. CONE)	
	Ē
SAMPLE DESCRIPTION $\begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	UN (
$\left \begin{array}{c} \mathbf{E} \\ \mathbf{E} \\$	VATIC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
TOPSOIL 036m [93 57m]	-
Hard, brown SILTY CLAY	
	03_
	5-01-09 -
\overrightarrow{P} \overrightarrow{S} 100 P 54 25 54 199	
	92-
- Silt content increasing by 3.0 m depth	91-
<u>3.73m[90.20m]</u>	
GLACIAL TILL: Compact, grey silty clay, with sand,	90
gravel, cobbles and boulders $v v v$ v v v	-
	-
cobbles and boulders, trace clay $\overline{v \cdot v \cdot} = 5$	89-
$\begin{bmatrix} v & v & v \\ v & v & v \\ v & v & v \\ v & v &$	-
	88-
	-
	-
	⁻ ^{.86m} o7—
End of Borehole	
(GWL at 1.08 m depth - January 9, 2025)	
	86
	85-
	84 — I D R⊏
READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.	

COORD. SYS.: UTM ZONE 18 EASTING: 435	5792.2	1				NORTHIN	G : 50	0435	8.09		E	LEVATIO	N: 93.96	;		
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	PG42	216		
ADVANCED BY: Track Mounted Drill Rig								1	0 000/		но		BH13	2-24		
REMARKS:						DATE: D	ecemp	ert	9, 2024	DEN DE			2m)	-24		
					S	AMPLE			-	DCPT (50mm	DIA. CON	E)			
	⊢		d	;	()		TENT	^	20		0 6 H E A I	60 D STRENC			NO	Ê
SAMPLE DESCRIPTION	PLO	Ê			RY (%	<u>e</u>	CONT	▲	UND	RAINED	SHEAF	R STRENG	TH (kPa)		UCTI	UN (L
	CATA	TH	A A		No.	R RQ	TER (%		20 PL (%)	4 WATE		60 NTENT (%)	80 \\\\(%	\	ZOME	VATI
GROUND SURFACE	STR	DEF	Ľ		REC	0 N	WA ⁻		20	4		60	80	,	PIE	E
Hard to very stiff, brown SILTY CLAY			М	-	50	1-1-1-3	36			0						-
			\square	ő	50	8	50		· · · · · · · · · · · · · · · · · · ·	Ŭ		· · · · · · · · · · · · · · · · · · ·		: : :		-
		-							· · ·					400		
		1												>249	•	93-
[1.45m [92.51m]		-							· · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		: : : : :		-
glacial fill: Compact, brown sity day, with sand, gravel cobble sand boulders	0 0 0 0 0 0 0 0 0 0 0 0		M	SS 2	92	1-2-8-9	14		ο							-
	7 7 7 7 7 7 7 7 7 7 7 7	2-	Д	0		10						· · · · · (· · · · · · · · · · · · · ·		: : :		92-
	~ ~ ~ ~ ~	-	\square	e								· · · · · · · · · · · · · · · · · · ·		· · ·		-
	v v v v v v v v v v v v	-	M	SS	100	3-4-4-5 8	13		0							-
City cand with alow group caphiles and houldows	V V V V V V V V V V V V	3-	H						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			91-
- Sitty sand, with clay, graver, cobbles and boulders	~ ~ ~ ~ ~	-	XI	SS 4	67	5-8-18-16	12		0							-
3.66m [90.30m]		-	\square			26										-
		4-							· · · · · · · · · · · · · · · · · · ·			····		:		90-
																-
		-							······································			· · · · · · · · · · · · · · · · · · ·	,	· · · · · · · · · · · · · · · · · · ·		-
		5-														89-
		=							· · ·			•				-
		-										·····		<u>.</u>		-
		6-												: : :		88-
		-							· · ·							-
		-														-
		7_										:				87-
		' =							· · ·							-
												····				-
		-							· · ·	-				:		86-
		-								-						-
		-												· · · ·		-
		-							· · ·							-
		9-														85-
		-							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	: : : : : :		-
		10							· · ·							-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THI	L E PROF	PERTY	∟⊥ OF P/		RSOI	N GROUP A	I ND THE		ENT FO	R WHOM	IT WA	S PRODU	CED. THIS	SHEE	T SHOUL	<u>04</u> .D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSC)n gf	ROUF	PIS	NOT RESPO	ONSIBL	E FO	R THE L	JNAUTHO	ORIZEI	D USE OF	THIS DAT	۹.		1/1

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 43	6034.9	3			NORTHIN	G : 50	0403	7.45		EL	EVATION	: 93.95		
PROJECT: Proposed Mixed-Use Development										FILE	NO. :	PG4216		
ADVANCED BY: Track Mounted Drill Rig														
REMARKS:					DATE: D	ecemb	per 19	9, 2024		HOL	E NO. :	BH14-24		
				5	SAMPLE			■ F	PEN. RES	SIST. (B	LOWS/0.3	m)		
						F		20	DCP1 (50mm L 0	DIA. CONE) 60	80		
SAMPLE DESCRIPTION	Б		ŇO.	(%)		NTEN	Δ	REMO	ULDED	SHEAR	STRENGT	H (kPa)	TION	Ē
	A PL	Ē	QN	ERY	B	о %				SHEAR	STRENGT	H (kPa)	RUC	NOL
	RAT	PTH	FE /	00	DR R	LER)		PL (%)	WATE	R CON	TENT (%)	 LL (%)		EVAI
GROUND SURFACE	ST	В	≥	R	z	Ž		20	4	0	60	80	80	Щ
For soil profile refer to TP 6								· · ·		-				-
		-						· · · · · · · · · · · · · · · · · · ·						-
		-						· · ·		-				-
		1-												93-
		-												-
		-						· · ·						-
		2_												92-
2.29m [91.66m]												>121		-
very sun, brown SILT F CLAY, with high sin content		-	X Iss	83	Р	36		22 -	³² O	∆ 43			►	-
2.97m [90.98m]		3_												91-
GLACIAL TILL: Dense to compact, brown silty clay,			\bigtriangledown									>121		-
with sand, gravel, cobbles and boulders		-	$\mathbb{N}^{\mathbb{N}}$	50	5-12-6-3	11		0						-
														-
		4-	N ss	33	4-3-2-2	10	· · · · · (C						90 —
		-	Δ		5									-
- Silty sand by 4.2 m depth		-	√ 4											-
5 19m [99 77m]		5-	$\mathbb{X} \mathbb{X}$	42	23-26-20-16 46	12		0						89-
End of Borehole			<u> </u>											-
		-												-
		6												- 88
														-
		-												-
		-						· · ·		-				-
		7-						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		87 -
								· · ·		-				-
		-												-
		8-						· · · · · · · · · · · · · · · · · · ·						86
		-						· · ·		-				-
		-						· · · · · · · · · · · · · · · · · · ·						-
								· · ·						85-
		9-									· · · · · · · · · · · · · · · · · · ·			-
												· · · · · · · · · · · · · · · · · · ·		-
								· · ·		-				
														_ <u>84</u> 8F
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	ORT. PA	TERSO	N GRO	JP IS	NOT RESP	ONSIBL	EFO	R THE U	NAUTHO	DRIZED	USE OF T	HIS DATA.		
													PAGE: 1	/1

natorsonar		ın	Con	sulting	g	SOIL	_ PRO	FILE	ΞA	ND	TE	ST C	ΑΤΑ	
9 Auriga Drive, Ottawa, Ontario K2E 7T9		μ	Eng	ineers	(Geotechnic Proposed F Ottawa, Or	cal Invest Residenti Intario	tigati ial De	on velo	pme	ent - E	Eagles	son Roa	ad
EASTING: NORTHING:				ELEV	ATIC	DN: 94.237	7			FI	LE NO	F	PG421	6
REMARKS:						E. 2021	March 10	,		н	OLE NO).		_21
	Ц		SAN	IPLE	DAT	<u>E: 20211</u>		, Pe	en. R	lesis	st. Bl	ows /	0.3m	
SAMPLE DESCRIPTION	A PLO		~	<u>کر</u>	ш	DEPTH (m)	ELEV. (m)		• 5	60 m	m Dia	a. Coi	ne	
	RAT/	ГҮРЕ	JMBEF	SOVEF		יר אמו			0 V	Vate	er Coi	ntent	%	NSTR
GROUND SURFACE	ST	~	۲ ۲	REC	z	0 -	-94.24		20	4	0	60	80	οğύ Ξ
TOPSOIL														<u> </u>
		& AU	1											
		$\overline{\mathbf{N}}$												
Very stiff, brown SILTY CLAY		ss	2	100	7	1-	-93.24							
		Δ												
		$\overline{\mathbf{N}}$												
CLACIAL THE Compact site		ss	3	100	16	6								<u>11111</u>
some sand and clay, trace gravel		Λ				2-	-92.24							
GLACIAL TILL: Dense, brown silty sand with gravel, cobbles														
and boulders		55	4	8	+5	0								
						3-	-91.24							
		$\overline{\mathbf{N}}$												
- some running sand present by		ss	5	100	34	1								
3.5m depth3.66		\square												
(GWL @ 0.15m - March 31, 2021)														
									20	4	0	60	80 1	 00
									She Undis	ar S turbe	treng d ∠	jth (kl ∆ Remo	Pa) oulded	

natorsonar		ır	Cons	ulting		SOII	_ PRO	FILE AI	ND TEST	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T	9 9		Engi	neers	Ge Pro	otechnic oposed F	cal Invest Residenti	igation al Develo	pment - Eaç	gleson Roa	ad
EASTING: NORTHING	3 :			ELEVA		94.237	7		FILE NO.	PG4210	6
REMARKS:									HOLE NO.		
BORINGS BY: CME 55 Power Auger				D	ATE:	2021 I	March 19			BH 1S-	21
SAMPLE DESCRIPTION	PLOT		SAM	PLE ≻		DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. Blow 0 mm Dia. (rs / 0.3m Cone	ICTION
	RATA	LYPE	MBER	% SOVER		. ,		• v	later Conte	ent %	UITORI N NSTRU
GROUND SURFACE	ST		N	REC	z °	0	04.24	20	40 60	80	NON NO
TOPSOIL 0.3	0					0-	-94.24				
Very stiff, brown SILTY CLAY						1-	-93.24				
GLACIAL TILL: Compact silt, some sand and clay, trace gravel End of Borehole	3					2-	-92.24				
(GWL @ 0.16m - March 31, 2021)								20	40 60	80 11	00

natorsona		ır	Con	sulting	1	SOII	_ PRO			F DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7	т9		Eng	ineers	G P	Seotechnic Proposed F	cal Invest Residenti otario	tigation ial Develop	oment - Eag	gleson Road	d
EASTING: NORTHIN	G:			ELEV	ATIO	N: 93.908	8		FILE NO.	PG4216	;
REMARKS:									HOLE NO.		
BORINGS BY: CME 75 Power Auger		1			DATE	<u>: 2021 I</u>	March 19)		BH 2-21	
SAMPLE DESCRIPTION	PLOT		SAN	/IPLE		DEPTH	ELEV.	Pen. Re ● 50	esist. Blow) mm Dia.	rs / 0.3m Cone	G WEL
	RATA	ΥΡΕ	MBER	% OVER\	/ALUE			• w	ater Conte	ent %	ITORIN NSTRU
GROUND SURFACE	STI		Ŋ	REC	źð	5	00.04	20	40 60	80	MON
TOPSOIL						- 0-	-93.91				
0.:	<u>25 (^^^^</u>	AU	1								
Very etiff to etiff, brown SILTY		糉 1 1									
CLAY, trace sand		ss	2	92	4	1-	-92.91				<u>երրիրերի</u>
											<u>լիկկկկկ</u>
		ss	3	100	2						
2.1	21					2-	-91.91				
GLACIAL TILL: Brown silty clay some sand, gravel, cobbles and		ss	4	75	4						
boulders						3-	-90.91				
		ss	5	17	3						
End of Borehole	<u>56 \^^^^</u>										
(GWL @ 0.32m - March 31, 2021)											
								20 Shea ▲ Undistu	40 60 r Strength µrbed △ R	80 10 (kPa) emoulded	0

natersonar		In	Con	sulting	3	SOIL	PRO		ID TEST	DATA		
9 Auriga Drive, Ottawa, Ontario K2E 7T9		^y P	Eng	ineers	F	Geotechnic Proposed F Ottawa Or	al Invest Residenti Intario	tigation ial Develop	oment - Eagl	eson Roac	ł	
EASTING: NORTHING: DATUM: Geodetic				ELEV	ATIO	DN: 92.787	7		FILE NO.	PG4216		
REMARKS:						- 0004 1	Assals 40		HOLE NO.			
BORINGS BY: CME 75 Power Auger	F		SAN		DATI	E: 2021 M	March 19	Der Dr		BH 3-21		
SAMPLE DESCRIPTION	A PLO				ш	DEPTH (m)	ELEV. (m)	● 50	• 50 mm Dia. Cone			
	TRAT	түре	UMBE	% cove		or RQI		• w	ater Conten	it %	NITOR ONSTF	
GROUND SURFACE	o XX	×	z	R	2	- 0-	-92.79	20	40 60	80	So E	
		AU	1								1,	
Very stiff to stiff, brown SILTY CLAY		ss	2	100	6	1-	-91.79				ներերերերերը 111111111111111111111	
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		SS	3	50	4	2-	2-90.79					
		ss	4	75	3							
3 12			•		U	3-	-89.79					
Stiff, grey SILTY CLAY		SS	5	100	2							
End of Borehole											<u>·) — (</u> · .	
								20 Shea	40 60 r Strength (80 100 kPa)	0	

natorsonar		ın	Con	sulting	3	SOIL	_ PRO			F DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Eng	ineers	F	Geotechnic Proposed F Ottawa. Or	cal Invest Residenti ntario	igation al Develo	oment - Eag	gleson Roa	d
EASTING: NORTHING: DATUM: Geodetic				ELEV	ATIO	DN: 94.514	4		FILE NO.	PG421	6
REMARKS:						- 2024	Marah 22		HOLE NO.		21
BORINGS BY: CIVIE 55 Power Auger	F		SVW		DATE	E: 20211		Don D	Legist Play	<u>БП 4</u> D-	
SAMPLE DESCRIPTION	A PLO				ш	DEPTH (m)	DEPTH ELEV. (m) (m)		• 50 mm Dia. Cone		
	RAT/	LγPE	MBE	% SOVEF				• N	later Conte	ent %	VITOR
GROUND SURFACE	ST		Ŋ	REC	ź (0	-94 51	20	40 60	80	о М М
TOPSOIL							04.01				
		₩ AU	1								T T T
Voru stiff to stiff, brown SILTY											
CLAY, trace sand			2	50	Б	1-	-93.51				
			2	50	5						
		17									
		ss	3	50	11						
		$\langle \rangle$				2-	92.51				
2.36											
2.30		N									
		ss	4	58	20)					
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles and		Д									
boulders		17				3-	-91.51				
3.38		ss	5	8	+50	0					
End of Borehole											
Practical refusal to augering at 3.38m depth											
(GWL @ 0.29m - March 31, 2021)											
								20	40 60	80 1	00
								Shea ▲ Undist	urbed $\triangle R$	(kPa) emoulded	

natersonarounconsulting						SOIL PROFILE AND TEST DATA							
9 Auriga Drive, Ottawa, Ontario K2E 7T9		~	Eng	ineers	G Pi O	eotechnic roposed F ttawa	cal Invest Residenti ntario	tigation ial Develop	ment - Eag	leson Roa	d		
EASTING: NORTHING:				ELEVA		N: 94.514	4		FILE NO.	PG4216	3		
REMARKS:									HOLE NO.				
BORINGS BY: CME 55 Power Auger	L_			D	ATE	: 2021 I	March 22	2		BH 4S-2	21		
SAMPLE DESCRIPTION	PLO1	SAMPLE ≻			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows / 0.3m • 50 mm Dia. Cone			NG WEL			
	RATA	ΓYPE	JMBER JMBER SOVER		VALUE r RQD			• Water Content %					
GROUND SURFACE	ST		NN	REC	z °		01 51	20	40 60	80			
TOPSOIL						0-	94.51						
Very stiff to stiff, brown SILTY CLAY, trace sand							02.54						
						1-	-93.51						
<u>2.13</u>						2-	-92.51						
End of Borehole													
(GWL @ 0.30m - March 31, 2021)													
								20 Shea ▲ Undistu	40 60 r Strength rbed △ Re	80 10 (kPa) emoulded)0		

natorsonar		ır	Con	sulting	3	SOIL	L PRO		ND TEST	DATA
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Eng	ineers	F	Geotechnic Proposed F Ottawa, Or	cal Invest Residenti ntario	tigation ial Develor	oment - Eag	leson Road
EASTING: NORTHING	:			ELEV	ATIO	N: 94.212	2		FILE NO.	PG4216
REMARKS:						- 0004			HOLE NO.	
BORINGS BY: CME 55 Power Auger	F		CAN		DATE	E: 2021 I	March 22			BH 5-21
SAMPLE DESCRIPTION	A PLO				ш,	DEPTH (m)	ELEV. (m)	 Pen. Resist. Blows / 0.3m ● 50 mm Dia. Cone 		
	TRAT	ТҮРЕ	UMBE	ECOVE	N VALU			• w	ater Conte	nt %
	0	×	~	T	_	- 0-	-94.21	20	40 60	
0.23		AU	1							
Very stiff to stiff, brown SILTY CLAY, trace sand		ss	2	58	5	1-	-93.21			
									· · · · · · · · · · · · · · · · · · ·	
		SS	3	50	5	2-	-92.21			
2. <u>4</u> 9		ss	4	100	6					
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles and boulders						3-	-91.21			
3. <u>6</u> 6		SS	5	42	7					
(GWL @ 0.30m - March 31. 2021)										
								20 Shea	40 60 r Strength	80 100 (kPa)
natersonar		ır	Con	sulting	J	SOIL	_ PRO	FILE AND TEST DATA		
---	----------	------	--------------	---------	-------------	--	----------------------------------	--		
9 Auriga Drive, Ottawa, Ontario K2E 7T		~ P	Eng	jineers	(F (Geotechnic Proposed F Ottawa. Or	al Invest Residenti ntario	tigation tial Development - Eagleson Road		
EASTING: NORTHING	:			ELEVA	ATIC	DN: 94.044	4	FILE NO. PG4216		
REMARKS:				_		- 0004	Manah 00	HOLE NO.		
BORINGS BY: CME 55 Power Auger	F		6 4 4		DATI	E: 2021 r	viarch 22			
SAMPLE DESCRIPTION	A PLO		SAN 22		ш,	DEPTH (m)	ELEV. (m)	● 50 mm Dia. Cone		
	TRAT	ТҮРЕ	NUMBE	ECOVE		יא עד דעד דיר		• Water Content %		
		8	~	2	_	- 0-	94.04			
0.25		AU	1							
Very stiff to stiff, brown SILTY CLAY		ss	2	100	5	1-	-93.04			
		ss	3	33	1	2-	-92.04			
GLACIAL TILL: Compact to dense, brown silty clay with sand, gravel, cobbles and boulders		ss	4	75	9					
3.66		ss	5	50	33	3-	-91.04			
End of Borehole (GWL @ 0.26m - March 31, 2021)	<u> </u>									
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded		

natersonar		In	Con	sulting	3	SOIL	- PRO	FILE AI	ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T	·9		Eng	ineers	P C	Seotechnic Proposed F Ottawa Or	cal Invest Residenti Intario	tigation ial Develo	pment - Ea	gleson Roa	d
EASTING: NORTHING	6:			ELEV	ATIO	N: 93.623	3		FILE NO.	PG421	6
REMARKS:						2021 M	March 22	2	HOLE NO.	BH 7D	21
	01		SAN	IPLE	DATE	. 20211		Pen. R	esist. Blov	vs / 0.3m	
SAMPLE DESCRIPTION	A PL(۴	۲	ш,	DEPTH (m)	ELEV. (m)	• 5	0 mm Dia.	Cone	
	IRAT	ТҮРЕ	JMBE	covel	VALU			• v	later Conto	ent %	NITOR
GROUND SURFACE	S S	- &	ž	RE	z	- 0-	-93.62	20	40 60	80	<u>ş</u> ŭ El E
			1								ներերերիներ Ուրեւներիներին
		ss	2	33	9	1-	-92.62				<u>երերերերերի։</u> Արերերերեր
Very stiff to stiff, brown SILTY CLAY		ss	3	17	4						
						2-	-91.62				
		SS	4	50	6	3-	-90.62				
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles and	5	ss	5	67	6						
boulders 3.6 End of Borehole	6 <u>`^^^^</u>							20	40 60	80 1	00
								▲ Undist	surbed $\triangle R$	Remoulded	

natorsonar		ır	Con	sulting		SOIL	_ PRO	FILE AI	ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Eng	ineers	G	eotechnic roposed F	cal Invest Residenti	tigation ial Develo	pment - E	agleson Roa	ıd
EASTING: NORTHING:				ELEVA		I: 93.623	3		FILE NO.	PG4210	6
REMARKS:									HOLE NO		
BORINGS BY: CME 55 Power Auger				0	ATE:	2021	March 23	8		BH 7S-	21
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH	ELEV.	Pen. R ● 5	esist. Blo 0 mm Dia	ws / 0.3m . Cone	G WEL CTION
	RATA	ΥPE	MBER	% OVER\		(,	(,	0 V	later Con	tent %	ITORIN
GROUND SURFACE	STI	-	NN	REC	źö	0	02.62	20	40 6	0 80	MON
							-93.02				
Very stiff to stiff, brown SILTY CLAY						1-	-92.62				
2.13						2-	-91.62				
End of Borenole								20 Shea	40 6 ar Strenot	0 80 10 h (kPa)	00

natoreonar		ır	Con	sulting	,	SOIL	- PRO	FILE AND TEST DATA
9 Auriga Drive, Ottawa, Ontario K2E 7T	9	μ	Eng	ineers	(Geotechnic Proposed F Ottawa, Or	al Invest Residenti Intario	tigation tial Development - Eagleson Road
EASTING: NORTHING	:			ELEV	ATIC	DN: 94.047	7	FILE NO. PG4216
REMARKS:								HOLE NO.
BORINGS BY: CME 75 Power Auger	F				DAT	E: 2021 [March 23	3 BH 8-21
SAMPLE DESCRIPTION	A PLO		SAN	APLE	ш	DEPTH (m)	ELEV. (m)	● 50 mm Dia. Cone
	TRAT	түре	UMBER	% COVE		סר אנגר		○ Water Content %
GROUND SURFACE	0 \	—	z	R	2	- 0-	-94.05	
TOPSOIL 0.2	5	AU	1					
Very stiff to stiff, brown SILTY CLAY		ss	2	100	2	1-	-93.05	
		$\overline{\mathbb{N}}$						
2.13	3	SS	3	100	12	2 2-	-92.05	
GLACIAL TILL: Compact, brown silty clay with sand, gravel, cobbles and boulders		SS	4	58	23	3		
<u>3.2</u> (D					3-	-91.05	
GLACIAL TILL: Compact, brown silty sand with gravel, clay, cobbles and boulders3.66	5 \^^^^^	ss	5	58	24	•		
End of Borehole								
(GWL @ 0.49m - March 31, 2021)								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

natersonar		ır	Con	sulting	3	SOIL	_ PRO	FILE AND TEST DATA
9 Auriga Drive, Ottawa, Ontario K2E 7	-79 -79		Eng	ineers	P	Geotechnic Proposed F	cal Invest Residenti stario	tigation ial Development - Eagleson Road
EASTING: NORTHING	G:			ELEV	ATIO	N: 94.20	9	FILE NO. PG4216
REMARKS:						0004		HOLE NO.
BORINGS BY: CIME 55 Power Auger	T		SAN		DATE	20211	viarch 23	DI 9-21
SAMPLE DESCRIPTION	A PLC				ш	DEPTH (m)	ELEV. (m)	● 50 mm Dia. Cone
	TRAT	ТҮРЕ	UMBEF	cover	I VALU			• Water Content %
GROUND SURFACE	0 ^^^^^	8	z	RE	Z	- 0-	-94.21	
0.2	0 ^^^^		1					
Very stiff to stiff, brown SILTY		ss	2	100	2	1-	-93.21	
CLÁY								
		ss	3	75	2	2-	-92.21	
GLACIAL TILL: Compact, brown silty sand with gravel, clay,		ss	4	50	23			
cobbles and boulders	0	× ss	5	8	+50	3-	-91.21	
(GWL @ 0.68m - March 31, 2021)								
								20 40 60 80 100 Shear Strength (kPa) △ Remoulded

natorsonar		ın	Con	sulting	a	SOIL	- PRO	FILE AND TEST DATA
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Eng	ineers	G P	eotechnic roposed F	al Invest Residenti Intario	stigation tial Development - Eagleson Road
EASTING: NORTHING: DATUM: Geodetic				ELEV	ATIO	N: 94.076	6	FILE NO. PG4216
REMARKS:								HOLE NO.
BORINGS BY: CME 55 Power Auger					DATE	:: 2021 N	March 23	3 BH10D-21
SAMPLE DESCRIPTION	PLOT		SAN	MPLE ≻		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows / 0.3m ● 50 mm Dia. Cone
	RATA	YPE	MBER	% OVER	VALUE r ROD			○ Water Content %
GROUND SURFACE	ST		D Z	REC	z °		04.00	20 40 60 80
TOPSOIL 0.23		AU	1			_ 0-	-94.08	
Very stiff to stiff, brown SILTY CLAY		ss	2	75	8	1-	-93.08	
		ss	3	100	4	2-	-92.08	
sand, gravel, cobbles and boulders		ss	4	100	6			
3.66		ss	5	75	7	3-	-91.08	
3.66 End of Borehole (GWL @ 0.72m - March 31, 2021)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

natorsonar		ır	Con	sulting	,	SOII	L PRO		ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Engi	ineers	F	Geotechnic Proposed F	cal Invest Residenti	tigation ial Develor	oment - Ea	agleson Roa	ad
EASTING: NORTHING:				ELEV		DR: 94.076	6		FILE NO.	PG421	6
REMARKS:									HOLE NO.		
BORINGS BY: CME 55 Power Auger	_			[DATI	E: 2021 I	March 23	3		BH10S	-21
SAMPLE DESCRIPTION	PLO1		SAN	IPLE ►		DEPTH (m)	ELEV. (m)	Pen. Re ● 50	esist. Blov) mm Dia.	ws / 0.3m . Cone	NG WEL
	RATA	ΥPE	MBER	% OVER				• w	ater Cont	tent %	UITORII NSTRI
GROUND SURFACE	ST	L	N N	REC	z (• 0-	-01 08	20	40 60) 80	MON MON
TOPSOIL 0.23						0	94.00				
Very stiff to stiff, brown SILTY CLAY						1-	-93.08			·····	
2.13						2-	-92.08			· · · · · · · · · · · · · · · · · · ·	
End of Borehole											
(GWL @ 0.49m - March 31, 2021)											
								20 Shea ▲ Undist	40 60 r Strengt) 80 1 h (kPa) Remoulded	00

natorsonar		ın	Con	sulting	1	SOIL	_ PRO	FILE AN		T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T	9		Eng	ineers	F	Geotechnic Proposed F Ottawa, Or	cal Invest Residenti Intario	tigation ial Develo	oment - Ea	gleson Roa	ad
EASTING: NORTHING DATUM: Geodetic	:			ELEV	ATIO	DN: 92.938	3		FILE NO.	PG421	6
REMARKS:									HOLE NO.		
BORINGS BY: CME 55 Power Auger				[DATE	E: 2021 N	March 23	} 		BH11-2	21
SAMPLE DESCRIPTION	PLOT		SAN	/IPLE ►		DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. Blov 0 mm Dia.	vs / 0.3m Cone	NCTION
	RATA	ГУРЕ	JMBER	% SOVER				• N	ater Cont	ent %	NSTRU
GROUND SURFACE	ST		N N	REC	z '	- 0-	02.04	20	40 60	80	ο Φ Ο Ψ Ο
Very stiff to stiff brown SILTY		AU	1			0-	-92.94				
CLAY		ss	2	100	4	1-	-91.94				լուներին երերերին։ Անդերերին երերերին։
2.2	1	ss	3	67	6	2-	-90.94				<u>(111111)</u> 1111111 1111111111111111111111
Stiff, grey SILTY CLAY		ss	4	83	3	3-	-89.94				
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and boulders 3.6 End of Borehole (GWL @ 0.13m - March 31, 2021)	5	ss	5	75	15	;					
								20 Shea ▲ Undist	40 60 ar Strength urbed △ F	80 1 n (kPa) Remoulded	00

naterson	yr a		In	Con	sulting]	SOII	- PRO	FILE AI	ND TES	ST DATA	
9 Auriga Drive, Ottawa, Ontario K2	2 TT9			Eng	ineers	G Pi	eotechnic roposed [al Invest Developn	igation nent - Eag	leson Roa	ad at Ottawa	a St.
EASTING: NORT	THING:				ELEV		I: 93.96			FILE NO.	PG421	6
REMARKS:	valion	s we	re reie	erence	ed to a	geod	Jelic dalu	m.		HOLE NO).	
BORINGS BY: CME 55 Power Aug	jer		1			DATE	2018 [Decembe	er 13		BH 1	
SAMPLE DESCRIPTION		гот		SAN	IPLE		DEPTH	ELEV.	Pen. R	lesist. Blo 0 mm Dia	ows/0.3m Cone	ER
		TA F	щ	E R	ΈRΥ	۳g	(m)	(m)				
Ground Surface		STRA	ТҮР	NUME	RECOV	N VAI or R(0 V 20	Ater Con	1tent %	
	0.20	.11.1.1.	×	1			- 0-	-93.96				
Loose, brown SANDY SILT,				1								₽
some clay	<u>1.22</u>		ss	2	54	5	1-	-92.96				
			ss	3	67	39					· · · · · · · · · · · · · · · · · · ·	
							2-	-91.96				
			ss	4	71	23		00.00				
			ss	5	58	14	3-	-90.96				
Dense to compact, brown SILTY SAND, trace gravel							1	80.06				
			ss	6	71	32	4-	-09.90				
			ss	7		24	5-	-88.96				
			D V			_		00.90			· · · · · · · · · · · · · · · · · · ·	
	<u>5.94</u>		ss	8	100	3	6-	-87.96				
			ss	9	67	42						
							7-	-86.96				
dense, grey silty sand with gravel			ss	10	91	82	8-	-85.96				
							9-	-84.96				
	0.75		ss	11		7						
End of Borehole	<u>9.75</u>	<u>``^`^``</u>	¥									
(GWL @ 0.61m - Dec. 28, 2018)												
									20 Shea	40 6 ar Strengt	o 80 th (kPa)	100
									Undis	turbed \triangle	Remoulded	

natersonar		In	Con	sulting		SOIL	_ PRO			ST DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9		μ	Eng	ineers	G Pi	eotechnic roposed E ttawa	al Invest Developm	igation nent - Eagl	eson Roa	ad at Ottawa	St.
EASTING: NORTHING: DATUM: Ground surface elevation	IS We	re refe	rence	ELEVA		N: 94.23	m		FILE NO.	PG421	6
REMARKS:			. on oc		900				HOLE NO).	
BORINGS BY: CME 55 Power Auger				D	DATE	: 2018[Decembe	er 13		BH 2	
SAMPLE DESCRIPTION	РГОТ		SAN			DEPTH	ELEV.	Pen. R ● 50	esist. Ble) mm Dia	ows/0.3m . Cone	TER
	RATA	гүре	JMBER	% :OVERY	VALUE r RQD		(11)	• N	later Con	itent %	EZOME
Ground Surface	ST	•	٦٢	REC	zō		04.00	20	40 6	0 80	CO D
TOPSOIL0.25		AU	1			- 0-	-94.23		• • • • • • • • • • • • •		
Stiff to very stiff, brown SILTY CLAY some sand		ss	2	92	4	1-	-93.23				
2.13						2-	-92.23				
GLACIAL TILL: Brown silty clay		ss	3	8	12	3-	-91.23				
with sand, gravel, cobbles and boulders		ss	4	42	35						
End of Borehole						4-	-90.23				
Practical refusal to augering at 4.32m depth											
(GWL @ 0.77m - Dec. 28, 2018)											
								20 Shea ▲ Undist	40 6 ar Strengt urbed △	0 80 1 t h (kPa) Remoulded	o o

natersonar		ın	Con	sulting	,	SOIL	_ PRO	FILE AI		ST DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9			Eng	ineers	G P O	eotechnic roposed [ttawa, Or	cal Invest Developn Intario	igation nent - Eag	leson Roa	ad at Ottawa	St.
EASTING: NORTHING: DATUM: Ground surface elevation	: IS WA	re refe	erence	ELEVA ed to a		N: 94.76	m		FILE NO.	PG421	6
REMARKS:					geo				HOLE NO		
BORINGS BY: CME 55 Power Auger					DATE	: 2018 [Decembe	er 13		BH 3	1
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH	ELEV.	Pen. F ● 5	tesist. Blo 0 mm Dia	ows/0.3m . Cone	TER
	TRATA	ТҮРЕ	UMBER	% COVERY	VALUE or RQD	(11)	(11)	• v	later Con	itent %	IEZOME
Ground Surface	ν.		Ž	RE	z	0-	-94 76	20	40 6	0 80	чо
TOPSOIL0.15		au 8	1				34.70				
Stiff to firm, brown SILTY CLAY		₩ 17					00.70				
		ss	2	92	6	1-	-93.76				
2.12		ss	3	92	6	2-	-02 76				
<u>Z</u> .13		= SS	4	0	50+		92.70				
						3-	-91 76				
GLACIAL TILL: Brown sandy silt with clay, gravel, cobbles and		ss	5	67	23						
boulders						4-	-90.76				
4.42	<u> [^^^^/</u>										
Practical refusal to augering at											
4.42m depth											
(GWL @ 0.62m - Dec. 28, 2018)											
								20 Shea ▲ Undis	40 6 ar Strengt turbed △	0 80 1 t h (kPa) Remoulded	¹ 00

natorsonar		ın	Con	sulting		SOIL	PRO		ND TES	ST DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9		μ	Eng	ineers	G Pi	eotechnic roposed I ttawa Or	al Invest Developn	igation nent - Eag	leson Roa	ad at Ottawa	St.
EASTING: NORTHING:		ro rofe	aronce	ELEVA		I: 97.71	m		FILE NO.	PG421	6
REMARKS:	0 100				geo				HOLE NO		
BORINGS BY: CME 55 Power Auger	1	1		[DATE	2018 [Decembe	er 13		BH 4	1
SAMPLE DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blo) mm Dia	ows/0.3m . Cone	TER
	RATA	YPE	MBER	% OVERY	ALUE	(m)	(11)	• N	later Con	itent %	EZOME
Ground Surface	ST	-	R	REC	γ ₂ ο			20	40 6	0 80	So ∎ So
TOPSOIL0.30		δ Δ11	1			- 0-	-97.71				
			2	71	40	1-	-96.71				
			2	71	60					· · · · · · · · · · · · · · · · · · ·	
GLACIAL TILL: Verv dense.			3	71	501	2-	-95.71		· · · · · · · · · · · · · · · · · · ·		
brown silty sand with gravel, cobbles and boulders		N 22	4		50+	3-	-94.71				
		ss	5	88	73						
						4-	-93.71				
4.85			6	100	50+				<u></u>		
Practical refusal to augering at 4.85m depth											
(GWL @ 1.10m - Dec. 28, 2018)											
								20 Shea ▲ Undist	40 6 ar Strengt turbed △	0 80 1 h (kPa) Remoulded	00

natorsonar		In	Con	sulting		SOIL	_ PROI		ND TEST	DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9		μ	Engi	ineers	G Pi O	eotechnic roposed [ttawa, Or	al Invest Developm Intario	igation 1ent - Eagl	eson Road	at Ottawa	St.
EASTING: NORTHING:		ro rofe	arence	ELEVA		N: 97.45	m		FILE NO.	PG4216	6
REMARKS:	3 WC		i ence		geo				HOLE NO.		
BORINGS BY: CME 55 Power Auger		1		D	ATE	: 2018 [Decembe	er 13		BH 5	
SAMPLE DESCRIPTION	гот		SAM	IPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blow) mm Dia. (/s/0.3m Cone	TION
	ATA F	ЪЕ	IBER	% VERY		(m)	(m)		lator Conto	nt %	ZOMET
Ground Surface	STF	F	NUN	с С Ш С	≥ r ≥ r			20	40 60	80	
TOPSOIL 0.30		×				- 0-	-97.45				
Very stiff, brown CLAYEY SILT		× AU × SS	1		50+						
End of Borehole	MZX.					1-	-96.45				
Practical refusal to augering at 1.01m depth											
(BH dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strength urbed △ Re	80 10 (kPa) emoulded	00

natersonar		ın	Con	sulting		SOIL	_ PRO		ND TEST DATA
9 Auriga Drive, Ottawa, Ontario K2E 7T9		a p	Eng	ineers	G Pi	eotechnic roposed [cal Invest Developn	igation nent - Eag	leson Road at Ottawa St.
EASTING: NORTHING:				ELEV		1: 94.70	Itano		FILE NO. PG4216
DATUM: Ground surface elevation REMARKS :	is wei	re refe	erence	ed to a	geo	detic datu	m.		HOLE NO.
BORINGS BY: CME 55 Power Auger	1	1		[DATE	2018 [Decembe	er 13	BH 6
SAMPLE DESCRIPTION	гот		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Blows/0.3m
	ATA F	ЪЕ	IBER	% VERY		(m)	(m)		
Ground Surface	STR	F	NUN	RECO	N V			20	40 60 80
TOPSOIL0.30	.1 1.1 1	× AU	1			- 0-	-94.70		
Compact to loose, brown		8	2	67	12	1-	-93.70		
SANDY SILT, trace clay		N SS	2	07	12				
		ss A	3	92	5	2-	-92.70		
		ss	4	88	59	3-	-91 70		
GLACIAL TILL: Verv dense.		ss	5	71	68		00		
brown silty sand with gravel, cobbles and boulders						4-	-90.70		
		ss	6	100	50	5-	-89 70		
5. <u>69</u>		≌ SS	7	100	50+				
End of Borehole									
Practical refusal to augering at 5.69m depth									
(GWL @ 0.73m - Dec. 28, 2018)									
								Shea	ar Strength (kPa) \triangle Remoulded

natorsonar		In	Con	sulting		SOIL	_ PRO		ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T	9	up	Eng	ineers	G Pi	eotechnic roposed [cal Invest Developn	tigation nent - Eagl	leson Roa	nd at Ottawa	ı St.
EASTING: NORTHING	:			ELEVA		1: 94.88			FILE NO.	PG421	6
REMARKS:	ns we	ie iele	erence	eu lo a (geo	delic dalu	111.		HOLE NO		
BORINGS BY: CME 55 Power Auger		1		D	DATE	: 2018 [Decembe	er 13		BH 7	1
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blo) mm Dia	ows/0.3m . Cone	TER
	RATA	ΥPE	MBER	% OVERY	/ALUE		(11)	• N	later Con	tent %	EZOME
Ground Surface	ST		R	REC	ź			20	40 6	0 80	COP
	5	× AU	1			- 0-	-94.88				
GLACIAL TILL: Brown silty sand with clay and gravel		ss	2	67	9	1-	-93.88				
1.73	3	k k ss	3	50	50+					••••••	
End of Borehole]									
Practical refusal to augering at 1.73m depth											
(GWL @ 0.83m - Dec. 28, 2018)											
								20 Shea	40 6 ar Strengt	0 80 1 h (kPa)	00
								▲ Undist	turbed Δ	Remoulded	

natorsonar		ın	Con	sulting		SOIL	PRO		ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7TS			Eng	ineers	Ge Pr	eotechnic oposed E	al Invest Developm	igation nent - Eagl	eson Road	l at Ottawa	St.
EASTING: NORTHING		ro rofe	pronce	ELEVA		: 94.03	m		FILE NO.	PG421	6
REMARKS:				su lo a	geot				HOLE NO.		
BORINGS BY: CME 55 Power Auger		1		D	OATE:	2018 [Decembe	er 13		BH 8	
SAMPLE DESCRIPTION	гот		SAN	IPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blo [.]) mm Dia.	ws/0.3m Cone	TION
	ATA F	ΒE	IBER	% VERY	ALUE 30D	(m)	(m)	0 M	lator Cont	ont %	ZOME
Ground Surface	STR	F	NUN	SECO	N <			20	40 60	80	
TOPSOIL 0.25	5	×				- 0-	-94.03				
Very stiff, brown SILTY CLAY		ss	1	79	13	1-	-93.03				
1.73		ss	3	96	6	2-	-92.03				
GLACIAL TILL: Brown silty sand with gravel, cobbles, boulders		∦ss Vas	4	71	7	3-	-91.03				
4.17	· · · · · · · · · · · · · · · · · · ·	N SS	5	50	36	4-	-90.03				
End of Borehole											
Practical refusal to augering at 4.17m depth											
(GWL @ 1.28m - Dec. 28, 2018)											
								20 Shea ▲ Undist	40 60 ar Strength urbed △ F	80 1 (kPa) Remoulded	00

natersonar		In	Con	sulting	,	SOIL	- PRO	FILE AI		ST DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T	9	μ	Eng	ineers	G	eotechnic roposed [al Invest Developn	igation nent - Eag	leson Ro	ad at Ottawa	St.
EASTING: NORTHING	3 :			ELEV		1: 93.78	itario		FILE NO.	PG421	6
DATUM: Ground surface elevation	ns we	re refe	erence	ed to a	geod	detic datu	m.).	-
BORINGS BY: CME 55 Power Auger		1		I	DATE:	2018 [Decembe	er 13		BH 9	
	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Bl	ows/0.3m	ION
SAMPLE DESCRIPTION	Δ Δ		ĸ	RΥ	۳0	(m)	(m)	• 5		. Cone	METI
	[RA]	ТҮРЕ	JMBE	%C	VALL r RQI			• •	later Cor	ntent %	IEZO
Ground Surface	S		й	REC	z °	0-	-03 78	20	40 6	60 80	с С С
TOPSOIL <u>0.2</u>	5	∦ AU	1				-93.70				
		怒 17								· · · · · · · · · · · · · · · · · · ·	
Very stiff, brown SILTY CLAY		ss	2	96	4	1-	-92.78				
					_					1	49
2.2	o	ss	3	83	Р	2-	-91.78	4			
		ss		88	Р						
	5				•	3-	-90.78				
		ss	5	46	7						
		ss	6	79	9	4-	-89.78				
Loose, brown SILTY SAND with gravel, trace clay			_		-						
		ss	7	71	9	5-	-88.78				
6.1	0					6-	-87.78				-88
		ss	8	100	26						
						7	06 70				
		ss	9	62	14		-00.70				
Compact to dense, grey SILTY											
SAND		ss	10	62	36	8-	-85.78				
						9-	-84.78				
	_	ss	11	42	31						
Dynamic Cone Penetration Test	<u>5 </u> 					10-	-83 78	9			
commenced at 9.75m depth. 10.1		-					03.70				•
Practical DCPT refusal at 10 17m											
depth											
(GWL @ 0.70m - Dec. 28, 2018)											
								20 Cha	40 6	60 80 1	00
								Snea ▲ Undist	turbed \triangle	Remoulded	

natersonar		ın	Con	sulting		SOIL		FILE AN	ID TEST	DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7TS			Eng	ineers	G Pi O	eotechnic roposed [ttawa, Or	al Invest Developn ntario	tigation nent - Eagl	eson Road	at Ottawa	St.
EASTING: NORTHING		re refe	Prence	ELEV/		I: 93.37	m		FILE NO.	PG421	6
REMARKS:					geo				HOLE NO.		
BORINGS BY: CME 55 Power Auger				[DATE	2018 [Decembe	er 13		BH10	
SAMPLE DESCRIPTION	PLOT		SAN	MPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blow mm Dia. C	/s/0.3m Cone	CTION
	TRATA	ТҮРЕ	UMBER	% COVER1	NALUE or RQD	(,	(,	• w	ater Conte	nt %	PIEZOME DNSTRU
Ground Surface	S	~	z	R	z	- 0-	-93.37	20	40 60	80	- S
		AU	1			-					₩₩
		ss	2	96	6	1-	-92.37				
Very stiff, brown SILTY CLAY		ss	3	54	Ρ	2-	-91.37			11	
- grey by 2.9m depth		ss	4	100	Ρ	3-	-90.37				
		ss	5	58	10	4-	-89.37				
5,41		ss	6	83	37	5-	-88.37				
		X SS	7	96	50+	6-	-87.37				
		ss	8	83	75	7-	-86.37				
silty sand with gravel, cobbles and boulders		∑ss	9	92		8-	-85.37				
						9-	-84.37				
9.75			10	100	50+						
(GWL @ 0.48m - Dec. 28, 2018)								20 Shea	40 60 r Strength (80 10 (kPa)	00

Supplemental Geotechnical Investigation

5970 and 6038 Ottawa Street, Ottawa, Ontario

COORD. SYS.: UTM ZONE 18 EASTING: 436	6079.4	1				NORTHI	NG: 50	0373	4.86	6		E	LEV	ATION	I: 94	.53		
PROJECT: Proposed Mixed-Use Development												FIL	E N	D . :	PG	4216		
ADVANCED BY: Excavator														10	TD	4 0 4		
REMARKS:						DATE:	Decemb	er 16	6, 20)24		HC		NO. :	IP	1-24		
					S	AMPLE				PE	N. RE	SIST.	(BLO	WS/0.3	m)			
							τ			20	4	501111 10	6 הוס וו	0) 80			
SAMPLE DESCRIPTION	5		S		(%)		NTE	Δ	RE	MOU	LDED	SHE/	AR ST	RENGT	TH (kF	Pa)	TION	Ē
	A PL	Ē			ſΕRΥ	B	CO (%)	•	U	NDRA 20	INED	SHEA ເດ	R STI	RENGT	H (kP 80	a)	RUC	10N
	RAT	HT	Ц		ŝ	ORR	ATER		PL (<u>%</u>)	WATE	ER CO	NTEN	• •T (%)	LL	(%)		EV.
GROUND SURFACE	ST	ä	⊨≥	:	R	z	2		ŀ	20	. 4	10	5 6	0	80	+	≣S	
TOPSOIL 0.20m [94.33m]										-	-	- - - -	-					-
Stiff, brown SILTY CLAY		-										: : : :						-
		- 1		-			34			-	0	· · ·	-	· · ·				-
		-		0			54				. 0			:		· · · ·		94 –
	X									Δ22	:	:	-	· · ·		▲ 88		-
		-										· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·				-
	X	 - 1-] (* * * * * *					-
		-								-	-	-	-	· · ·				-
	IX.	-											-			· · · · · · · · · · · · · · · · · · ·		-
1.40m[93.12m]		-								-	-	•	-					-
GLACIAL TILL: Compact, brown silty clay, some	~ ~ ~ ~ ~	-)		().		· · · · (· · · · · 		93-
gravel, occasional cobbles and boulder		-								:	:	:	-	· · ·				-
	~ ~ ~ ~ ~	-																-
		2-		5								: 	l çerere					-
2.15m [92.38m]	~ ~ ~ ~ ~ ~ ~ ~	-		G			27			C)	- - - -	-	· · ·				-
End of Test Pit		-												· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-
		-								-	-	· · ·	-	· · ·				-
lest pit terminated on bedrock surface		-										N	(****** 	· · · · · · · · · · · · · · · · · · ·				92-
No groundwater infiltration was observed upon		-																-
completion of the test nit		-								-		- - - -	-					-
		3-										: : : · · · · ·	: :			÷		-
		-											-	· ·				-
		-														· · · · ·		-
		-								-	-	-	-	· · ·				-
		-											-					91-
		-										: : : : : : : : :						-
		-								-		- - - -	-	· · ·				-
		4-											-	· · · · · · · · · · · · · · · · · · ·				-
		-								-	-	· · ·	-	· · ·				-
		-										· · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		-
		-										: : : :	-					
		-											-					90-
		-														· · · · · · · · · · · · · · · · · · ·		-
										-	-		-	· · ·				-
					200							I IT \A/			: =			
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	E PROF ORT. PA		OF P/ DN GF	ROU	rsu PIS	NOT RESP	PONSIBL	E FOF	R TH	IE UN	AUTH	ORIZE	AS PH ED US	E OF T	ED. I HIS D	HIS SHE ATA.		

PAGE:

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5766.7	7				NORTHIN	IG : 500)386	5.03		E	LEVATI	ON: 9	95.89		
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	Ρ	G421	6	
ADVANCED BY: Excavator													-			
REMARKS:						DATE: [Decemb	er 16	, 2024		HO	LE NO.	: T	P 2-24	4	
					S	AMPLE			- 1	PEN. RE	SIST. (BLOWS/	0.3m)			
					-		ь		20	DCPT (50mm	DIA. CO	NE)	20		
	F		c	5	(%		L. H	^	REMO		U SHFA		IGTH (50 kPa)	NO	Ê
SAMPLE DESCRIPTION	PL0	ا			RY (°	0	CON (UNDF	RAINED	SHEAF	R STREN	GTH (I	kPa)		NO
	ATA	Ē	Ā		OVE	R RO	НЩ В		20	4	0	60	<u>{</u>	30		ATI
	STR	DEP	Ž		REC	ÖN	WAT		PL (%)	WAIE			/o) I	-L (%)	LIEZ CON	Ē
TOPSOIL				-					20	4	0	00		50		
GIACIAL TILL: Compact to very dense brown silty	<u> </u>	_						:	-				-			-
sand some gravel cobbles and boulders	~ ~ ~ ~ ~	-														-
	~ ~ ~ ~ ~	-		_												-
	~ ~ ~ ~ ~	-		G			9	0	-	-				· · ·		-
	~ ~ ~ ~ ~ ~ ~ ~	-														-
	~ ~ ~ ~ ~	-							-				-			95-
	~ ~ ~ ~ ~	1—						· · · · · · · · · · · · · · · · · · ·	· · · · · . :	:			:: :			-
	~ ~ ~ ~ ~	_								-						-
	~ ~ ~ ~ ~	-												······································		-
	~ ~ ~ ~ ~	_														-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							-	-						-
	~ ~ ~ ~ ~	_										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~	-														94 -
	~ ~ ~ ~ ~	2—						•••••	••••	:	· · · · · · · · · · · · · · · · · · ·		· ! · · · · · :			-
	~ ~ ~ ~ ~	-								÷						-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-														-
	~ ~ ~ ~ ~	_		5												-
	~ ~ ~ ~ ~	-		G				,								-
- Increasing boulder content by 2.7 m depth	~ ~ ~ ~ ~ ~ ~ ~	_														-
3.00m [92.89m]	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							-	-						93-
End of Test Pit		3-														
Practical refusal to excavation at 3.00 m depth		-														-
		_							-							-
Groundwater infiltration was observed the bottom of		-												· · · · · · · · · · · · · · · · · · ·		-
the test pit		-							-							-
		-						•••••				•••••				-
		-										:				92-
								:	-			:	:	: :		-
		-										•••••				-
		_														-
		-														-
		-							-				-			-
		-								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································		-
		5							-	-						91-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE		ERTY			RSO								UCED.	THIS SH	HEET SHOUL	D BE
TEAD IN CONJUNCTION WITH ITS CORRESPONDING REPORT	JINI. FA		UN OF	1001	10	NUT RESP						00E U		UAIA.	PAGE:	1/1

Supplemental Geotechnical Investigation 5970 and 6038 Ottawa Street, Ottawa, Ontario

COORD. SYS.: UTM ZONE 18 EASTING: 435	5639.5	3				NORTHIN	NG : 50	0376	62.56	6		E	LEV		N: 97.1	15		
PROJECT: Proposed Mixed-Use Development												FIL	E NO) . :	PG4	216		
ADVANCED BY: Excavator														IO ·	тр	2 24		
REMARKS:						DATE: [Decemb	er 1	6, 20	024						5-24		
					S	AMPLE				∎ Pi	EN. RE DCPT (SIST. 50mm	(BLO) 1 DIA.	WS/0.3 CONE	im) E)			
				.	_		INT			20	4	10	6	0	80		z	
SAMPLE DESCRIPTION	LOT	_			Y (%)	_	ITNO		RE			SHEA	R ST	RENG	TH (kPa TH (kPa	1))	CTIO	L N
	TA F	H.	ANI		OVER	RQD	ER C (%)			20	4	10	6	0	80	/	OME	ATIO
	STR/	DEP1			RECO	N OR	WATE		PL ((%)	WATE			IT (%)		%)	PIEZ	
TOPSOIL					_		-			20	4	FO	0	0	80			-
0.20m [96.95m]	~ ~ ~ ~	-											- - - -					97 -
GLACIAL TILL: Compact, brown silty sand, some	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							-	-	-		-		-	-		-
graver and cobbles, occasional boulders	~ ~ ~ ~ ~	-		-			13		0									-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_								-	-	•						-
	V V V V V V V V	-							· · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 1—										: ; ;						-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							-	-			-					96-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-											- -					-
	v v v v v v v v v v v v	-											-		-			-
		_		2			10		<u>_</u>	-			-					-
	~ ~ ~ ~ ~	-		G								· · · · · · · · ·	- - 					-
1.95m [95.20m]	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							-				-					-
End of Test Pit		2-							 		•)	[••••• [•••••	••••••••		-
		-											- - - 					95-
lest pit terminated on bedrock surface		-							-	-	-		-					-
No groundwater infiltration was observed upon		-							: 				- 					-
completion of the test pit		-							-	-	-	•	-		-			-
		-										· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			-
		3-											: 					-
		-							-				-					94 -
		-							 		•	; ; ;			•••••	•••		-
		-											- - - 					-
		-							-	-	-		-		-	-		-
		-														· · ¿. · · · ·		-
		-							-	-	-	•	-		-			
		4																-
		-							: : :			: : :	: : : · · · · ·					93-
		-							-				-					-
		-													· · · ·	· · ·		-
		-											- - - 					-
		-							-		-		-					-
					200			: רו יי				: LIT \\/			יבה דיי			
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	DRT. PA	TERSC	OF PA	ROUI	NGO PIS	NOT RESP	ONSIBL	E FO	R TH	IE UN		ORIZE	D US	E OF T	HIS DA	ITA.		

P:/Autocad Drawings/Test Hole Data Files/PG42xx/PG4216/data.sqlite 2025-03-14, 10:44 Paterson_Template

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5453.4	5			NORTHI	NG: 500	0376	7.76			ELEV	ATION	l: 94.94	ł		
PROJECT: Proposed Mixed-Use Development											FILE N	0. :	PG42	216		
ADVANCED BY: Excavator										ŀ			TD 4	04		
REMARKS:					DATE: [Decemb	er 16	6, 202	24		HOLE	NO. :	1P 4 [.]	-24		
				;	SAMPLE				PEN. F		ST. (BLO	WS/0.3	m)			
						ŧ		20		40	6 הוחות הוחות) 80		-	
SAMPLE DESCRIPTION	Ŀ		Š	(%)		NTE	Δ	REN	IOULDE	D S	HEAR ST	RENG	H (kPa)		R IO	<u> </u>
	A PI	(آ ۳	AND	(ER)	D D D	ر م در م	•	UNI 2())	D SF 40	HEAR SII	RENGI 10	н (кРа) 80		METI	TION
	TRAI	E E	ΥPE		ORI	ATEI		PL (%) WA	TER		NT (%)	LL (%)	ONS.	LEV
GROUND SURFACE	ى: N		⊢ ⊢		z	3		2)	40	6	0	80		ĒŪ	
TOPSOIL		· -						· · ·	-		-	· · ·				-
Compact, brown SILT, trace clay and sand		-						· · · · · ·	•••••	· · · .		· · · · · · · · · · · · · · · · · · ·	••••	· · · · · · ·		
		-														
		-	Ū Č	5		33			0		-					
		-														
		_						· · ·								01_
GIACIAL TILL: Loose brown silt some clay and		1—							• • • • • • • •	· · ·						
gravel	~ ~ ~ ~ ~	_														
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-									-					
	~ ~ ~ ~ ~	-										: :				
	~ ~ ~ ~ ~	-														
	~ ~ ~ ~ ~	-		1						· · · · · ·						-
	~ ~ ~ ~ ~	-	<u>د</u>)		26			0							93-
	<u> </u>	2-										[].				
		-														
Test pit terminated on bedrock surface		-						· · ·								
		-														
Groundwater infiltration was observed at 1.30 m		-									-			-		
depth		-														
		3-										· · · · · · · · · · · · · · · · · · ·				92-
		-						· · ·	-		-	· · ·		-		
		-							• • • • • • • • •	· · · .	· · ·	· · · · · · · · · · · · · · · · · · ·				-
		-						· · ·	-							
		-						· · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				-
		-														
		-						· · ·			-					01_
		4-											:			91
		-														
		-														
		-										· · · · · · · · · · · · · · · · · · ·				
		-						· · ·	-		-	· · ·	-			
		-						· · · · · · · · ·		· · · . :	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		-
		5														90-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF PAT	ERS	ON GROUP	AND THE	CLIE	ENT F	OR WHO	DM IT	T WAS PF	RODUC	ED. THIS	SHEE	T SHOUL	.D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	JRT. PA	TERSC	ON GRC	OUP IS	S NOT RESP	VONSIBLI	E FOI	k the	UNAUT	HOF	RIZED US	E OF T	HIS DAT.	A.	PAGE:	1/1

P:/Autocad Drawings/Test Hole Data Files/PG42xx/PG4216/data.sqlite 2025-03-14, 10:44 Paterson_Template

SOIL PROFILE AND TEST DATA

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 433	5320.8	6			NORT	HING: 50	037	04.85	5		E	ELEV	ATION	: 94.	65		
PROJECT: Proposed Mixed-Use Development											FIL	E NC	D . :	PG	4216		
REMARKS:					DATE	: Decemb	per 1	6, 20	024		нс		10. :	ТΡ	5-24		
				s	SAMPLE				P	EN. RES	SIST.	(BLO)	WS/0.3	m)			
						E			ا 20	DCPT (50mn	n DIA. 6	CONE) 80			
	ы		ġ	(%)		VTEN	Δ	RE		ILDED	SHEA	AR ST	RENG	TH (kP	a)	LION	Ē
	A PL	Ē	ą	ERY	B	(%) CO		U	NDRA		SHEA	R STF		H (kPa	a)	AETE RUC	ION
	RAT	PTH	PE /	000	OR R	ATER ()		PL (<u>20</u> (%)	WATE	ER CC	NTEN	UT (%)	LL	(%)		EVAL
GROUND SURFACE	ST	ä	₽	2	ž	Ź			20	4	0	5 6	0	80		E S	Ш
TOPSOIL 0 20m [94 45m]								-	-		-	-					
Compact, brown SILT, some sand		-													· · · · · · · · · · · · · · · · · · ·		-
		-						÷		÷							
		-	<u> </u>	5		25			0						· · · · · · · · · · · · · · · · · · ·		-
		-											· · · · · · · · · · · · · · · · · · ·				94 -
		-						÷			•	-	· · ·				-
		1-															
1 25m [93 40m]		-							-		•	-	· · ·				-
End of Test Pit		-									• • • • • • •				•••••••••••••••••••••••••••••••••••••••		
		-									; ;						-
Test pit terminated on bedrock surface		-						÷	-		•	-	· · ·				93-
		-						: : :	. <u>.</u>						· · · · · · · · · · · · · · · · · · ·		-
No groundwater infiltration was observed upon		-							-	i	•	-	· · ·				
completion of the test pit		2-													· · · · (· · · · ·		-
		-											· · · · ·				
		-							-		•		· · ·				-
		-											· · · · · · · · ·	••••	••••		
		-						-	-			-	· · ·				92-
		-													· · ·		
		3-															.
		-									-						
		-															-
		-								-	•		· · ·		:		
		-									· · · · · · · · ·						-
		-									: : :						91-
		-							-		•		· · ·				-
		4-									: 				· · · · · · · · · · · · · · · · · · ·		-
		-															•
		-															
		-															-
		-						÷	-		-	-	· · ·		-		90-
		-											· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		5						: : :	-	-	•	-	· · ·		:		
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH READ IN CONJUNCTION WITH ITS CORRESPONDING REP	e Prof Ort. P/	PERTY	of Pat N Gro	ERSC UP IS	ON GROU	JP AND THE	E CLI	ENT OR TH	FOR IE UN	WHOM IAUTHC	IT W. Orize	AS PR ED US	RODUC E OF T	ED. TH HIS D	HIS SHE ATA.	ET SHOUL	.D BE
																PAGE	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 43	5449.3	0			NORTHI	NG: 50	0364	2.99		E	LEVATIO	N: 95.32		
PROJECT: Proposed Mixed-Use Development										FIL	E NO. :	PG4216		
ADVANCED BY: Excavator					D 4 7 7					нс		TD 6-24		
REMARKS:					DATE:	Jecemb	ber 1	6, 2024				IF U-24		
				S		F		• •	DCPT (50mm	n DIA. CONE	5m) E)		
	5		ġ	(%		ITEN.	Δ	REMO		SHEA		80 TH (kPa)	NOI	Ω.
SAMPLE DESCRIPTION	A PLC	<u>ا</u>	R R	ERY (B	CON (%	•			SHEA		ſH (kPa)	RUCT	NOI
	RATA	PTH	PE A	S	DR R	TER (20 PL (%)	4 WATE	ER CO	00 00000000000000000000000000000000000	LL (%)		EVAT
GROUND SURFACE	ST	B	Ł	R	z	N		20	4	0	→ <u>60</u>	80	E S	Ш
TOPSOIL 0.10m [95.22m]		· _						· · ·	-	•				
GLACIAL TILL: Compact, brown silty sand, with		-												05 –
gravel, cobbles and boulders		-	5			13		0	-	•				
		-							-					-
		-						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
		-							-	-				•
1.05m [94.27m]	v v v v	1							•••					
End of Test Pit		-						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
Test pit terminated on bedrock surface		-							-					94 -
•		-							•••			· · · · · · · · · · · · · · · · · · ·		
No groundwater infiltration was observed upon		-						· · ·	-	•				
completion of the test pit		-												
		2-												•
		-						· · ·	-	•				
		-							•••••••••			· · · · · · · · · · · · · · · · · · ·		93-
		-						· · · · · · · · · · · · · · · · · · ·						-
		-						· · ·	-	-				
		-										· · · · · · · · · · · · · · · · · · ·		
		-								-				
		- 3												-
		-										· · · · · · · · · · · · · · · · · · ·		00
		-												92-
		-						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		•
		-								: : :	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		-						· · ·	-	-				•
		4-												
		-						· · · · · · · · · · · · · · · · · · ·	-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•
		-						· · ·	-	•				91-
		-						· · · · · · · · · · · · · · · · · · ·						
		-							-	•				
		-								· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		5				1			÷	2				

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5565.1	0				NORTHIN	IG : 500	0357	4.64		E	LEVATI	DN: 96.9	3		
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	PG4	216		
ADVANCED BY: Excavator												. =				
REMARKS:						DATE: D)ecemb	er 16	6, 2024		но	LE NO.	: IP/	-24		
					S	AMPLE			∎ F	EN. RE	SIST. (50mm	BLOWS/).3m) NE)			
				.	_		ENT		20	4	10	60	, 80		z	_
SAMPLE DESCRIPTION	LOT	Ē			X (%)	_	ILNO	∆ ▲	REMO	ULDED	SHEA SHEAF	R STREN R STREN	GTH (kPa GTH (kPa))	IER	m) N
	AT I	년 王	NA :		OVEF	RQI	ER C (%)		20	4	10	60	80		OME.	ATIO
	STR	DEP.			REC	NON	WAT		PL (%)	WATE			6) LL (%	%)	PIEZ	ELEV
TOPSOIL 0.15m [06 79m]				-					20	4	ŧU	00	00			-
GLACIAL TILL: Compact, brown silty sand, some	<u> </u>	-														-
gravel and cobbles, occasional boulders		-								-				:		-
	~ ~ ~ ~ ~	-		.			17		0					· ·		-
		-								-	· · ·					
		-														
		1-														96 -
		-								-	· · · · · · · · · · · · · · · · · · ·	-				
		-														
		-		2					ļ		; ;		· · · · · · · · · · · · · · · · · · ·			
		-		G			12		0	-	· · · · · · · · · · · · · · · · · · ·	-				-
		-														
		-								-				:		95-
	0 0 0 0 0 0 0 0 0 0 0 0	2-														
		-												· · · · · · · · · · · ·		
		-								-						
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-		G 3			12		0	•••				· · · · · · · · · · · · · · · · · · ·		-
2.75m [94.18m]	<u> </u>	-														
End of Test Pit		-								-						94 –
Test nit terminated on bedrock surface		3-							· · · · · · · · · · · · · · · · · · ·	•••				· · · · · · · · · · · · · · · · · · ·		
		-														-
		-								-		:				
		-										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-
		-														
		-														
		4-														93-
		-								-						-
		-								•••		•••••	· · · · · · · · · · · · · · · · · · ·	· · · <u>·</u> · · · · · · ·		
		-														-
		-								-						-
		-								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
		5														92-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF P	ATEF	RSO					WHOM			JCED. TH	S SHEE	T SHOUL	D BE
	UR I. PA				- 15	NUT RESP	OINSIRL					0.025.01		IA.	PAGE:	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5618.8	0				NORTHI	IG : 50	0368	84.	74				ELE	VATIC	N: 9	97.72			
PROJECT: Proposed Mixed-Use Development													F	LEN	10. :	Ρ	G42	16		
ADVANCED BY: Excavator													—			_				
REMARKS:						DATE: [Decemb	per 1	16,	202	4		H	OLE	NO. :	Т	P 8-	24		
					S	AMPLE					PE	N. RE	SIST	. (BLC	OWS/0	.3m)				
							F	1		20))	CPT ((50m ւՕ	m Dl/	A. CON 60	E)	30			
	5		ġ		(%)		TEN	Δ	. 1	REM	IOUL	DED	SHE	AR S	TREN	STH (kPa)		~ NOI	Ē
SAMPLE DESCRIPTION	ЪГ	Ē			ž	R	ç S			UNE	RAI	NED	SHE	AR S	TRENG	ith (kPa)		ETEI	NO
	RATA	H	Щ Д		<u>Š</u>	R R(ER (P	20))		10 FR C	ONTE	60 NT (%	<u>،</u> ۱ (30 I (%)		ZOM	EVAT
GROUND SURFACE	STF	B			Ř	N	M			20	,)	4	10	0	60	, <u>-</u> 8	(<i>//0</i> / 30		₽S	E
TOPSOIL									-					-	:	-				-
0.25m [97.47m]		-														- - 				-
GLACIAL TILL: Compact, brown silty sand, some		-							÷			-	-	÷	÷	-	-	•		-
gravel, cobbles and boulders	~ ~ ~ ~ ~	-		-			12							÷			÷			-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-					12		Ŭ			-	-	-		-	-			-
	~ ~ ~ ~ ~	-										- 		 		- 		· · · · · · · ·		97-
		-							÷			-	-	-		-	-	•		-
	~ ~ ~ ~ ~	1											2 · · · · - - -							-
	~ ~ ~ ~ ~	-																· ·		-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-										-		-		-	-			-
	~ ~ ~ ~ ~	-		2			11		0				: 	- 	• • • • • • •	: 	-			-
		-							Ŭ			-	-		-	-	-	•		-
	~ ~ ~ ~ ~	_							 	· · · · · · :		- 		·····	• • • • • • • •	-		• • • • • • • •		96 —
	7 7 7 7 7 7 7 7	-											-			-		-		-
		2-										[• • • • • •]) - -		· [· · · · · ·	2 · · · · · 	1999 - 1999 	(*****		-
	~ ~ ~ ~ ~	-																		-
		-										-	-	-	-	-	-	•		-
	~ ~ ~ ~ ~	-		<i>с</i>			10			: 			: : :							-
2.70m [95.02m]	~ ~ ~ ~ ~	-		9			10		ÿ			-	:	-	:	-	:			-
End of Test Pit		-							÷	· · · · : :			: :	 1	·	; ;	: :	: :		95-
		-										-		-		-	-			-
Test pit terminated on bedrock surface		3-											5 - - -					******* * *		-
		-														: ; ;				-
No groundwater infiltration was observed upon		-							÷			-		-		-	-	•		-
completion of the test pit		-											:							-
		-							÷			-	:	-	:	-	:			-
		-							÷	•••••				 						94 —
		-										-		-		-	-			-
		4-														-				-
		-											: : :			: : : · · · · ·				-
		-							÷			-	-	-		-	-	•		-
		-										: :		 		: : :		: 		-
									-			-				-	-			-
		-								••••		- - -		 		- - -				93-
		5							+++++++++++++++++++++++++++++++++++++++			-		-		-	-	•		-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF P/	ATER	sol	N GROUP	AND THE	E CLI	IEN	T FC	OR W	/HON	ITV	VAS F	RODU	CED.	THIS	SHEE	T SHOUL	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	ort. Pa	TERSC)n gf	ROUF	PIS	NOT RESP	ONSIBL	E FC	DR -	THE	UNA	UTH	ORIZ	ED U	SE OF	THIS	DATA	۱.	PAGE:	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5764.5	6				NORTHI	NG: 500	03694	.37		E	LEVATI	DN: 95.	94		
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	PG	4216		
ADVANCED BY: Excavator																
REMARKS:						DATE: [Decemb	er 16,	2024		НО	LE NO.	: TP	9-24		
					S	AMPLE			■ P	EN. RE	SIST. (BLOWS/).3m)			
							E		20	DCPT ([50mm ւՕ	DIA. CO 60	NE) 80			
	5		ğ		(%)		TEN	Δ	REMO	JLDED	SHEA	R STREN	GTH (kP	a)	NOI	Ē
SAMPLE DESCRIPTION	PL(<u>E</u>	g		ž	8	s co	▲	UNDR	AINED	SHEAF	R STREN	GTH (kPa	ı)		NO
	RATA	H	м Ч		Š	R R(ER	P	20	WATE	10 FR CO	60 NTENT (9	08 () ()	(%)	NST	EVAT
GROUND SURFACE	STF	DEI	ž		Ř	N	M	•	20	4	C	60	80	,,,,	E S	Ë
TOPSOIL 0.15m [95.79m]								:	-	-				:		
GLACIAL TILL: Compact, brown silty sand, some	~ ~ ~ ~ ~	_												· · · · · · · · · · · · · · · · · · ·		-
gravel, cobbles and boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_		_					-							-
	~ ~ ~ ~ ~	-	-	0			11	0	· · · · .					· · · · ·		-
	~ ~ ~ ~ ~	-														-
	~ ~ ~ ~ ~ ~	-												· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~	-							-	-						95-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1														-
	~ ~ ~ ~ ~	-												· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~	-						:		-		:	: :	:		-
	~ ~ ~ ~ ~	-		2			12	C		•••						-
	~ ~ ~ ~ ~	-						Ŭ		-				· · ·		-
	~ ~ ~ ~ ~	-											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
	~ ~ ~ ~ ~	-							-	-				:		94 -
	~ ~ ~ ~ ~	2-														-
	~ ~ ~ ~ ~	-														-
2.40m [93.54m]	<u> </u>	_							-	-						-
End of Test Pit		-												· · · · · · · · · · · · · · · · · · ·		-
		-							-	-		-				-
Test pit terminated on bedrock surface		-						••••••						· · · ·		-
No		-							-							93-
No groundwater inflitration was observed upon		3-						:						:		-
completion of the test pit		-														-
		_							-	-						-
		-											: :			-
		_							-	-		-				-
		-								• • • • • • • • •) · · · · · · · · · · · · · · · · · · ·		• • • • • • • • •	••••		-
		-												: : :		92-
		-						:	÷	-		:		:		-
		-												· · · ·		-
		-							-	-						-
		-												· · · · · · · · · · · · · · · · · · ·		-
		-						•	-	-	· · ·					-
		-										••••				-
		5												:		91-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF PA	TER	SO		AND THE	CLIEN	IT FOR	WHON	I IT WA	S PROD	JCED. TH	IIS SHEE	T SHOUL	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	JKI. PA	IERSC	IN GR	UUP	'IS	NUT RESF	ONSIBL	EFOR	I HE U	NAUTH	JRIZE	USE O		λIA.	PAGE:	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5773.4	C				NORTHI	NG: 500)3504	4.87			ELEV	ATION	1 : 97	7.38		
PROJECT: Proposed Mixed-Use Development											FI	LE NO	D . :	PG	6421	6	
ADVANCED BY: Excavator REMARKS:						DATE:	Decemb	er 16	, 2024		н		10. :	ТР	10-2	24	
					S	AMPLE				PEN. RE	SIST.	(BLO	WS/0.3	lm)			
					-		Ŀ		20	DCPT	(50m i 40	n DIA. 6	CONE	E) 80)		
SAMPLE DESCRIPTION	Б		ğ		(%)		NTEN	Δ	REMO	ULDED	SHE	AR ST	° RENG	TH (k	, Pa)	TION	Ē
	A PL	(ш) Т	AND		VERY	go	۲ CO (%)		UNDF 20		SHE# 40	AR STI 6	RENGT	F H (kf 80	Pa)	METE	TION
	TRAT	EPTH	۲e		ECO	ORF	ATE		PL (%)	WAT	ER CO		NT (%)	LL	_(%)	IEZOI	
GROUND SURFACE	S			•	8	z	5	:	20		40	6	0	80)'	<u> </u>	ш
0.20m [97.18m]	~ ~ ~ ~									-	-	-	· · ·				-
GLACIAL TILL: Compact, brown silty sand, some		-									•	-					97-
gravel, cobbies and boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-		5			14		0	· · · · ·					· · · · · .		-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-								-	-	-	· · ·				
	V V V V V V V V V V V V	-									•••••				· · · · · · · · · · · · · · · · · · ·		-
		- 1—															
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							-	-	-	-		-			-
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-															
		-		G 2			12		b								96-
		-								-	-	-	· · ·				
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	-			· · · · · · · · · · · · · · · · · · ·		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 2—										-					-
		-						-		-	-	-	· · ·				-
2.30m [95.08m]	~ ~ ~ ~ ~ ~	-							· · · · · · · · ·		· · · · · ·	- - - -			· · · · · · · · · · · · · · · · · · ·		-
End of Test Pit		-															95-
Test nit terminated on bedrock surface		-								-				-	:		-
		-															-
No groundwater infiltration was observed upon		-							-	-	-	-		-			-
completion of the test pit		3-										-					-
		-													· · · · · · · ·		-
		-							-	-		-	· · ·				94 -
		-								· · · · · · · · · · · · · · · · · · ·		-					-
		-															-
		-								-	-	-	· · ·				-
		4-								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		-
		-															-
		-							-	-	: : :	-	· · ·	-			93-
		-															-
		-										- - - 					-
		-						•	-			-	· · ·				-
					200						/ IT \^		מווסמ	י חשי	LUIC C		
READ IN CONJUNCTION WITH ITS CORRESPONDING REP	DRT. PA	TERSC	N GR	ROUF	PIS	NOT RESP	PONSIBLE	EFOF	RTHEL	INAUTH	ORIZ	ED US	E OF 1	THIS [DATA.	PAGE	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5928.9	C				NORTHIN	IG: 50	0370	1.30		E	ELEVA	TION	: 94.8	7		
PROJECT: Proposed Mixed-Use Development											FIL	E NO	.:	PG4	216		
ADVANCED BY: Excavator																	
REMARKS:						DATE:	Decemb	er 16	6, 2024		HC	DLE N) . :	1 P1	1-24		
					S	AMPLE			■ P	EN. RE	SIST.	(BLOW	S/0.3r	n)			
							5		20	DCPT (50mn 0	n DIA. (60	CONE)	80			
	5		ğ		(%)		LEN	Δ	REMO	ULDED	SHEA	AR STR	ENGT	H (kPa)		NOI	<u>ا</u>
SAMPLE DESCRIPTION	PL(<u>ا</u>			ERY	B	°) col	•			SHEA		ENGTI	H (kPa)		IETE RUC ⁻	NOI
	₹AT¢	PTH	Щ Ц Ц	1	COV	DR R(TER (20 PL (%)	4 WATE	RCC		[(%)	 LL (%	6)	ZOM	EVAT
GROUND SURFACE	STI	DE	È		RE	N	M		20	4	0	Э <u>60</u>	(,,,	80	-,	불응	ELE
TOPSOIL												-		-			
0.25m [94.62m]		-															
GLACIAL TILL: Compact, brown silty sand, clay, with		_		-						-							-
gravel, some cobbles, boulders and clay		-		G			13		0				· · · · .				
		-								-			÷	÷			
	~ ~ ~ ~ ~	-						• • • • •		•••							
		-								-				-			94 –
		-															
		-							· · · · · · · · ·								•
		-								-				÷			
		-		5			14		0		: }		••••				
		-		0					Ŭ	-				-			-
1.80m [93.07m]	~ ~ ~ ~	-							· · · · · · · · · · · · · · · · · · ·								
End of Test Pit		-								-			÷	÷			93-
T ()) () () () () ()		2-															
lest pit terminated on bedrock surface		-															
No groundwater infiltration was observed upon		-							· · ·	-							
completion of the test nit		-															
completion of the test pit		-								-				÷			
		-						• • • • •	;	••••••••	; :		· · · · ; · ;		·		
		-															92-
		3-							· · · · · · · · ·		• • • • • • • • •						
		-									: 						
		-								-			÷	÷			
		-									:	: : :	· · · · .				
		-															
		_											•••••				
		-							· · ·	-							91-
		4-															
		-															
		-								-					•		
		-										· · · · · ·					
		-							· · ·	-							
		-										· · · · · · · · · · · · · · · · · · ·					
		5								-							90 -
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH	E PROF	PERTY	OF P/	ATEF	RSO	N GROUP /	AND THE		ENT FOR	WHOM	IT W	AS PRO	DUCE	ED. THI	S SHEE	ET SHOUL	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT	ort. Pa	TERSC)n gf	Roui	P IS	NOT RESP	ONSIBL	E FOI	R THE U	NAUTHO	ORIZE	ED USE	OF TH	HIS DA	ΓA.	PAGE: '	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	5480.1	5				NORTHIN	IG: 500)351	7.81		E	LEVATI	ON:	95.92			
PROJECT: Proposed Mixed-Use Development											FIL	E NO. :	Р	G42 ⁻	16		
ADVANCED BY: Excavator												. =	-	D 40			
REMARKS:						DATE:	Decemb	er 16	6, 2024		но	LE NO.	:	P12-	-24		
					SA	AMPLE			■ P	EN. RES	SIST. (BLOWS/	0.3m)				
							5		20	DCPT (5	50mm 0	DIA. CO 60	NE)	80			
	5		ġ		(%)		E E	Δ	REMO		SHEA	R STREM	NGTH	(kPa)		LION NOI	Ē
	L P	<u>ا</u>	R		ERY	8	0 (%						IGTH (kPa)		RUC.	NOI
	ATP	PTH	Щ Ц Ц	i	S	NR R(TER		20 PL (%)	WATE	0 R CO	NTENT (%)	<u>80</u> LL (%)		NOZ	EVAT
GROUND SURFACE	STI	DE	Σ		Ä	N	W		20	4	0	60	,	80		≣ S	Ш
TOPSOIL									-								
<u>CLACIAL TILL:</u> Compact to loose brown sitty sand	~ ~ ~ ~ ·	-						•									
some gravel occasional cobbles and boulders	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_		-							-		-				
	~ ~ ~ ~ ~	-		G			14		0								
		-									-	:	-				
	~ ~ ~ ~ ~ ~ ~ ~ ~	-															
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-															95 -
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-															
	~ ~ ~ ~ ~	-															
		_		~									-				
	~ ~ ~ ~ ~ ~ ~ ~	-		G			40	• • • • • •		c)	· · · · ·		ļ			
- Grey by 1.60 m depth	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-		_													
1.00m [04.02m]		-		Ö			7	0				· · · · · · · · · · · · · · · · · · ·					
Fnd of Test Pit	~ ~ ~ ~	- 2_															94 —
		2-															
Test pit terminated on bedrock surface		-															
		-															
Groundwater infiltration was observed at 1.40 m		-							• • • • • • • • •								
depth		-											-				
		-											;				
		-															93-
		- 3									ļ	÷					
		-										· · · · ·					
		-															
		-										· · · · · · · · · · · · · · · · · · ·					
		-											-				
		-							•••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••	•••••••				
		-															92 -
		-											-				
		-									· · · · · · · ·						
		_											-				
		-										· · · · · · · · · · · · · · · · · · ·					
		-							-		-		-				•
		-										· · · · · · · · · · · · · · · · · · ·					
		5															91-
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS THE		PERTY	OF PA	ATEF	RSO			CLIE		WHOM			UCED	. THIS	SHEE	T SHOUL	D BE
READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	JKI. PA	IEKSC	NN GR	ιυU	- 15	NUT RESP	ONSIRFI		I I I I U	NAUTHC	JKIZEI	D 05E 0	r i HR	S DAIA.	•	PAGE:	1/1

Supplemental Geotechnical Investigation

COORD. SYS.: UTM ZONE 18 EASTING: 435	577.2	1				NORTHIN	IG : 50	0341	0.85		E	ELEV	ATIO	N : 96	.69		
PROJECT: Proposed Mixed-Use Development											FI	LE NO	0. :	PG	4216		
ADVANCED BY: Excavator																	
REMARKS:						DATE: [Decemb	er 1	6, 2024		Н	OLE N	10. :	TP	13-24		
					s	AMPLE			■ F	PEN. RE	SIST. 50mr	(BLO n DIA.	WS/0.3 CONE	Bm) E)			
			Ċ				ENT		20	4	10	6	0	80		z	-
SAMPLE DESCRIPTION	PLOT	(L	N D		RY (%	Δ	CONT	▲		ULDED	She/ She/	AR ST AR STI	RENG RENG	TH (kf FH (kP	Pa) 'a)	UCTIC	m) NC
	ATA	TH (r	Б А		N N N	R RQ	ER (%		20	4		6 2NITER		80	(0/)	COME ISTR	VATIO
	STR	DEP	Τ		22 22	IO N	WAT		PL (%)	WATE			NI (%)	80	(%) ⊣	PIEZ	Ē
TOPSOIL									20		10			00			
0.25m[96.44m]		_										-					
GLACIAL TILL: Compact, brown silty sand, some	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_		- 0			21		о		-	-					
gravel, occasional cobbles and boulders		-													· · · · · · · · · · · · · · · · · · ·		
Weathered BEDROCK		_							· · ·		-	-	· · ·				06 –
End of Test Pit		_							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	- 	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • •		. 30
		-							· · ·		-	-	· · ·				
Test pit terminated on bedrock surface		-							· · · · · · · · · · · · · · · · · · ·			-					
		-									- - - 				· · · · · · · · · · · · · · · · · · ·		
No groundwater infiltration was observed upon		_								-	- - -	-	· · ·				
completion of the test pit		-										 	· · · · · · · · · · · · · · · · · · ·	•••••	· · · ·		
		_							· · ·		-	-	· · ·				95 -
		-							· · · · · · · · · · · · · · · · · · ·			-					
		2-									: 		: 				
		-									-	-		-			
		-							· · · · · · · · · · · · · · · · · · ·			- - - -					
		-									-	-	· · ·				
		-								•••	· · · · · ·		· · · · · · · · · · · · · · · · · · ·		•••••		
		-							· · · · · · · · · · · · · · · · · · ·		: : : :		· · · · · · · · · · · · · · · · · · ·				94 —
		-							· · ·		-	-	· · ·				
		3—								:	: 		: 		:		
		-							· · ·		-	-	· · ·				
		-)	 		·····	· · · · ; · · · · · :		
		-										-					
		-								-	- - -	-	· · ·				
		-									: : :	- 			· · · · · · · · · · · · · · · · · · ·		93-
		-							· · ·		-	-	· · ·				
		4-											:: : :		· · · · · · · · · · · · · · · · · · ·		
		-											· · · · · ·				
		-										-					
		-									: 	-			· · · · · · · · · · · · · · · · · · ·		
		_							· · ·	-		-					92-
		-								· · · · · · · · · · · · · · · · · · ·		- 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		5							· · · · ·		<u> </u>	-					
DISCLAIMER: THE DATA PRESENTED IN THIS SHEET IS TH READ IN CONJUNCTION WITH ITS CORRESPONDING REPO	e prof Drt. pa	PERTY	of Pa N gr	TERS OUP	SOI IS	N GROUP / NOT RESP	AND THE ONSIBL	E CLII	ENT FOF R THE U	R WHOM	i it w Orizi	ias pf Ed Us	RODUC E OF 1	ed. T This d	HIS SHE	ET SHOUL	D BE

natersonar	In	Con	sulting		SOIL	_ PRO	FILE AN	ND TEST	DATA		
9 Auriga Drive. Ottawa. Ontario K2E 7T	9	² P	Eng	ineers	Ge Pr	eotechnic oposed [al Invest Developn	tigation nent - Eagl	eson Road	at Ottawa	St.
EASTING: NORTHING	:			ELEVA		tawa, Or : 94.63	itario		FILE NO.	PG421	6
DATUM: Ground surface elevation REMARKS:	ns we	re refe	erence	ed to a g	geod	letic datu	m.		HOLE NO.	10421	.
BORINGS BY: Hydraulic Shovel				D	ATE:	2019 F	-ebruary	27		TP 1	
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. R ● 50	esist. Blow) mm Dia. C	s/0.3m Cone	ETER CTION
	RATA	ΥPE	MBER	% OVER'	RQD			• w	ater Conte	nt %	EZOME
Ground Surface	ST		N	REC	z s	0-	-04 63	20	40 60	80	E O O
TOPSOIL						0	94.03				-
<u>0.30</u>	D										
											-
		G	1								
						1-	-93.63				
											-
GLACIAL TILL: Loose to		-									
compact, grey-brown silty sand with clay, gravel and cobbles		G	2								
- some rootlest at upper 0.2m						2-	-92.63				-
depth			2			_					-
			5								
		G	4								-
						3-	-91.63				
		G	5								⊻
End of Test Pit	D[^^^^/										
(Groundwater infiltration at 3.5m											
								20 Shor	40 60	80 1 (kPa)	+ 00
								▲ Undist	urbed $\triangle \operatorname{Re}$	moulded	

natersonar		In	Con	sulting		SOIL	- PRO	FILE AN		ST DATA	
		٩Þ	Eng	ineers	G Pi	eotechnic roposed [al Invest Developn	igation nent - Eag	leson Ro	ad at Ottawa	St.
EASTING: NORTHING:				ELEV		ttawa, Or 1: 94.42	ntario		FILE NO		
DATUM: Ground surface elevation	s wer	e refe	erence	ed to a	geo	detic datu	m.			PG421	6
BORINGS BY: Hydraulic Shovel				[DATE	: 2019 F	ebruary	27	HOLE NO). TP 2	
	ГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. R	lesist. Bl	ows/0.3m	R NO
SAMPLE DESCRIPTION	TA P		ER	ERY	۳a	(m)	(m)	• 51		a. Cone	
	TRA	ТҮРІ	IUMB	scovi	I VAL or RQ			• v	later Cor	ntent %	PIEZC
Ground Surface	0		~	R	2	- 0-	-94.42	20	40 €	60 80	<u>-0</u>
TOPSOIL 0.30											
Very stiff, grey-brown SILTY		G	1							>1	30
		_				1-	-93.42				
depth		-	2							>1	30
- grey by 1.0m depth		-	2								1
2 00		- G	3								
<u>_</u>		_ •	Ū			2-	-92.42				
		_									
		G	4								
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and											
boulders		– G	5			3-	-91.42				_
		- G	6				• • • • •				
		-									
3 70		_ C	7								
End of Test Pit	<u>^.^.</u> ^.	_ 0	1								
(TP dry upon completion)											
								20	40 6	i i i i i i i i i i i i i i i i i i i	00
								Shea	ar Streng turbed △	th (kPa) Remoulded	

natersonar		ın	Con	sulting		SOIL	_ PRO	FILE AN		T DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T	9	μ	Eng	ineers	G	eotechnic roposed [al Invest Developn	igation nent - Eag	leson Road	at Ottawa	St.
EASTING: NORTHING):			ELEVA		t tawa, Or I: 94.48	ntario		FILE NO.	DO 404	•
DATUM: Ground surface elevatio	ns we	re refe	erence	ed to a	geod	detic datu	m.			PG4210	b
BORINGS BY: Hydraulic Shovel		1		[DATE:	2019 F	- ebruary	27	HOLE NO.	TP 3	1
SAMPLE DESCRIPTION	PLOT		SAN	MPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blov 0 mm Dia. (vs/0.3m Cone	CTION
	IRATA	ТҮРЕ	JMBER	% coverv	VALUE r RQD	(,	(,	• v	later Conte	ent %	IEZOME
Ground Surface	S		ž	RE	z°	- 0-	-94.48	20	40 60	80	°₽
TOPSOIL	0										
<u></u>											
		G	1							>1	30
		G	2			1-	-93.48				
Very stiff, brown SILTY CLAY											
- grey by 1.6m depth											
		G	3								
						2-	-02 /8				
						2	52.40				
0.5		G	4								
2. <u>0</u>		•									
		G	5								
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and						3-	-91.48				
boulders											
<u>3.5</u>	0	G	6								
End of Test Pit											
(Water infiltration at base of test pit)											
								20 Shea	40 60 ar Strength	80 1 (kPa)	00
								▲ Undist	turbed $\triangle R$	emoulded	

natersonar		ır	Con	sulting	,	SOIL	- PRO	FILE AI	ND TES	T DATA	
patersongi			Eng	ineers	G Pi	eotechnic roposed E	al Invest Developn	tigation nent - Eag	leson Roa	d at Ottawa	St.
9 Auriga Drive, Ottawa, Ontario K2E 71	9				0	ttawa, Or	ntario .				
DATUM: Ground surface elevation	ns we	re refe	erence	ed to a	geod	detic datu	m.		FILE NO.	PG421	6
REMARKS: BORINGS BY: Hvdraulic Shovel						: 2019 F	- ebruarv	27	HOLE NO.	TP 4	
	ОТ		SAN	IPLE			,	Pen. R	esist. Blo	ws/0.3m	~ Z
SAMPLE DESCRIPTION	A PL(~	2		DEPTH (m)	ELEV. (m)	• 5	0 mm Dia.	Cone	IETER JCTIO
	RAT/	YPE	MBEF	% OVEF	RQD			• v	later Cont	tent %	EZON
Ground Surface	ST	F	NN	REC	z s	0	-03 63	20	40 60	80	COP
TOPSOIL							90.00				
<u>0.3</u>											
		G	1							>1	30
			2			1-	-92.63			>1	 30 ⊈
			2								
Very stiff, brown SILTY CLAY		G	3							>1	30
		G	4			2-	-91.63				
			5								
			5								
- grey by 2.8m depth						3-	-90.63				
		G	6								
3.7	0	G	7								
End of Test Pit		T									
(Groundwater infiltration at 1.0m depth)											
								20 Shea	40 60 ar Strenati) 80 1 n (kPa)	oo
								▲ Undist	turbed Δ	Remoulded	

natersona	ıır	Con	sulting		SOIL	- PRO	FILE AI	ND TES	T DATA				
9 Auriga Drive, Ottawa, Ontario K2E		ЧР	Eng	ineers	Ge Pr	eotechnic oposed E	al Invest Developn	tigation nent - Eag	leson Roa	nd at Ottawa	St.		
EASTING: NORTH	ling:			ELEVA		tawa, Or : 94.28	ntario		FILE NO.	DC 494	6		
DATUM: Ground surface eleva REMARKS:	ations w	ere ref	erence	ed to a	geod	letic datu	m.		HOLE NO	PG421	0		
BORINGS BY: Hydraulic Shovel				D	ATE:	2019 F	ebruary	27		TP 5			
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH	ELEV.	Pen. R ● 50	esist. Blo 0 mm Dia	ows/0.3m . Cone	TER		
	RATA	YPE	MBER	% OVERY	RQD	(11)	(11)	• v	later Con	tent %	EZOME		
Ground Surface	ST		N	REC	Z S	0-	-04 28	20	40 60	0 80			
TOPSOIL						0-	-94.20						
'	0.30	Ð											
		G	1							>1	30		
Very stiff, brown SILTY CLAY		G	2			1-	-93.28			>1	30		
- grey-brown by 1.0m depth											₽		
		G	3										
- grey by 1.8m depth						0	00.00						
		G	4			Ζ-	-92.28						
		G	5										
						3-	-91.28				-		
		G	6										
	<u>3.50</u>	G	7								_		
End of Test Pit													
3.50m depth													
(Groundwater infiltration at 1.2m													
								20 Shea	40 60 ar Strengt	0 80 1 h (kPa)	UU		
								Undist	turbed △	Remoulded			
patersong	SOIL PROFILE AND TEST DATA												
--	----------------------------	----------	--------	---------	--	----------------------------	---------	------------	------------------------------	------------------------	------------	--	--
	779		Eng	ineers	Geotechnical Investigation Proposed Development - Eagleson Road at Ottawa St.								
EASTING: NORTHI	NG:			ELEVA		tawa, Or : 94.03	ntario		FILE NO.				
DATUM: Ground surface elevat	ions we	ere refe	erence	ed to a	geod	letic datu	m.			PG421	6		
BORINGS BY: Hydraulic Shovel		1		D	ATE:	2019 F	ebruary	27	HOLE NO.	TP 6			
	ГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. R	Resist. Blow	s/0.3m	ION NOI		
SAMPLE DESCRIPTION	TAP		ER	ERY	۳a	(m)	(m)	• 5	u mm Dia. C	one	RUCT		
	TRA	ТҮРІ	IUMB	scovi	I VAL or RQ			• v	later Contei	nt %	PIEZC		
Ground Surface	0)		2	R	2	0-	-94.03	20	40 60	80	Ö		
TOPSOIL	.30												
											-		
		G	1										
Very stiff to stiff, brown SILTY		G	2			1-	-93.03			>1	30		
CLAY													
		G	3										
- firm and grey by 1.8m depth											¥		
		G	4			2-	-92.03						
			5										
2	80		5										
						3-	-91.03				-		
		G	6										
GLACIAL TILL: Grey silty clay													
boulders		G	7										
<u>3</u> . End of Test Pit	.80												
Practical refusal to excavation at													
3.80m depth													
(Groundwater infiltration at 1.8m depth)													
								20	40 60	80 1	00		
								Shea	ar Strength (turbed △ Re	kPa) moulded			

	In	Con	sulting		SOIL	- PRO	FILE AND TEST DATA
		Engi	ineers	G Pi O	eotechnic roposed E ttawa. Or	al Invest Developn ntario	tigation nent - Eagleson Road at Ottawa St.
is wei	e refe	erence	ELEVA ed to a		I: 94.46	m	FILE NO. PG4216
	0 1010		.u to u		2010 5	 	HOLE NO. 27 TP 7
Б		SAM	IPLE	AIL.	20131	ebidary	Pen. Resist. Blows/0.3m
A PL(~	RY	ш _	DEPTH (m)	ELEV. (m)	● 50 mm Dia. Cone
TRAT	түре	UMBE	cove	VALU or RQE			• Water Content %
S		z	RE	z	- 0-	-94.46	20 40 60 80 3
	G	1					
	_						
	_ G	2			1-	-93.46	
	_						
	_	0					
	_ G	3					
	_				2-	-92.46	
	G	4					
	G	5					
	G	6			3-	-91.46	
	_						
	– G	7					
	-	-					
							20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded
		S were references	Severe references Severe references SAM BAL BAL BAL BAL BAL BAL BAL BAL	OUDEngineers ELEVA swere referenced to a Image: Consulting transmission of the system of the	OUD Consulting Recevent of a construction swere referenced to a good Image: state of a construction of a cons	SOIL SOIL Geotechnic Proposed I OUDPENDING ELEVATION: 94.46 swere referenced to a geodetic datu DATE: 2019 F Image: Sample DEPTH Image: Sample DEPTH Image: Sample Image: Sample DEPTH Image: Sample Image: Sample Image: Geotechnic Gotechnic Image: Sample	SOLL PRO SOLL PRO SOLL PRO Geotechnical Invest Proposed Developm Ottawa, Ontario ELEVATION: 94.46 Is were referenced to a geodetic datum. DATE: 2019 February TOTAL TARAN TARA

natersonar		ın	Con	sulting		SOIL	- PRO	FILE AI		T DATA		
9 Auriga Drive, Ottawa, Ontario K2E 7T	÷	μ	Eng	ineers	Geotechnical Investigation Proposed Development - Eagleson Road at Ottawa St.							
EASTING: NORTHING	:			ELEVA		: 94.53	itario		FILE NO.	DC/21	6	
DATUM: Ground surface elevation REMARKS:	ns we	re refe	erence	ed to a	geod	letic datu	m.			PG4210	0	
BORINGS BY: Hydraulic Shovel		1		D	ATE:	2019 F	ebruary	27		TP 8	1	
SAMPLE DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. R ● 50	esist. Blov 0 mm Dia.	ws/0.3m Cone	TER	
	RATA	ζPE	ABER VERY		ALUE RQD	(m)	(11)		later Cont	ent %	ZOME:	
Ground Surface	STF	ĥ.	NUN	RECO	N N		04 52	20 40 60 80				
TOPSOIL						0-	-94.53					
<u>0.30</u>												
		G	1									
Very stiff, brown SILTY CLAY						1-	-93 53					
- grey-brown by 0.8m depth		G	2				00.00					
- grey by 1.4m depth												
		G	3									
		-										
						2-	-92.53				Į Į	
		G	4									
		G	5									
2.80		1									-	
						3-	-91.53				-	
		G	6									
GLACIAL TILL: Grey silty clay with sand, gravel, cobbles and												
boulders		G	7									
3.80 End of Test Pit												
Practical refusal to excavation at 3.80m depth												
(Groundwater infiltration at 1.9m depth)												
								20 Shea ▲ Undist	40 60 ar Strength turbed △ F	80 10 (kPa) Remoulded	 00	

natersonar		ır	Con	sulting		SOIL	- PRO	FILE AN	D TEST	DATA	
9 Auriga Drive, Ottawa, Ontario K2E 7T9	Geotechnical Investigation Proposed Development - Eagleson Road at Ottawa St. Ottawa Ontario										
EASTING: NORTHING:				ELEVA		1: 97.18	itario		FILE NO.	PG4216	3
DATUM: Ground surface elevation REMARKS :	s wei	re refe	erence	ed to a	geod	detic datu	m.	-	HOLE NO.		,
BORINGS BY: Hydraulic Shovel				[DATE:	2019 F	-ebruary	27		TP 9	
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH	ELEV. (m)	Pen. Re	sist. Blow mm Dia. C	s/0.3m one	ETER CTION
	RATA	түре	JMBER	% SOVER	VALUE r RQD			○ Wa	iter Conter	nt %	IEZOME NSTRU
Ground Surface	S		ž	REC	z °	- 0-	-97 18	20	40 60	80	⊡ ⊡ C
TOPSOIL							01110				
Brown SILTY SAND with rootlets											
GLACIAL TILL: Brown silty sand						1-	-96.18				
some clay											
1.80		G	1								
End of Test Pit											
Practical refusal to excavation at 1.80m depth											
(TP dry upon completion)											
								20 Shear ▲ Undistur	40 60 Strength (rbed △ Rei	80 10 kPa) moulded	00

naterson	n	Ir	Cons	ulting		SOIL	_ PRO	FILE AN	ND TES	T DATA	
9 Auriga Drive, Ottawa, Ontario K2	neers	Geotechnical Investigation Proposed Development - Eagleson Road at Ottawa St.									
EASTING: NOR	THING:	ro rof	oronoo	ELEVA		: 97.48			FILE NO.	PG421	6
REMARKS:	valions we	le lei	erence	uioaų	Jeou	elic dalu	[[].		HOLE NO.		
BORINGS BY: Hydraulic Shovel				D,	ATE:	2019 F	- ebruary	27		TP 9A	
SAMPLE DESCRIPTION	PLOT		SAM	PLE		DEPTH	ELEV.	Pen. R ● 50	lesist. Blo 0 mm Dia.	ws/0.3m Cone	TER
	RATA	LYPE	MBER	% OVER				• N	later Cont	tent %	EZOME
Ground Surface	ST		N	REC	źō	0.	07 49	20	40 60	80	GP
TOPSOIL Brown SILTY SAND, trace rootlets	0.30					0-	-97.48				
		*				1-	-96.48				
GLACIAL TILL: Light brown to grey silty sand with clay, gravel, cobbles and boulders											
End of Test Pit	_ <u>2.40</u>					2-	-95.48				
Practical refusal to excavation at 2.40m depth											
(TP dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strengtl turbed △) 80 10 h (kPa) Remoulded	00

natorsonar		ın	Con	sulting		SOIL	_ PRO	FILE AN		ST DATA		
9 Auriga Drive, Ottawa, Ontario K2E 7T9		μ	Eng	ineers	Geotechnical Investigation Proposed Development - Eagleson Road at Ottawa St.							
EASTING: NORTHING:		ro rofe	ropor	ELEVA		95.63			FILE NO.	PG421	6	
REMARKS:	s wei	ereie	erence		yeou	elic ualu			HOLE NO).		
BORINGS BY: Hydraulic Shovel				D	ATE:	2019 F	-ebruary	27		TP10		
SAMPLE DESCRIPTION	PLOT		SAN			DEPTH	ELEV.	Pen. R ● 50	esist. Bl) mm Dia	ows/0.3m . Cone	CTION	
	IRATA	түре	JMBER	% SOVERY	VALUE r RQD	(,		• v	itent %	IEZOME		
Ground Surface	S		й	REC	z °	0-	-05.63	20	40 6	0 80	ч С С Р	
TOPSOIL 0.35 Very stiff, red-brown SILTY 0.65 GLACIAL TILL: Brown silty sand 0.90 End of Test Pit 0.90 Practical refusal to excavation at 0.90m depth 0.90 (TP dry upon completion) 0.90		G	1 2			0-	-95.63					
								20 Shea ▲ Undisi	40 6 ar Strengt turbed △	0 80 1 t h (kPa) Remoulded	00	

natersona	Ir	Con	sulting	SOIL PROFILE AND TEST DATA									
9 Auriga Drive, Ottawa, Ontario K2E	7T9		Eng	ineers	Geotechnical Investigation Proposed Development - Eagleson Road at Ottawa St. Ottawa. Ontario								
EASTING: NORTHI	NG:			ELEV		N: 94.45			FILE NO.	PG421	6		
DATUM: Ground surface elevat REMARKS:	ions we	re refe	erence	ed to a	geo	detic datu	m.		HOLE NO.				
BORINGS BY: Hydraulic Shovel				I	DATE	: 2019 F	-ebruary	27		TP11			
SAMPLE DESCRIPTION	PLOT		SAN	MPLE ►		DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. Blov 0 mm Dia.	ws/0.3m Cone	ETER CTION		
	FRATA	ТҮРЕ	IYPE		VALUE r RQD			• v	later Cont	ent %	IEZOMI		
Ground Surface	<u></u>		ž	REC	z °	- 0-	-94.45	20	40 60	80	₽S		
FILL: Sand with cobbles	.25	XXX					00				-		
		G	1			1-	-93.45						
GLACIAL TILL: Loose to													
with clay, gravel, cobbles and													
		G	2										
							00.45						
		G	3			Z-	-92.45						
		G	4										
2	.80												
End of Test Pit													
2.80m depth													
(TP dry upon completion)													
								20	40 60	80 1	 00		
								Snea ▲ Undis	turbed \triangle F	r (KPa) Remoulded			

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

- SS Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.
- P Split-spoon pushed through sampling interval which was also tested using a vane apparatus and resulted in a obtaining a sample of disturbed material (i.e., blow-counts not reflective of undisturbed, in-situ soils and not considered relevant)

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic limit, % (water content above which soil behaves plastically)
PI	-	Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and (Cu are i	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'c / p'o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill ∇ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PIEZOMETER CONSTRUCTION

	• 	Development - Eagleson Road at Ottawa St.										
	т.	Taggart C	onstruction	tion - I	Prono	FILE NO. PG4216						
							· · ·					
	Ψ	Ι٣Ŏ	65	54	20	29		on - morganic clays of high plasticity				
	⊗ ⊕	ТР 7 тр 9	G 6	27 54	21	6 20		CL-ML - Inorganic silt with some clay with lo	w plas			
		TP 6	G 5	36	19	17		CL - Inorganic clay with low plasticity				
	0	TP 5	G 6	52 51	21	28		CH - Inorganic clays of high plasticity				
	0	TP 3	G 4	33 50	21 21	12		CL - Inorganic clay with low plasticity				
	*	TP 2	G 3	33	21	12		CL - Inorganic clay with low plasticity				
		BH 8	SS 2	29	19	10		CL - Inorganic clay with low plasticity				
		BH 2 BH 3	SS 2 SS 3	35 29	21 19	14 10		CL - Inorganic clay with low plasticity CL - Inorganic clay with low plasticity				
	S	pecimen lo	dentification		PL	PI	Fines	Classification				
			1			LIQ		· (LL)				
0 ()		20		40			60 80 100				
_	CL	-ML				ML)	MH					
10				8								
20						$ \land$	-					
							_/					
30												
40												
50							\smile					
00					(CL)	(CH)					
60	_	1			1							

Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 25710

Report Date: 27-Dec-2018

Order Date: 19-Dec-2018

Project Description: PG4216

			_		
	Client ID:	BH8-SS3	-	-	-
	Sample Date:	12/17/2018 15:00	-	-	-
	Sample ID:	1851341-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics	S				
% Solids	0.1 % by Wt.	89.5	-	-	-
General Inorganics					
рН	0.05 pH Units	7.94	-	-	-
Resistivity	0.10 Ohm.m	96.9	-	-	-
Anions					
Chloride	5 ug/g dry	6	-	-	-
Sulphate	5 ug/g dry	<5	-	-	-

APPENDIX 2

FIGURE 1 - KEY PLAN GROUNDWATER MONITORING LEVELS DRAWING PG4216-2 - TEST HOLE LOCATION PLAN DRAWING PG4216-3 - PERMISSIBLE GRADE RAISE PLAN DRAWING PG4216-4 - BEDROCK CONTOUR PLAN DRAWING PG4216-5 - DESIGNATED SILTY CLAY AREAS

FIGURE 1

KEY PLAN

utocad drawings\geotechnical\pg42xx\pg4216\pg4216\pg4216-2-test hole location plan (rev.04) (march 2025).dwg

	Scale:		Date:
		1:5000	02/2020
	Drawn by:		Report No.:
		RCG	PG4216-1
ONTARIO	Checked by:		Dwg. No.:
		KP	DC/216 5
	Approved by:		F G4210-5
		FA	Revision No.: 3