Caivan Communities

2275 Mer-Bleue

2275 Mer-Bleue Road

Transportation Impact Assessment

Step 1 Screening Report Step 2 Scoping Report Step 3 Forecasting Report Step 4 Strategy Report

Prepared for:

Caivan Communities 2934 Baseline Road, Suite 302 Ottawa, ON K2H 1B2

Prepared by:

13 Markham Avenue Ottawa, ON K2G 3Z1

January 2021

PN: 2020-82

Table of Contents

1	Screening	1
2	Existing and Planned Conditions	1
2.1	Proposed Development	1
2.2	Existing Conditions	3
2	2.1 Area Road Network	3
2	2.2 Existing Intersections	3
2	2.3 Existing Driveways	5
2	2.4 Cycling and Pedestrian Facilities	5
2	2.5 Existing Transit	7
2	2.6 Existing Area Traffic Management Measures	8
2	2.7 Existing Peak Hour Travel Demand	8
2	2.8 Collision Analysis	11
2.3	Planned Conditions	13
2	B.1 Changes to the Area Transportation Network	13
2	B.2 Other Study Area Developments	
3	Study Area and Time Periods	24
3.1	Study Area	24
3.2	Time Periods	
3.3	Horizon Years	
4	Exemption Review	
5	Development-Generated Travel Demand	25
5.1	Trip Generation and Mode Shares	
5.2	Trip Distribution	
5.3	Trip Assignment	
6	Background Network Travel Demands	
6.1	Transportation Network Plans	
6.2	Background Growth and Other Developments	
7	Demand Rationalization	
8	Development Design	
8.1	Design for Sustainable Modes	
8.2	Circulation and Access	
8.3	New Street Networks	
9	Parking	
9.1	Parking Supply	
9.2	Spillover Parking	
10	Boundary Street Design	
11	Access Intersections Design	
11.	Location and Design of Access	
11.	Access Intersection Control	
11.	Access Intersection Design	
12	Transportation Demand Management	
12.	Context for TDM	37

12.2		d and Opportunity	
12.3	TDM	1 Program	37
13	Neigh	bourhood Traffic Management	38
13.1	Dece	oeur Drive	38
13.2	Scul	pin Street	39
14	Transi	it	39
14.1	Rou	te Capacity	39
14.2	Trar	nsit Priority	39
15	Review	w of Network Concept	39
16	Netwo	ork Intersection Design	40
16.1	Net	work Intersection Control	40
16.2	Netv	work Intersection Design	40
16	5.2.1	Existing Conditions	40
16	5.2.2	2024 Future Background Operations	41
16	5.2.3	2024 Future Total Operations	43
16	5.2.4	2029 Future Background Operations	44
16	5.2.5	2029 Future Total Operations	45
16	5.2.6	Network Intersection MMLOS	46
17	Recon	nmendations	46
18	Conclu	usions	47

List of Figures

Figure 1: Area Context Plan	1
Figure 2: Concept Plan	2
Figure 3: Study Area Pedestrian Facilities	6
Figure 4: Study Area Cycling Facilities	6
Figure 5: Existing Study Area Transit Service	7
Figure 6: Existing Study Area Transit Stops	8
Figure 7: 2020 Existing Horizon Traffic Volumes and Traffic Controls	9
Figure 8: Existing Pedestrian Volumes	. 10
Figure 9: Existing Cycling Volumes	. 11
Figure 10: Study Area Representation of Collision Locations	. 12
Figure 11: 2025 Mer-Bleue Phases 1-3 Site Generated Volumes	. 14
Figure 12: 2025 Mer-Bleue Future Phase Site Generated Volumes	. 15
Figure 13: 2405 Mer-Bleue Site Generated Volumes-AM	
Figure 14: 2405 Mer-Bleue Site Generated Volumes-PM	. 17
Figure 15: Summerside West Phase 4-6 Site Generated Volumes - Phase 5 & 6	. 18
Figure 16: TrailsEdge East Development Generated Volumes	. 19
Figure 17: 2225 Mer-Bleue Road Development Generated Traffic Volumes	. 20
Figure 18: 2159 Mer-Bleue Road 2024 Development Generated Traffic Volumes	. 21
Figure 19: 2159 Mer-Bleue Road 2029 Development Generated Traffic Volumes	. 22
Figure 20: 2168 Tenth Line Development Generated Traffic Volumes	. 23
Figure 21: New Site Generated Auto Volumes	. 27

Figure 22: Future Background 2024 Volumes	29
Figure 23: Future Background 2029 Volumes	29
Figure 24: Future Total 2024 Volumes	30
Figure 25: Future Total 2029 Volumes	31
Figure 26: Concept Pedestrian Network – Townhouse Component	32
Figure 27: Traffic Calming Plan – Townhouse Component	34

Table of Tables

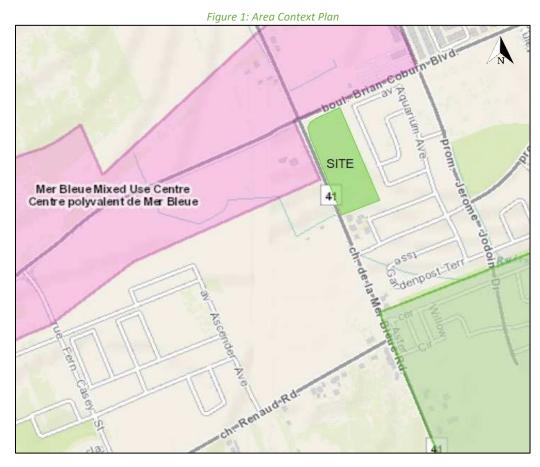
Table 1: Intersection Count Dates and Data Sources	8
Table 2: Summary of Collision Locations	12
Table 3: Collision Summary	12
Table 4: Exemption Review	24
Table 5: Trip Generation Person Trip Rates	25
Table 6: Total Person Trip Rates	25
Table 7: Internal Capture Rates	25
Table 8: Total Net Person Trip Generation	
Table 9: Mode Share	
Table 10: Trip Generation by Mode	
Table 11: OD Survey Existing Directional Split Orleans	27
Table 12: Parking Provisions – Mixed Use Component	35
Table 13: Boundary Street MMLOS	35
Table 14: Throat Length by Land Use	37
Table 15: Decoeur Drive Volumes - NTM Review	38
Table 16: Sculpin Street Volumes - NTM Review	39
Table 17: Trip Generation by Transit Mode	39
Table 18: Existing Intersection Operations	41
Table 19: 2024 Future Background Intersection Operations	42
Table 20: 2024 Future Total Intersection Operations	43
Table 21: 2029 Future Background Intersection Operations	44
Table 22: 2029 Future Total Intersection Operations	45
Table 23: Study Area Intersection MMLOS Analysis—All Horizons	

List of Appendices

- Appendix A TIA Screening Form and Certification Form
- Appendix B Turning Movement Count Data
- Appendix C Collision Data
- Appendix D Mer-Bleue Rd. at Decoeur Dr. Proposed Intersection Improvements TrailsEdge East CTS
- Appendix E Brian Coburn Blvd. at Jerome Jodoin Dr. Proposed Intersection Improvements PIED Report
- Appendix F ITE Internal Capture Rates
- Appendix G TDM Checklists
- Appendix H MMLOS Worksheets
- Appendix I Signal Warrants

Appendix J – HV% Calculations

- Appendix K Synchro and Sidra 2020 Existing Worksheets
- Appendix L 2024 Future Background Synchro and Sidra Worksheets
- Appendix M 2024 Future Total Synchro and Sidra Worksheets
- Appendix N 2029 Future Background Synchro and Sidra Worksheets
- Appendix O 2029 Future Total Synchro Worksheets


1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact Component.

2 Existing and Planned Conditions

2.1 Proposed Development

The proposed development, located at 2275 Mer-Bleue Road, is currently zoned General Mixed Use (GM15[2156] S330-H). The existing land is currently undeveloped. The proposed development consists of 32 back-to-back townhouse units, 80 standard townhouse units, and a 0.75 hectare mid-rise mixed-use development block. The site is proposed to have two accesses. The first (Site Access #1) will serve the townhouses only and will be provided through the residential development to the south and out to Mer-Bleue Road at Decoeur Drive. Decour Drive is a full-movement intersection and is approximately 430 metres south of Brian Coburn Boulevard and 310 metres north of Renaud Road. The second (Site Access #2) will be a right-in / right-out access on Brian Coburn Boulevard, and will serve the mid-rise mixed-use development block only. The access configuration and location will be discussed in further steps of the TIA. The anticipated full build-out and occupancy horizon is 2024. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

DRAFT

- All Units In Metric Unless Otherwise Noted.
 Base Information Obtained From Various Sources And Is Approximate.
 Schedule / Plan Information Is Conceptual And Requires Verification by Appropriate Agency.
 Aerial Photo: Google Earth, Approx. Spring 2018

CAIVAN 2075 MER BLEUE | Ottawa, Ontario
PRELIMINARY LOTTED CONCEPT

2.2 Existing Conditions

2.2.1 Area Road Network

Mer-Bleue Road

Mer-Bleue is a City of Ottawa arterial road with a four-lane cross-section within the majority of the Study Area and a two-lane cross-section extending south at approximately 200 metres north of Renaud Road. The posted speed limit is 60 km/h north of Renaud Road and 50 km/h south of Renaud Road. Mer-Bleue Road has asphalt and gravel shoulders in conjunction with the two-lane cross section and switches to curbs and gutters where it widens to four lanes. Bike lanes and sidewalks are present where Mer-Bleue is four lanes. No cycling or pedestrian infrastructure is provided for the section of Mer-Bleue that is two lanes. The Ottawa Official Plan reserves a 37.5 metre right of way. Mer-Bleue is designated as a partial trucking route to the north of Brian Coburn Boulevard.

Brian Coburn Boulevard

Brian Coburn Boulevard is a City of Ottawa arterial road that has a two-lane cross-section with intermittent leftturn lanes east of Mer-Bleue Road and a posted speed-limit of 60 km/h to the east of Mer-Bleue Road and 70 km/h to the west of Mer-Bleue Road. Brian Coburn Boulevard has curbs and gutters within the Study Area. To the west of Mer-Bleue Road, a bike lane is provided on the north side and a multi-use pathway is provided on the south side. To the east Mer-Bleue Road, a sidewalk is provided on the north side and a bike plan is also provided on the north side between Mer-Bleue Road and Gerry Lalonde Drive / Jerome Jodoin Drive. The City Official Plan reserves a 40.0 metre right-of-way. Brian Coburn Boulevard is designated as a partial trucking route.

Gerry Lalonde Drive / Jerome Jodoin Drive

Gerry Lalonde Drive is a City of Ottawa collector road with a two-lane cross section to the north of Brian Coburn Boulevard and posted speed limit of 50 km/h. Information on Jerome Jodoin Drive is unknown as it is being constructed and is currently a gravel road used by construction vehicles only. Gerry Lalonde Drive has curbs and gutters and sidewalks on both sides of the road. Room for on-street parking is provided on both sides of the street. The measured right-of-way is 24.0 metres.

Renaud Road

Renaud Road is a City of Ottawa collector road with a two-lane cross-section and a posted speed limit of 50 km/h. Gravel shoulders are present on both sides of the road and no pedestrian or cycling facilities are provided. The City of Ottawa Official Plan reserves a 24.0 metre right-of-way.

2.2.2 Existing Intersections

A description and accompanying aerial photograph of the existing intersections within the Study Area can be found below.

Mer-Bleue Road at Brian Coburn Boulevard

The intersection of Mer-Bleue Road and Brian Coburn Boulevard is an unsignalized, two-lane, four-leg roundabout. The north and south approaches are both two lanes and consist of a shared left-turn through lane and a shared through / right-turn lane. The east and west approaches are single lanes and are both shared left-turn / through / right-turn movements. All approaches must vield to traffic within the roundabout. The speed limit within the roundabout is 30 km/h. No turn restrictions were noted.

Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive

The intersection of Brian Coburn Boulevard and Gerry Lalonde Dive / Jerome Jodoin Drive is an unsignalized intersection with stopcontrol on the north and south approaches. The south leg is currently used as a construction access only and is assumed to be a single lane consisting of a shared left-turn /through / right-turn movement. The north and east approach consist of a shared left-turn / through / right-turn lane. The west approach has an auxiliary left-turn lane and a shared through / right-turn lane. No turn restrictions were noted.

Renaud Road at Mer-Bleue Road

The intersection of Renaud Road and Mer-Bleue Road is an unsignalized Tintersection with stop-control for all three legs. The south approach consists of a shared left-turn / through lanes, the north approach has a shared through / right-turn lane and the west approach has a shared left-turn / right-turn lane. No turn restrictions were noted.

2.2.3 Existing Driveways

Existing driveways are located along Brian Coburn Boulevard and Mer-Bleue Road within 200 metres of the proposed site accesses. All existing driveways are residential accesses and driveways to existing and future residential developments. Any significant traffic generation from these driveways and accesses will be considered in the background traffic of future scenarios and explored further in Section 2.3.2.

2.2.4 Cycling and Pedestrian Facilities

Sidewalks are provided along Mer-Bleue Road to the north and south of Brian Coburn Boulevard and stop approximately 200 metres north of Renaud Road (not shown below). Sidewalks are provided on the north side of Brian Coburn Boulevard to the east of Mer-Bleue Road as well as on both sides of Gerry Lalonde Drive. The cycling network consists of bike lanes to the north and south of Brian Coburn Boulevard which stop approximately 200 metres north of Renaud Road. Brian Coburn Boulevard has bike lanes on the north side to the west of Mer-Bleue Road and to the east it has bike lanes which stop at Gerry Lalonde Drive. A multi-use pathway on the south side of Brian Coburn Boulevard is present west of Mer-Bleue Road and Renaud Road is considered a local route. Figure 3 illustrates the pedestrian facilities in the Study Area and Figure 4 illustrates the cycling facilities.

Source: <u>http://maps.ottawa.ca/geoOttawa/</u> Accessed: January 7, 2021

Figure 4: Study Area Cycling Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: January 7, 2021

2.2.5 Existing Transit

Within the Study Area, route #30 has four stops on Brian Colburn Boulevard between Mer-Bleue Road and Gerry Lalonde Drive with two of those stops almost directly beside the development site. Route #30 has four stops on Brian Colburn Boulevard to the east of Gerry Lalonde Drive with three of these stops also shared by route #234. Additionally, routes #30 and 302 share two stops on Mer-Bleue north of Brian Coburn Boulevard. The frequencies of these routes within the proximity of the proposed site currently are:

- Route #30— every 10-15 minutes in the peak directions, and every 30 minutes in the off-peak direction, off peak times and on weekends.
- Route #234— every 15 in the peak directions on weekdays. No weekend service.
- Route #302— Tuesdays at approximately 9:30 in the AM peak and 3:00 in the PM peak

Figure 5 illustrates the transit system map and Figure 6 illustrates the transit stops in the Study Area.

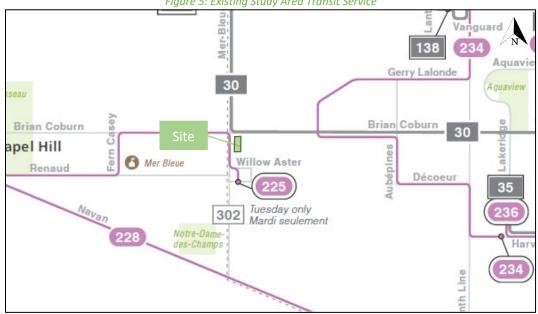
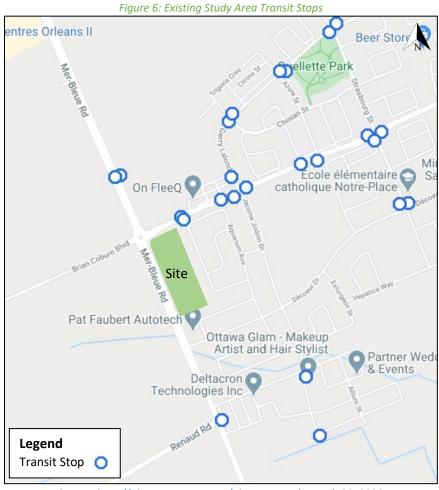



Figure 5: Existing Study Area Transit Service

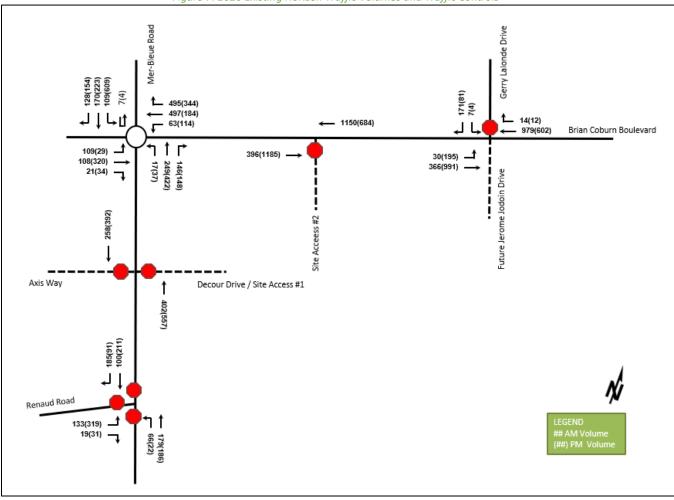
Source: http://maps.ottawa.ca/geoOttawa/ Accessed: March 30, 2020

Source: http://plan.octranspo.com/plan Accessed: March 30, 2020

2.2.6 Existing Area Traffic Management Measures

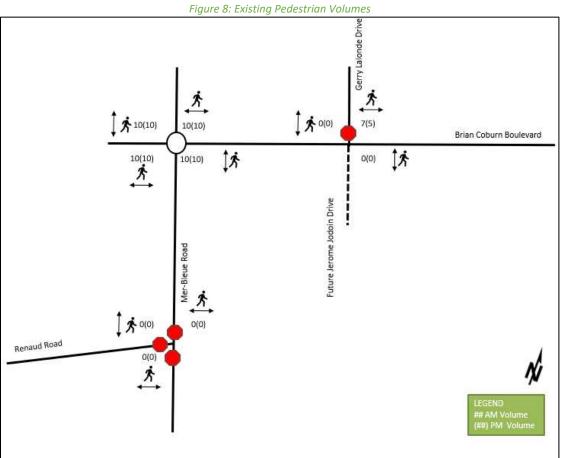
There are no existing area traffic management measures within the Study Area with the exception of a radar speed sign on Gerry Lalonde Drive facing northbound vehicles.

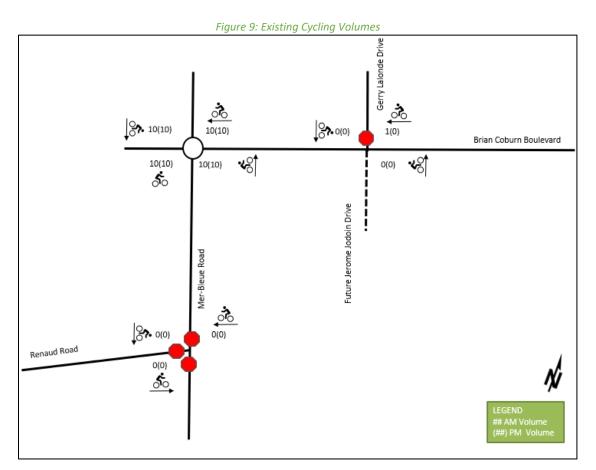
2.2.7 Existing Peak Hour Travel Demand


Existing turning movement counts were acquired for the existing Study Area intersections for both the AM and PM peak hours. Table 1 summarizes the intersection count dates and data sources.

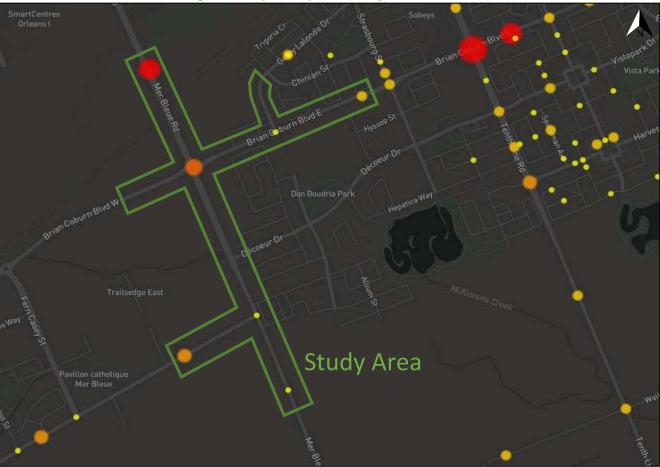
Intersection	Count Date	Data Source
Mer-Bleue Road at Brian Coburn Boulevard	December 2017	2225 Mer-Bleue Road TIS (HDR, 2018)
Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive	Wednesday October 17, 2018	City of Ottawa
Renaud Road at Mer-Bleue Road	Thursday November 15, 2018	City of Ottawa

Figure 7 illustrates the 2020 existing horizon traffic volumes and Table 18 summarizes the existing intersection operations. As shown above, the turning movement count data has been collected over different years. A background growth rate has been applied to the Study Area intersections to reflect a 2020 horizon and was determined based on adjacent transportation studies. A 1% annual growth rate was used in the following studies;


2025 Mer-Bleue Road Community Transportation Study (Stantec, 2017), Proposed TrailsEdge East Development Community Transportation Study (Castleglenn Consultants, 2016), and the Proposed Avalon West Community Development Phase 3 and 4 Addendum No. 2 Letter Report (Castleglenn Consultants, 2015). A 2% annual growth rate was used in the 2225 Mer-Bleue Road Transportation Impact Study (HDR, 2018). In order to reflect a conservative estimate of growth, a 2% background growth rate has been applied to the Study Area intersections. Detailed turning movement count data is included in Appendix B



Additionally, the collected intersection counts also provided existing pedestrian and cyclist demands at the two of the Study Area intersections for both AM and PM peak periods. Both pedestrian and cyclist volumes were not available at the intersection of Brian Coburn Road and Mer-Bleue Road and as such, an assumed conservative pedestrian volume of 10 pedestrians / hour and 10 cyclists / hour has been entered for each leg of the roundabout. Figure 8 illustrates the existing pedestrian volumes and Figure 9 illustrates the existing cyclist volumes at the Study Area intersections



2.2.8 Collision Analysis

Collision data has been acquired from the City of Ottawa for five years (2014-2018) prior to the commencement of this TIA for the surrounding Study Area road network. Figure 10 illustrates the collisions at the intersections and road segments within the Study Area and Table 2 summarizes the collisions at the intersections and road segments within the Study Area. Table 3 summarizes the collision types and conditions of the 38 collisions recorded in the Study Area. Collision data is included in Appendix C.

Elaura 10, Ctua	ly Aroa Donrocont	ation of	Collicion	Locations
rigure 10. Stuu	ly Area Represent	uuon o	COMSION	LOCULIONS

Intersection / Segment	Number	%
Intersection / Segment	38	100%
Brian Coburn Boulevard @ Mer-Bleue Road	9	23%
Brian Coburn Boulevard @ Gerry Lalonde Drive	3	8%
Renaud Road @ Mer-Bleue Road	3	8%
Brian Coburn Boulevard btwn Chaperal Private & Mer-Bleue Road	2	5%
Brian Coburn Boulevard btwn Fern Casey Street & Mer-Bleue Road	3	8%
Brian Coburn Boulevard btwn Gerry Lalonde Drive & Strasbourg Street	5	13%
Gerry Lalonde Drive btwn Brian Coburn Boulevard & Trigoria Crescent	3	8%
Mer-Bleue btwn 210 S of Innes Road & Renaud Road	6	16%
Mer-Bleue Road btwn Renaud Road & Du Palais Street	1	3%
Renaud Road btwn White Street & Mer-Bleue Road	3	8%

Table 3: Collision Summary

		Number	%
Total Collisions		38	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	5	13%
	Property Damage Only	33	87%
Initial Impact Type	Approaching	2	5%

	Angle	5	13%
	Rear end	13	34%
	Sideswipe	4	11%
	Turning Movement	3	8%
	SMV Unattended Vehicle	1	3%
	SMV Other	8	21%
	Other	2	5%
	Dry	26	68%
	Wet	6	16%
	Loose Snow	5	13%
Road Surface Condition	Slush	0	0%
	Packed Snow	0	0%
	Ice	1	3%
	Loose sand or gravel	0	0%
Pedestria	Pedestrian Involved		0%
Cyclists Involved		0	0%

Overall, no fatal collisions were documented in the Study Area and no collisions involving pedestrians or cyclists have been documented either. Of the 38 collisions recorded in the Study Area, 13% resulted in a non-fatal injury and the remaining 87% resulted in property damage only. The impact types are distributed throughout the various categories with the largest number of collisions, at 34%, found in the rear end impact type category. Weather/road conditions are considered a contributing factor for 32% of the collisions in the Study Area.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The subject development is within the Mer-Bleue Community Design Plan. As this design plan was published in 2006, many of the plans and recommendations have already been implemented or are no longer feasible. As such, applicable elements of the Ottawa Official Plan, Ottawa Transportation Master Plan, Ottawa Pedestrian Plan, and the Ottawa Cycling Plan have been used to identify changes to the area transportation network. The resulting changes to the road, pedestrian, and cycling network in the Study Area due to these plans are outlined below:

- As part of the 2031 Affordable Network, Brian Coburn Boulevard between Tenth Line Road and Blackburn Hamlet Bypass will be considered a Transit Priority Corridor (Isolated Measures). As a result, transit signal priority and queue jump lanes will be implemented. The exact timing of this is not clear.
- As part of the 2031 Affordable Network, Brian Coburn Boulevard between Navan Road and Mer-Bleue Road will be widened from a two to four-lane road. The exact timing of this is not clear.
- As part of the City of Ottawa Urban Road Network, Jerome Jodoin Drive has been designated as a future collector road. The exact timing of this is not clear.
- As part of the 2031 Ultimate Cycling Network, within the Study Area Mer-Bleue Road will be considered a spine route, Brian Coburn and Renaud Road will be considered a local route and a major pathway travelling north-south will intersect Brian Coburn Boulevard to the east of Gerry Lalonde Drive / Jerome Jodoin Drive. The exact timing of these have not been made clear.

While reviewing TrailsEdge East Development Community Transportation Study, it was noted that the signal warrants at Mer-Bleue Road and Axis Way / Decoeur Drive will be met in 2021 as a result of traffic generated by TrailEdge East and Avalon West developments. An excerpt from the Proposed TrailsEdge East Development

Community Transportation Study can be seen in Appendix D. Further, the Planning, Infrastructure, and Economic Development Department Report (March 2019) to City of Ottawa's Planning Committee and Council indicates that intersection of Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive will be upgraded to a single-lane roundabout and can be found in Appendix E. Thus, these intersections will be coded as a signalized intersection and a roundabout, respectively, for future horizon operational analysis purposes only and are required to be designed by others.

2.3.2 Other Study Area Developments

A few development applications were available for the adjacent properties as listed on the City's Development Application Search tool:

 2025 Mer-Bleue Road Phases 1-3 – The SmartREIT Orleans commercial development Phases 1 to 3 will have approximately 183,000 ft² GFA of retail space, 30,000 ft² GFA of restaurant space and 10,000 ft² GFA of bank developments. Full-build-out is expected by 2019. The anticipated trip generation from this site can be seen in Figure 11 and is an excerpt from the Orleans Commercial Development Transportation Impact Study prepared by Stantec Consulting Ltd.

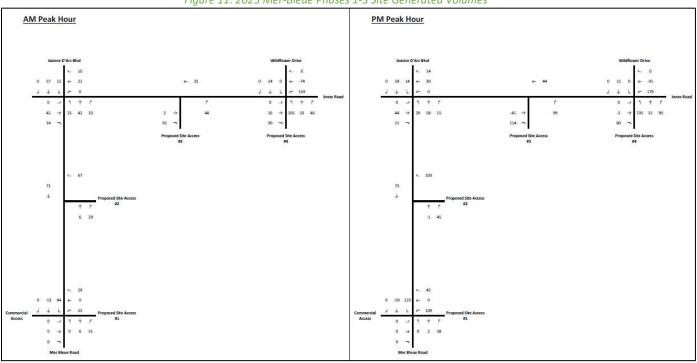
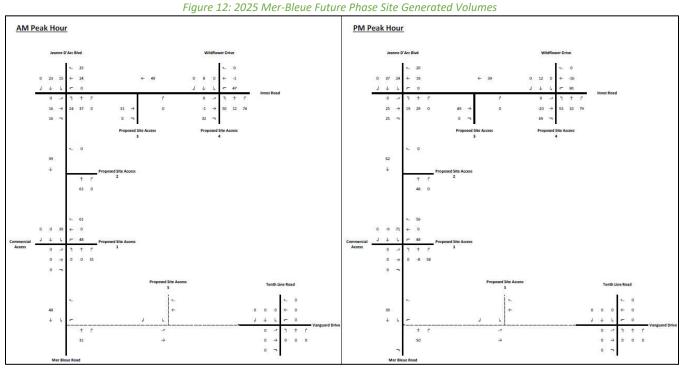



Figure 11: 2025 Mer-Bleue Phases 1-3 Site Generated Volumes

Source: Orleans Commercial Development Transportation Impact Study (Stantec Consulting, 2016)

 2025 Mer-Bleue Road Future Phase – The SmartREIT Orleans commercial development future phase will have approximately 42,000 ft² GFA of retail space, 14,000 ft² GFA of restaurant space and 118,000 ft² GFA of industrial space, 1200 apartment units, 350 senior housing units and a 256-bed assisted living building. Full-build-out is expected by 2026. The anticipated trip generation from this site can be seen in Figure 12 and is an excerpt from the 2025 Mer-Bleue Road Community Transportation Study prepared by Stantec Consulting Ltd.

Source: 2025 Mer-Bleue Road Community Transportation Study (Stantec Consulting, 2017)

 2405 Mer-Bleue Road / 2496 Tenth Line Road – The Summerside Phases 1 to 3 will have approximately 810 residential units consisting of 430 single family detached dwellings, 260 townhouse units and 210 apartment units. Full-build out is expected by 2020. The anticipated trip generation from this site can be seen in Figure 13 and Figure 14, and is an excerpt from the 2405 Mer-Bleue Transportation Impact Study prepared by Stantec Consulting Ltd.

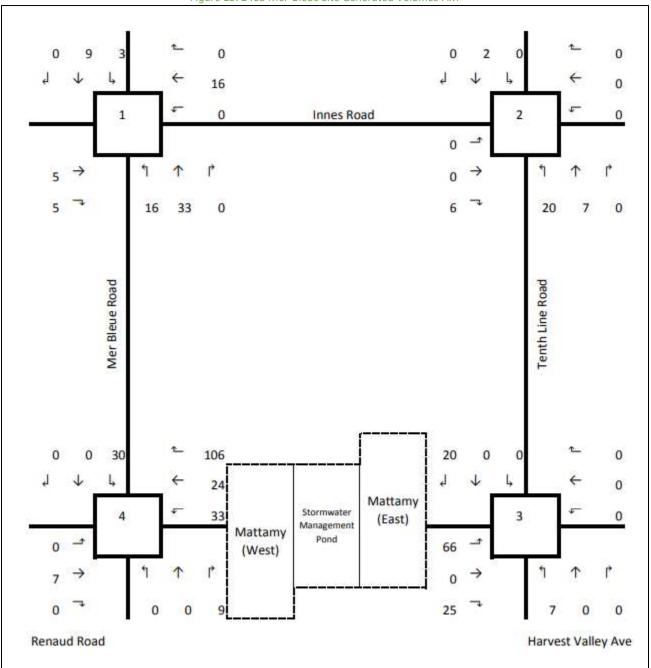


Figure 13: 2405 Mer-Bleue Site Generated Volumes-AM

Source: 2405 Mer-Bleue Road Transportation Impact Study (Stantec Consulting, 2014)

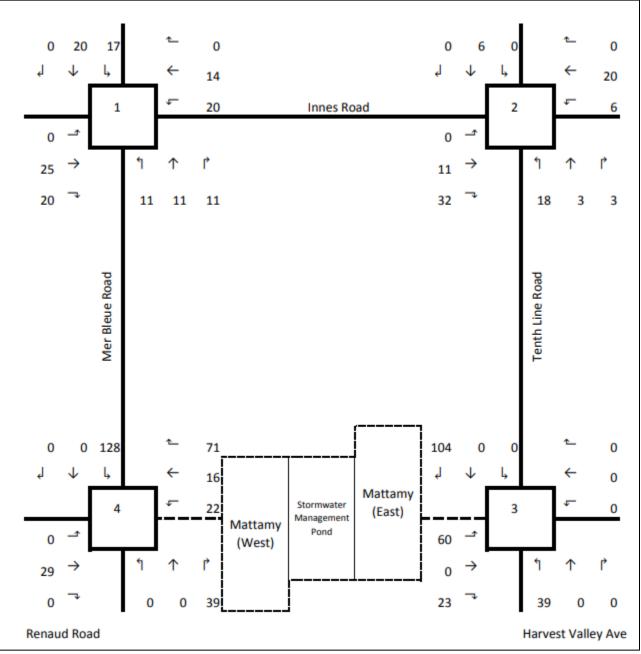
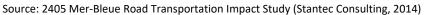
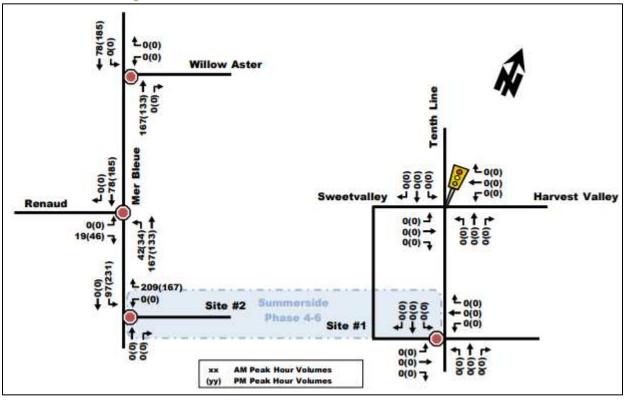




Figure 14: 2405 Mer-Bleue Site Generated Volumes-PM

2564 Tenth Line Road – The Summerside West Phases 5 to 6 will consist of 257 single family homes (Phase 5), and 236 townhomes (Phase 6). Full build out is expected to be 2024 for both Phase 5 and Phase 6. The anticipated trip generation from this site for Phase 5 and Phase 6 can be seen in Figure 15, and is an excerpt from the Summerside West Phase 4-6 Transportation Impact Assessment Strategy Report prepared by Parsons. The Phase 4 of the Summerside West development will not impact Study Area intersections and therefore has not been included in this study as one of the background developments.

Source: Summerside West Phase 4-6 TIA Strategy Report (Parsons, 2018)

• TrailsEdge East Development – approximately 900 residential units consisting of a mix of single, townhomes, and back-to-backs are to be completed by 2021. The anticipated trip generation from this site can be seen in Figure 16, and is an excerpt from the Proposed TrailsEdge East Development Community Transportation Study prepared by Castleglenn Consultants.

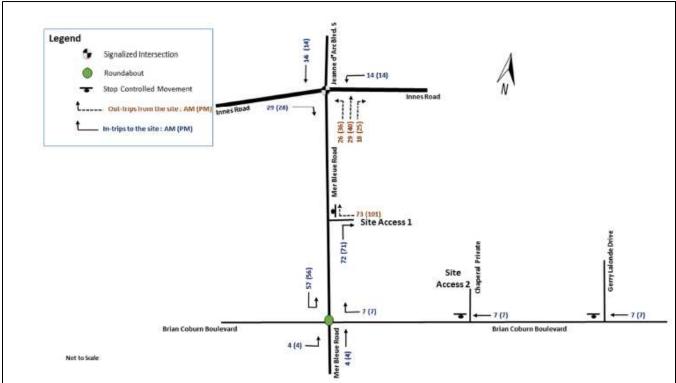



Figure 16: TrailsEdge East Development Generated Volumes

Source: Proposed TrailsEdge East Development Community Transportation Study (Castleglenn Consultants, 2016)

 2225 Mer-Bleue Road – the proposed Orleans Health Hub will be a 6040 square feet health services building with approximately 242 parking stalls and two site accesses. It is estimated that full-build out of this development will occur in 2021. The anticipated trip generation from this site can be seen in Figure 17 and is an excerpt from 2225 Mer-Bleue Road – Orleans Health Hub Transportation Impact Study prepared by HDR.

Source: 2225 Mer-Bleue Road Transportation Impact Study (HDR, 2018)

2159 Mer-Bleue Road – Blue Sea Village is a seven-block mixed use development with 45,000 square feet
of office space, 190,000 square feet of recreational space, 100 retirement residence units and 100
residential apartment units. One site access will be provided and full-build out is expected to occur in
2024. Trip distribution of this development will change once future Vaughan Drive extension is built in
2029, allowing southbound left turns into the site. The anticipated 2024 and 2029 trip distribution from
this site can be seen in Figure 18 and Figure 19, respectively and are excepts from the 2159 Mer-Bleue
Road Blue Sea Village Transportation Impact Assessment prepared by D.J. Halpenny & Associates Ltd.

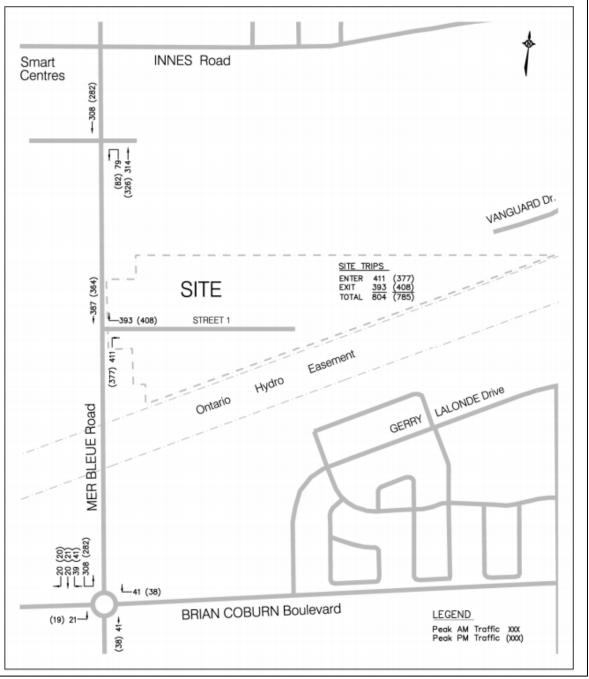


Figure 18: 2159 Mer-Bleue Road 2024 Development Generated Traffic Volumes

Source: 2159 Mer-Bleue Road Transportation Impact Assessment (D.J. Halpenny & Associates Ltd., 2018)

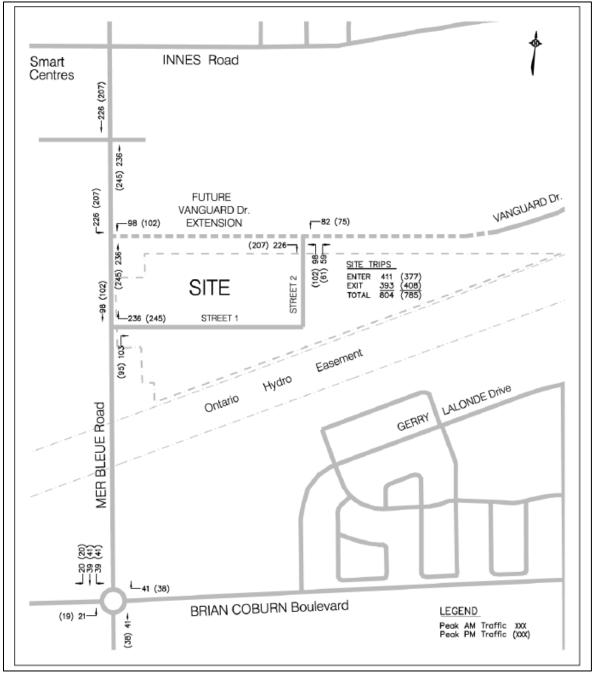


Figure 19: 2159 Mer-Bleue Road 2029 Development Generated Traffic Volumes

Source: 2159 Mer-Bleue Road Transportation Impact Assessment (D.J. Halpenny & Associates Ltd., 2018)

 2167 Tenth Line Road – a mixed-use development with 231 proposed apartment units and 500 square metres of retail. This property is expected to be built-out in 2021. Trip generation of this development can be seen in Figure 20 and is excerpt from the 2167 Tenth Line Road Traffic Impact Assessment prepared by Castleglenn Consultants in 2020.

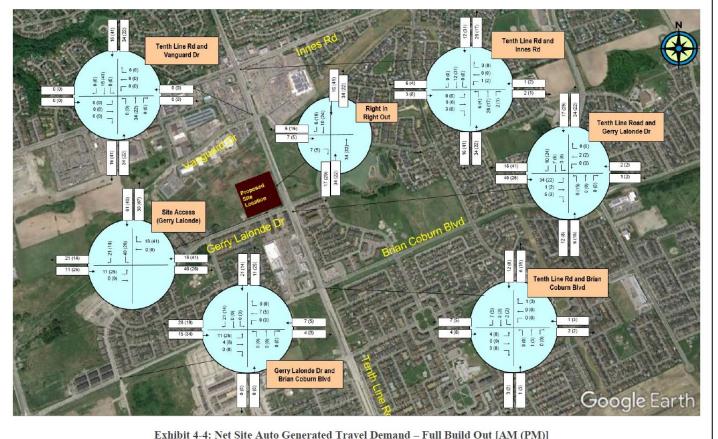


Exhibit 4-4. Itti Sitt Auto Otherattu Traver Demand – Fun Dund Out [Asit (Tivi)]

Source: 2167 Tenth Line Road Traffic Impact Assessment Final Draft (Castleglenn, 2020)

- 2605 Tenth Line Road a proposed 125 Ha residential subdivision with approximately 200 single family homes, 200 townhomes, and 200 stacked townhomes. Since the 2605 Tenth Line Community Transportation Study has been prepared by Delcan in 2014, changes were proposed to the east portion of the subdivision. Therefore, for this study a combination of the west-side site generated volumes outlined in the 2014 Delcan Study and the east-side site generated volumes prepared by CGH in 2020 was used to determine the background traffic volumes.
- Avalon West Community Phase 5 Phase 5 of the Avalon West community is proposed to include approximately 1,120 residential units, and a secondary school. Full-build out is expected to occur in 2021. As no Transportation Impact Study for this development is currently available, the anticipated movements In and Out of the Avalon West development through the intersection of Mer-Bleue Road at Decoeur Drive, and the intersection of Gerry Lalonde Drive at Brian Coburn Boulevard were determined using the background traffic volumes illustrated in TrailsEdge East Development Community Transportation Study, and 2167 Tenth Line Road TIA, respectively.

3 Study Area and Time Periods

3.1 Study Area

The Study Area will include the intersections of Brian Coburn Boulevard and Mer-Bleue Road, Brian Coburn Boulevard and Gerry Lalonde Drive / Jerome Jodoin Drive, and Mer-Bleue Road and Renaud Road. Brian Coburn Boulevard and Mer-Bleue Road will be examined as Boundary Roads.

3.2 Time Periods

As the proposed development is composed primarily of residential units the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2024. As a result, the full build-out plus five years horizon year is 2029.

4 Exemption Review

Table 4 summarizes the exemptions for this TIA.

Table 4: Exemption Review					
Module	Element	Explanation	Exempt/Required		
Design Review Com	ponent				
4.1 Development Design	4.1.2 Circulation and Access	Only required for site plans	Exempt		
	4.2.3 New Street Networks	Only required for plans of subdivision	Required		
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	Exempt		
	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt		
Network Impact Cor	nponent				
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required		
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Required		
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Required		

5 Development-Generated Travel Demand

5.1 Trip Generation and Mode Shares

This TIA has been prepared using the TRANS Trip Generation Study Report (2009) vehicle and person trip rates for the residential components, and the ITE Trip Generation Manual (10th Edition) average vehicle trip rates for the commercial components of the proposed development. To estimate commercial land use person trip generation, a factor of 1.28 has been applied to the ITE rates. Table 5 summarizes the vehicle and person trip rates for the proposed land uses.

Land Use	Land Use Code	Peak Hour	Vehicle Trip Rate	Person Trip Rates
Townhouses	224	AM	0.54	0.98
Townnouses	(TRANS)	PM	0.71	1.16
Mid-Rise Apartments	223	AM	0.29	0.66
Mid-Rise Apartments	(TRANS)	PM	0.34	0.84
Shanning Contro	820	AM	0.94	1.20
Shopping Centre	(ITE)	PM	3.81	4.88

Table 5: Trip Generation	Person	Trip Rates
--------------------------	--------	------------

Using the above Person Trip rates, the total person trip generation has been estimated. Table 6 below illustrates the total person trip generation by land use.

Table 6: Total Person Trip Rates							
Land Use	$ll_{n} = l_{n} = l_{n}$	AI	M Peak Hou	r	PM Peak Hour		
Land Use	Units/GFA (s.f.)	In Out Total				Out	Total
Townhouses	112	67	44	111	67	64	131
Mid-Rise Apartments	170	69	43	112	69	74	143
Shopping Centre	15,000	10	9	19	37	36	73
	Total Person Trips	146	96	242	173	174	347

Table 6: Total Person Trip Rates

To account for trips that are made within the proposed Mid-Rise Building (i.e. a building resident using retail portion of the mid-rise before coming home from work), an internal capture rate has been applied to the total person trip generation of the Retail land use. The ITE Trip Generation Handbook (3^d Edition) provides the internal trip capture rates for trip origins and destinations within a mixed-use development and can be found in Appendix F.

The Residential portion is the largest use of the Mid-Rise Apartment Building. Therefore, this land use is treated as the anchor for this part of the development and is not reduced based on the multi-use capture rate. The commercial portion of the development, which generates a lower number of trips, has been reduced to reflect building residents utilizing the on-site retail stores. The internal capture rates for the Residential and Retail uses are summarized in Table 7. The total net person trip generation can be seen in Table 8.

Table 7: Internal Capture Rates							
Land Use	AM Pea	ak Hour	PM Peak Hour				
Land Use	In	Out	In	Out			
Residential to/from Retail	17%	14%	10%	26%			

Table 8. Total Net Person Trip Generation								
Land Use	Units/GFA (s.f.)	AN	/I Peak H	our	PM Peak Hour			
Land Use		In	Out	Total	In	Out	Total	
Townhouses	112	67	44	111	67	64	131	
Mid-Rise Apartments	170	69	43	112	69	74	143	
Shopping Centre	15,000	7	8	15	34	26	60	
	Total Person Trips	143	95	238	170	164	334	

Table 8: Total Net Person Trip Generation

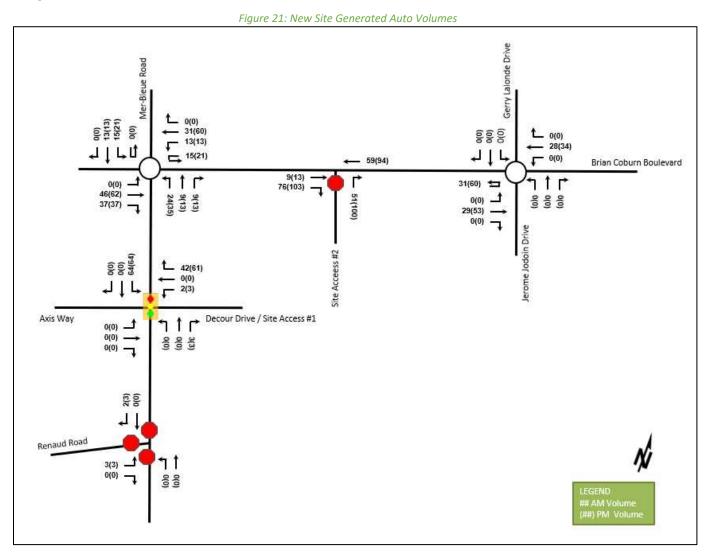
Using the most recent National Capital Region Origin-Destination (OD Survey), the existing mode shares for Orleans have been summarized in Table 9. The mode shares in the Study Area are expected to align with the OD Survey values, as the subject site is located in a typical suburban area with transit stops near the site frontage on Brian Coburn Boulevard which connect to various commercial/employment destinations to the north as well as other locations within the district.

Table 9: Mode Share					
Travel Mode	Orleans				
Auto Driver	60%				
Auto Passenger	20%				
Transit	15%				
Cyclist	0%				
Pedestrian	5%				
Total	100%				

Using the above mode shares and the person trip rates, the person trips by mode have been projected. Table 10 summarizes the trip generation by mode.

	Table	e 10: Trip Ge	eneration by	Mode			
Traval Mada	Mode Share	A	M Peak Ho	ur	PM Peak Hour		
Travel Mode	wode share	In	Out	Total	In	Out	Total
		Town	houses				
Auto Driver	60%	40	26	66	40	38	78
Auto Passenger	20%	13	9	22	13	13	26
Transit	15%	10	7	17	10	10	20
Cyclist	0%	0	0	0	0	0	0
Pedestrian	5%	4	2	6	4	3	7
Total	100%	67	44	111	67	64	131
	Mid-Rise Apartm	ents and S	hopping C	entre (Mix	ed-Use)		
Auto Driver	60%	45	31	76	62	60	122
Auto Passenger	20%	14	11	25	21	20	41
Transit	15%	12	7	19	15	15	30
Cyclist	0%	0	0	0	0	0	0
Pedestrian	5%	5	2	7	5	5	10
Total	100%	76	51	127	103	100	203
	Grand Total	143	95	238	170	164	334

As shown above, 238 AM and 334 PM new peak hour two-way vehicle trips are projected as a result of the proposed development. Out of these trips, 111 AM and 131 PM peak hour two-way vehicle trips are generated by the Townhouse portion of the development and will utilize Mer-Bleue Road at Decoeur Drive intersection to access the site, where 127 AM and 203 PM peak hour two-way vehicle trips will be generated by the mixed-use portion of the development and enter/exit the site via Site Access #2 at Brian Coburn Boulevard.


5.2 Trip Distribution

To understand the travel patterns of the subject development, the OD survey has been reviewed to determine the existing travel patterns that will be applied to the new vehicle trips. Table 11 below summarizes the distribution for Orleans.

Table 11: OD Survey Existing Directional Split Orleans								
	To/From							
	North	20%						
	South	0%						
	East	20%						
	West	60%						
	Total	100%						

5.3 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the Study Area road network. Figure 21 illustrates the new site generated volumes.

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.1. As a result of background developments, the intersection of Mer-Bleue Road and Axis Way / Decour Drive will be signalised, and the intersection of Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodion Drive will be a one-lane roundabout. These changes will be coded in Synchro and Sidra in all Future Background and Future Total scenarios for operational analysis purposes only and the intersections ae required to be designed by others.

6.2 Background Growth and Other Developments

Surrounding development Traffic Impact Assessments have used a 2% traffic growth within the Study Area of this report. As such, an annual background growth of 2% will be used in order to remain consistent with these studies.

The background developments explicitly considered in the 2024 and 2029 background conditions include:

- 2025 Mer-Bleue Road
- 2405 Mer-Bleue Road / 2496 Tenth Line Road
- 2564 Tenth Line Road
- TrailsEdge East Development
- 2225 Mer-Bleue Road
- 2159 Mer-Bleue Road
- 2168 Tenth Line Road
- 2605 Tenth Line Road
- Avalon West Community Phase 5

All of these developments are discussed in Section 2.3.2. Figure 22 illustrates the 2024 future background volumes and Figure 23 illustrates the 2029 future background volumes.

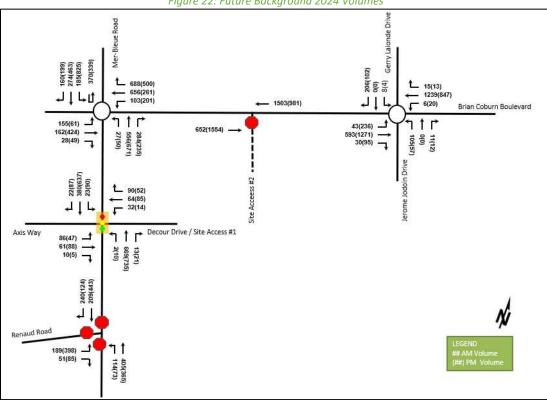
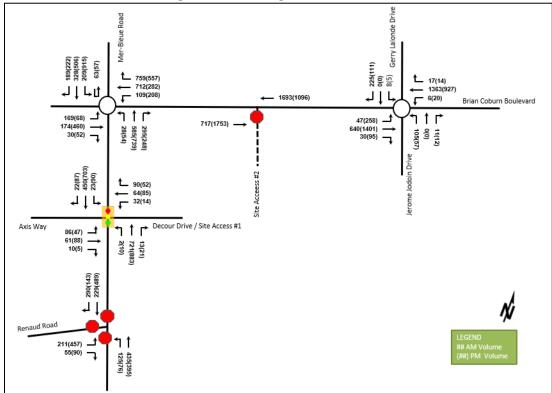



Figure 22: Future Background 2024 Volumes

7 Demand Rationalization

Based on background growth and the intersection upgrades required to support TrailsEdge East development, and Avalon West Community Phase 5 development, it is expected that the Study Area will experience capacity constraints in the next 4-9 years. As the timelines of Brian Coburn Boulevard transit improvements and widening are unknown, it is assumed that these changes to the network will be implemented beyond this study's horizons. Although the combination of background growth and delay of infrastructure projects will likely result in poor operational performance of the Study Area intersections, the Future Background volumes illustrated in Figure 22 and Figure 23 should be carried forward in the analysis to emphasise the need for infrastructure upgrades outlined in the City's 2031 Affordable Network. The 2024 and 2029 future total volumes are illustrated in Figure 24 and Figure 25, respectively.

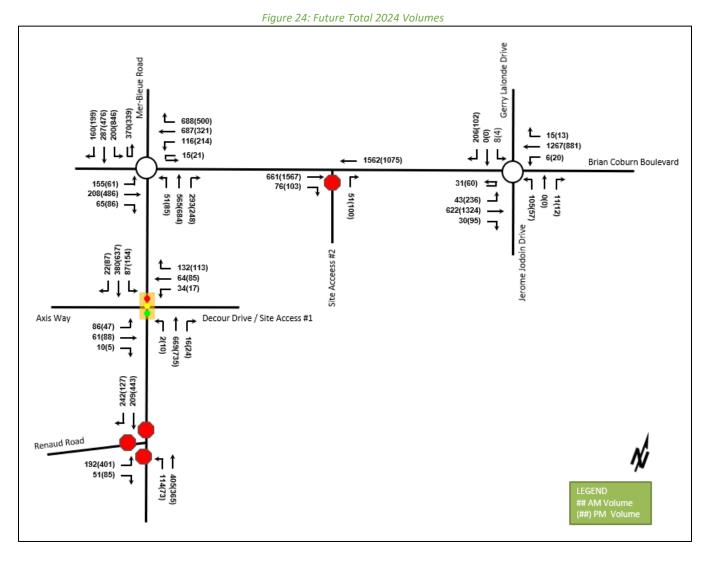
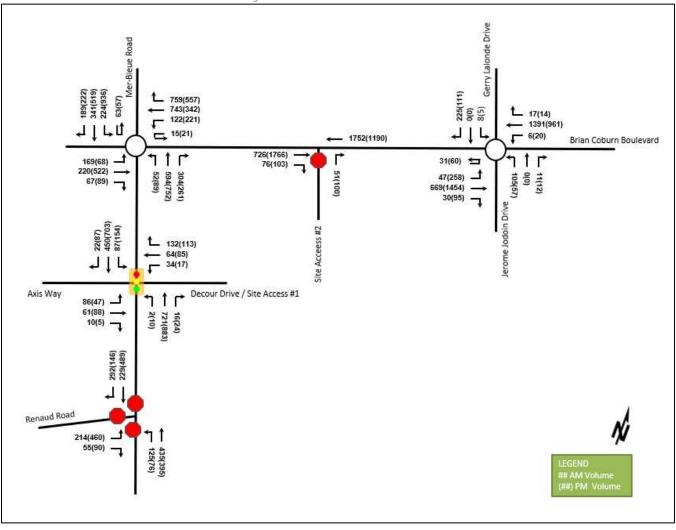
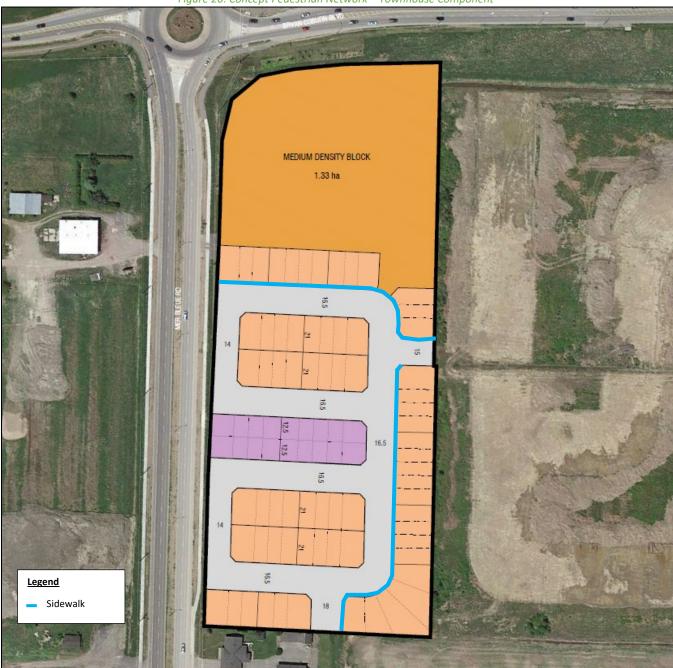



Figure 25: Future Total 2029 Volumes



8 Development Design

8.1 Design for Sustainable Modes

The Townhouse component of the proposed development is a residential subdivision and therefore auto and bicycle parking areas will be within each resident's home. Figure 26 illustrates the concept pedestrian network. The cyclists will use the roadway within the subdivision as no cycling infrastructure is planned along local roads in the vicinity of the subject development.

The Mixed-Use component of the development includes residential and retail land uses with underground parking for both automobiles and bicycles. Pedestrian facilities will connect the building users to Bryan Coburn Boulevard, Mer-Bleue Road, and the residential subdivision to the south. Further, the sidewalk along the south side of Brian Coburn Boulevard will be extended past the Mer-Bleue Road at Brian Coburn Boulevard intersection along the subject site frontage.

Facilities that are supportive of sustainable modes in the City of Ottawa's TDM-supportive Development Design and Infrastructure Checklist, which are applicable to the Mixed-Use component of the proposed development and required for zoning and standard site design are recommended. The following additional measures are also recommended:

- Locate building close to the street, and do not locate parking between the street and building entrances
- Locate building entrances in order to minimize walking distances to sidewalks and transit facilities
- Locate building doors and windows to ensure visibility of pedestrians from the building
- Design roads used for access or circulation by cyclists using a target operating speed of 30 km/h

TDM Checklists can be found in Appendix G.

8.2 Circulation and Access

Turning Templates for the Mixed-Use component of the proposed development are not required as part of the Zoning ByLaw Amendment and will be developed in later stages as part of the Site Plan Application.

8.3 New Street Networks

The residential subdivision planned street network will include 14.0 metre window roads, and 16.5 metre local roadways. The local roads will provide parking on one side of the roadway and the proposed posted speed limit will be 30 km/h. The active transportation network is provided in Section 8.1.

To support the pedestrian and cycling connectivity within the subdivision, Figure 27 illustrates the concept traffic calming plan. The plan reduces crossing distances for the pedestrian and cyclists, as well as limits the speed of vehicles entering and exiting the local roads from the collector roads.

Figure 27: Traffic Calming Plan – Townhouse Component

The internal road intersections are recommended to be stop-controlled on the minor approaches of all intersections.

9 Parking

9.1 Parking Supply

The parking requirements and provisions for the Mixed-Use component of the proposed development are summarized in Table 12.

Land Use	Units / GFA (s.m.)	Parking Rate	Parking Required	Parking Provided
Mid-Rise Apartments	170	1.2 spaces / dwelling unit + 0.2 visitor spaces / dwelling unit	238	- 286
Retail	1,394	3.4 spaces / 100 m ² GFA	48	280
		Total	286	
Mid-Rise Apartments (Bicycle)	170	0.5 spaces / dwelling unit	85	
Retail (Bicycle)	1,394	1 spaces / 250 m ² GFA	6	91
	Total		91	

Table 12: Parking Provisions – Mixed Use Component

Based on the City of Ottawa Zoning By-laws, a minimum of 286 automobile and 91 bicycle parking spaces are required. As can be seen in Table 12, automobile and bike parking space requirements are met.

9.2 Spillover Parking

This TIA is exempt from this Module (see Section 4).

10 Boundary Street Design

Mer-Bleue Road, and Brian Coburn Boulevard are noted as boundary roads for the proposed development. Decoeur Drive will also be a future boundary road to the proposed development however as no detailed design is available, the segment MMLOS analysis along this road cannot be completed at this point in time.

The Segment Multi-Modal Level of Service (MMLOS) is broken down into the Pedestrian Level of Service (PLOS), Bicycle Level of Service (BLOS), Transit Level of Service (TLOS), and Truck Level of Service (TkLOS) and are all recorded in Table 13. As the Existing, Future Background, and Future Total scenarios are all different, they have been evaluated in their own MMLOS worksheets. The results however are the same across majority of horizons. Mer-Bleue Road, and Brian Coburn Boulevard have been evaluated against the target for a general urban area. The MMLOS Worksheets for each horizon can be found in Appendix H.

					MN	ILOS			
Road Segment	Horizon	PLOS		BLOS		TLOS		Tkl	OS
		Actual	Target	Actual	Target	Actual	Target	Actual	Target
Mer-Bleue Road -	Existing								
Brian Coburn	2024 FB				С	D			
Boulevard to	2024 FT	D	С	С			D	A	D
Decoeur Drive	2029 FB								
Decoeur Drive	2029 FT								
Brian Coburn	Existing	F						В	
Boulevard – Mer-	2024 FB	F							
Bleue Road to	2024 FT		С	F	В	D	D	А	D
Jerome Jodoin	2029 FB	E						~	
Drive	2029 FT								

Table 13: Boundary Street MMLOS

Once the proposed sidewalk along the south side of Brian Coburn Boulevard is constructed as part of the proposed development, the Pedestrian LOS along Brian Coburn Boulevard will improve. However, due to high vehicular volumes and speeds, the Pedestrian LOS before and after the planned sidewalk implementation is below the

general urban area target. The PLOS is also below the target LOS along Mer-Bleue Road as a result of vehicular volumes and speeds.

The Bicycle LOS along Brian Coburn Boulevard is also not met, as no cycling infrastructure is provided along this segment. However, according to GeoOttawa mapping tool, bike lanes will be implemented along this segment in future, which will improve the BLOS beyond this study's horizon.

Along all other segments, the Bicycle, Transit, and Truck LOS is met.

11 Access Intersections Design

11.1 Location and Design of Access

Access to the development lands will be accommodated via Mer-Bleue Road and Brian Coburn Boulevard. Although the Mixed-Use and the Townhouse portion of the development are adjacent to one another, no infrastructure will be provided to support vehicular movement between the two components of the development.

Access to the Townhouses will be accommodated via the future intersection of Mer-Bleue Road and Decoeur Drive / Axis Way (Site Access #1). No turn restrictions are planned at this intersection. After making a northbound right turn or a southbound left turn movement at this intersection, the subdivision residents will travel eastbound along future Decoeur Drive and then northbound along future Sculpin Street to reach their destination.

Access to the Mixed-Use component of the development will be accommodated via a right-in / right-out access at Brian Coburn Boulevard, located as close to the eastern edge of the property as possible (approximately 130 metres east from Mer-Bleue Road, measured from centreline to centreline). Using TAC Geometric Guide for Canadian Roads (TAC), Figure 8.8.2, the spacing between Site Access #2 and Mer-Bleue Road has been checked for suggested minimum corner clearances. It has been found that the suggested minimum clearance is 70 metres for an arterial road, and thus, Site Access #2 meets this guideline.

According to TAC Table 9.9.6, clear stopping sight distance for a 70 km/h design speed is 105 metres. The planned location of Site Access #2 meets this requirement, as the distance between the eastbound exit point of Mer-Bleue Road and Brian Coburn Boulevard roundabout and Site Access #2 is 105 metres. It is also expected as the approaching vehicles are exiting the roundabout, that their speeds will be lower than 70 km/h, which allows for a longer reaction time. The clear sight distance triangle between Site Access #2 and Mer-Bleue Road at Brian Coburn Boulevard roundabout should be maintained clear of obstruction by the City and the 2275 Mer-Bleue Road property owner when planning for and implementing any modifications to this road segment. Further clear sight distance analysis would be required once a more detailed site concept is available as part of the future RMA and functional design.

11.2 Access Intersection Control

Using OTM Book 12 Justification 7, and the volume projections herein the traffic control signal warrant for Site Access #1 at Mer-Bleue Road have been examined for 2024 and 2029 Future Background and Future Total horizons, and for Site Access #2 at Brian Coburn Boulevard for 2024 and 2029 Future Total horizons. It has been found that signals are warranted at Site Access #1 and Mer-Bleue Road in 2024 Future Background horizon using rural conditions (roads with operating speeds greater or equal to 70 km/h). This is in line with the TrailsEdge Community Transportation Study prepared by Castleglenn Consultants in 2016. As this mitigation was required as part of a Background scenario, the signalization was modeled for operational purposes only and the intersection is required to be designed by others. The signalization warrants for site accesses can be found in Appendix I.

As a result, Site Access #1 will be a signalized intersection, and Site Access #2 will have stop-controls on the minor approach.

11.3 Access Intersection Design

Based on the eastbound right-turning volumes at Site Access #2, an eastbound right-turn lane is warranted. The minimum right-turn lane storage length required by the TAC Geometric Design Guide is 25 metres. As no queuing issues have been noted with respect to this turning lane, 25 metres is considered sufficient. The proposed taper length is 55 metres which falls within the required taper length ratio outlined in the TAC Guide. The design of the eastbound right-turn lane at Site Access #2 will be further refined as part of the future RMA and functional design.

According to TAC Table 8.9.3, the suggested minimum clear throat lengths for major driveways for the Mixed-Use component of the proposed development are summarized in the Table 14 below.

	Table 14: Throat Length by Lan	d Use
Land Use*	Development Size Units / GFA (s.m.)	Required Clear Throat Length (m)
Apartments	170	25
Shopping Centre	1,394	15

*Note: Not all land uses are represented in Table 8.9.3. Where an exact match was not available, a reasonable assumption of a comparable land use was used. (i.e. for the proposed retail store Shopping Centre was used).

The planned throat length of Site Access #2 is 30 metres, which meets the clear throat length requirements.

12 Transportation Demand Management

12.1 Context for TDM

The mode shares used within the TIA represent this area of the City and have not been altered. The subject site is within an Isolated Measures Transit Priority Corridor according to the City's 2031 Affordable Transit Network Map. However, as the timing of this improvement is unknown, and to remain conservative, the existing transit mode share was carried forward in the analysis.

12.2 Need and Opportunity

Eighty percent of the development generated trips have been assumed to rely on auto travel mode and those assumptions have been carried through the analysis. The existing 15 percent transit mode share is a conservative estimate of the future 2024 and 2029 transit mode share, as it is expected that transit services will improve in the vicinity of the subject site as the Study Area builds out. Further, as mentioned in the subsection above, the subject development is located along an Isolated Measures Transit Priority Corridor outlined in the City's 2031 Affordable Transit Network. Therefore, it is unlikely that the transit mode share will decrease. It is also expected that the pedestrian mode share of five percent will not be reduced, as the pedestrian network in the Study Area will grow along with construction of adjacent developments, and more commercial options will become available within the walking distance of the subject site.

12.3 TDM Program

Transportation Demand Management measures are implemented to encourage the use of non-auto modes of travel. This is aimed at reducing the reliance on single occupant auto trips in the City of Ottawa.

The following measures, consistent with the TDM Checklist included in Appendix G, are recommended for the Mixed-Use component of the development to ensure that the travel mode shares meet the TOD targets:

- Display local area maps with walking/cycling access routes and key destinations at major entrances
- Display relevant transit schedules and route maps at entrances
- Provide a multimodal travel option package to new/relocating employees and students

Any "suite of post-occupancy TDM measures" for the subdivision component of the development are limited in their applicability. As a result, no TDM measures are recommended for the Townhouses component.

13 Neighbourhood Traffic Management

In this section, the Neighborhood Traffic Management along Decoeur Drive and Sculpin Street leading to the Townhouse component of the proposed development will be discussed. The TIA Guidelines outline a collector road threshold of 2,500 vehicles per day (AADT), or 300 vehicles in a given peak hour for Neighbourhood Traffic Management review. The threshold for local roads is 1,000 vehicles per day (AADT), or 120 vehicles for a given peak hour. This will give an indication of whether Decoeur Drive and Sculpin Street meet or exceed the theoretical thresholds. The implications of the anticipated traffic within the context of the existing/planned road network and any required mitigation measures are discussed in the following subsections.

13.1 Decoeur Drive

Table 15 summarizes the AADT in both directions on the collector road of Decoeur Drive in the PM peak period.

	East of Me	r-Bleue Road							
	PM Peak								
Development	Eastbound	% Theoretical Threshold	Westbound	% Theoretical Threshold					
2275 Mer-Bleue Road – Townhouse Component	67 (670 AADT)	27%	64	26%					
2029 Future Background Volumes	199 (1990 AADT)	78%	151	60%					
Total	266 (2660 AADT)	106%	215	86%					

Table 15: Decoeur Drive Volumes - NTM Review

Note: 1. AADT approximated using 10:1 ratio of PM peak hour traffic AADT calculated as one-way peak direction volumes

As shown above, the proposed site trip generation is expected to use 27% of the theoretical TIA AADT threshold of Decoeur Drive. When combined with the traffic from the background developments, the eastbound AADT along Decoeur Drive, east of Mer-Bleue Road is 2660, which is 106% of the daily theoretical threshold for a collector road. This is considered acceptable as other access alternatives such as adding another full-movement intersection along Mer-Bleue Road between Brian Coburn Boulevard and Decoeur Drive or allowing the Townhouse traffic to enter the site via Site Access #2 would have a negative impact on the operational performance of Mer-Bleue Road and Brian Corbun Boulevard intersection.

The incorporation of the new collector road guidelines and passive traffic calming measures, as outlined within the TIA guidelines, should ensure that the Decoeur Drive operates as intended. No additional measures are recommended to accommodate the projected volumes along the corridor. Beyond the horizons of this study, the transit network and service improvements will increase the transit mode share, reducing the auto volumes on Decoeur Drive.

13.2 Sculpin Street

Table 16 summarizes the AADT in both directions on the local road of Sculpin Street in the PM peak period. As no dwellings are currently fronting this street, it is assumed that 100% of the volume along Sculpin Street is generated by the subject development.

	North of D	ecoeur Drive		
		PM Pe	eak	
Development	Northbound	% Theoretical Threshold	Southbound	% Theoretical Threshold
2275 Mer-Bleue Road – Townhouse Component	67 (670 AADT)	67%	64	64%
Total	67 (670 AADT)	67%	64	64%

AADT calculated as one-way peak direction volumes

The proposed development generates 67 PM peak hour trips in the peak direction of Sculpin Street. As illustrated above, this does not exceed the City's ADDT threshold. No mitigation measures are proposed along this road.

14 Transit

14.1 Route Capacity

In Section 5.1, the trip generation by mode was estimated, including the number of transit trips that will be generated by the proposed development. Table 17 summarizes the site transit trip generation.

Table 17: Trip Generation by Transit Mode									
Troval Mada	Mada Shara		AM		PM				
Travel Mode	Mode Share	In	Out	Total	In	Out	Total		
Transit	15%	22	14	36	25	25	50		

Overall, the forecasted new transit trips would result in approximately one bus capacity equivalent (single bus, 55-person capacity) in the peak direction to accommodate the transit trips generated from the subject site. However, as these trips are distributed to different directions, it is anticipated that the existing routes would have sufficient residual capacity to accommodate site-generated transit trips. Further, once the Study Area builds out, it is anticipated that OC Transpo will re-evaluate demand and ensure that adequate capacity is provided.

14.2 Transit Priority

No transit priority is required/considered for the study area.

15 Review of Network Concept

Brian Coburn Boulevard may potentially approach or exceed a single lane capacity in the peak direction by 2024 Background and Future conditions. For example, in the PM peak period the west approach volume in the shared through / left-turn lane at Brian Coburn Boulevard and Gerry Lalonde Drive intersection is 1186 during Existing horizon, and 1602 in the 2024 Future Background horizon. These volume projections are dependent on surrounding development growth being realized, and on background growth proceeding at the same rate. The likely impact of the interim condition is extended queues along Brian Coburn Boulevard. The operations of the Study Area intersections along Brian Coburn Boulevard will be further examined in Section 16.

The network concept, as identified within the City of Ottawa's Transportation Master Plan, includes a widening of Brian Coburn Boulevard to a four-lane arterial between Navan Road and Mer-Bleue Road as well as between Trim Road and Frank Kenny Road. Sufficient ROW has been reserved for future Brian Coburn Boulevard widening including along the frontage of the proposed development.

16 Network Intersection Design

16.1 Network Intersection Control

As stated in Section 2.3.1, the network intersection of Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive is expected to be a single lane roundabout.

A signal warrant analysis was performed for the intersection of Mer-Bleue Road at Renaud Road for the Future Background, and Future Total horizons using the OTM Book 12 Justification 7 criteria. Using this criterion, it was found that signals are warranted at this intersection in 2024 Future Background horizon using rural conditions (roads with operating speeds greater or equal to 70 km/h). The signalization warrants for intersection of Mer-Bleue Road at Renaud Road can be found in Appendix I.

The intersection methods of control for Mer-Bleue Road at Brian Coburn Boulevard will remain consistent with existing methods of control at both future horizons.

16.2 Network Intersection Design

To understand the intersection design, an MMLOS analysis of existing, 2024 future horizon, and 2029 future horizon demands is required. The existing and future segment MMLOS has been discussed in Section 10. The following sections will discuss the vehicle LOS at Study Area intersections which is based on the HCM criteria for average delay at unsignalized intersections and roundabouts. At signalized intersections, the level of service is based on the V/C ratio as required by the City of Ottawa. This will be followed by a discussion of the intersection MMLOS for other modes.

Synchro (Version 11) and Sidra (Version 8.0) were used to model the Study Area intersection. The Heavy Vehicle percentage (HV %) has been calculated for each turning movement at the Study Area intersection. All Heavy Vehicle percentages calculated to be less than 2% were entered into the Synchro model as 2% in order to produce a conservative analysis. These calculations are shown in Appendix J. All parameters have been coded using the City of Ottawa's TIA Guidelines and default parameters.

16.2.1 Existing Conditions

The existing intersection volumes have been analyzed to establish a baseline condition and determine the impact of the subject development as well as the surrounding background developments on the Study Area road network. Table 18 summarizes the operational analysis of the 2020 existing conditions. Appendix K contains the 2020 Existing Conditions Synchro and Sidra sheets.

1			AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL/T/R	А	0.26	6	8	D	0.75	26	43
Mer-Bleue Road at	WBL/T/R	F	1.20	118	662	С	0.81	23	94
Brian Coburn Boulevard <i>Roundabout</i>	NBL/T/R	А	0.23	6	7	С	0.64	21	30
	SBL/T/R	А	0.27	7	8	В	0.69	12	65
	Overall	F	1.20	62	662	С	0.81	19	94
Brian Coburn	EBL	В	0.05	11	2	В	0.24	10	7
Boulevard at Gerry	EBT	-	-	-	-	-	-	-	-
Lalonde Drive / Jerome Jodoin Drive	WBT/R	-	-	-	-	-	-	-	-
Jerome Jodoin Drive Unsignalized	SBL/R	F	0.81	63	47	D	0.40	30	14
Mer-Bleue Road at Renaud Road Unsignalized	EBL/R	В	0.26	11	8	С	0.60	17	30
	NBL/T	В	0.37	11	13	В	0.37	12	13
	SBT/R	В	0.40	11	14	В	0.50	14	21

Table 18: Existing Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane PHF = 0.90

In the AM peak period, the westbound approach of Mer-Bleue Road at Brian Coburn Boulevard intersection is shown to operate with V/C > 1.0, high delays, and long queues. Other approaches of this intersection are within the City of Ottawa's operational thresholds.

As a result of high eastbound and westbound volumes along Brian Coburn Boulevard, the southbound approach of Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive experiences high delays during the AM peak hour. As plans are in place for this intersection to be upgraded to a roundabout, no mitigation measures were proposed as part of the Existing scenario analysis.

Renaud Road at Mer-Bleue Road intersection operates satisfactorily during the peak hours.

16.2.2 2024 Future Background Operations

The 2024 future background intersection volumes and other development traffic have been analyzed to allow a comparison between the future volumes with and without the proposed development. As previously mentioned, signal warrants were met at Mer-Bleue Road and Renaud Road intersection, as well as Mer-Bleue Road and Decoeur Drive (Site Access #1) intersection. The intersection of Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive is planned to be upgraded to a roundabout as a result of Avalon West Community Phase 5 development. These as well as additional improvements resulting from the operational analysis on the Study Area network were applied to the Synchro and Sidra models in the 2024 Future Background horizon and are discussed below. Table 19 summarizes the operational analysis of 2024 Future Background conditions. Appendix L contains the 2024 Future Background Synchro and Sidra sheets.

	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL/T/R	В	0.52	14	22	F	1.49	263	451
	WBL/T/R	F	2.66	771	2121	F	1.56	274	854
	NBL/T/R	С	0.69	21	40	F	1.15	121	214
	SBL/T/R	А	0.53	9	29	F	1.16	68	623
Mer-Bleue Road at	Overall	F	2.66	315	2121	F	1.55	150	854
Brian Coburn			Mitigation N	/leasure: Wi	dening to Two	EB and Tw	vo WB Lanes		
Boulevard <i>Roundabout</i>	EBL/T/R	А	0.28	10	8	E	0.80	46	37
Rounaabout	WBL/T/R	F	1.42	222	587	D	0.79	28	57
	NBL/T/R	С	0.69	21	40	F	1.22	148	272
	SBL/T/R	В	0.65	14	44	F	1.28	106	758
	Overall	F	1.42	98	587	F	1.28	90	758
	EBL/T/R	А	0.51	8	29	F	1.21	114	2861
	WBL/T/R	F	1.08	69	737	С	0.84	22	24
	NBL/T/R	А	0.17	7	5	В	0.19	13	5
Brian Coburn	SBL/T/R	D	0.58	25	22	А	0.21	10	6
Boulevard at Gerry	Overall	Ε	1.08	43	737	F	1.21	77	2861
Lalonde Drive /			Mitigation N	/leasure: Wi	dening to Two	EB and Tw	vo WB Lanes		
Jerome Jodoin Drive	EBL/T/R	А	0.25	5	9	А	0.59	9	36
Roundabout	WBL/T/R	А	0.52	9	25	А	0.41	8	16
	NBL/T/R	А	0.15	6	4	В	0.18	12	4
	SBL/T/R	С	0.49	18	16	А	0.17	8	4
	Overall	Α	0.52	8	25	Α	0.59	9	36
	EBL	А	0.39	13	23	В	0.68	21	62
	EBR	А	0.11	5	5	А	0.16	5	7
Mer-Bleue Road at	NBL	А	0.27	9	13	А	0.33	14	12
Renaud Road	NBT	А	0.45	9	38	А	0.47	12	41
Signalized	SBT/R	А	0.52	8	35	С	0.76	18	73
	Overall	Α	0.51	9	-	С	0.71	16	-
	EBL	А	0.25	13	12	A	0.14	13	9
	EBT/R	A	0.14	10	9	A	0.19	12	13
	WBL	A	0.09	11	6	A	0.04	12	4
Mer-Bleue Road at	WBT/R	A	0.29	7	13	A	0.27	10	15
Decoeur Drive / Axis	NBL	A	0.00	7	1	A	0.03	7	2
Way (Site Access #1)	NBT/R	A	0.43	9	28	A	0.46	9	30
Signalized	SBL	A	0.43	8	4	A	0.27	10	12
	SBT/R	A	0.27	8	16	A	0.46	9	29
	Overall	A	0.43	9		A	0.44	9	

Table 19: 2024 Future Background Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane PHF = 1.0

With the addition of background growth to reflect the 2024 horizon as well as traffic generated from surrounding developments, multiple movements fail at Mer-Bleue Road and Brian Coburn Boulevard and Brian Coburn Boulevard at Gerry Lalonde Drive / Jerome Jodoin Drive during the 2024 Future Background horizon.

At the intersection of Mer-Bleue Road and Brian Coburn Boulevard, the westbound approach fails during the AM peak period and all approaches fail during the PM peak period. At Brian Coburn Boulevard and Gerry Lalonde Drive / Jerome Jodoin Drive, the westbound approach fails during the AM peak hour, and northbound and southbound approaches fail during the PM peak hour. As anticipated, with the addition of background growth and approved/proposed developments in the Study Area, the capacity constraints along Brian Coburn Boulevard are clear.

As a mitigation measure, widening of Brian Coburn Boulevard from two to four lanes has been coded in Sidra and can be seen in Table 19. As a result, the operational performance of eastbound and westbound approaches at Mer-Bleue Road and Brian Coburn Boulevard has significantly improved. The westbound approach, however, is still failing at this intersection during the AM peak period. Th proposed mitigation measure has resulted in V/C ratio of 1.42 (previously 2.66) at this approach. The operational performance of northbound and southbound approaches remains at a LOS F. As such, this indicates that the capacity issues cannot be solved based on localized improvements and instead require regional network improvements throughout Orleans by the City of Ottawa.

At the intersection of Brian Coburn Boulevard and Gerry Lalonde Drive / Jerome Jodoin Drive, the widening of Brian Coburn Boulevard to four lanes improves the LOS at all approaches and the intersection operates well.

The signalized intersections of Mer-Bleue Road at Renaud Road, and Mer-Bleue Road at Decoeur Drive / Axis Way operate well.

16.2.3 2024 Future Total Operations

The 2024 Total Future intersection volumes, including the site generated traffic and other development traffic, have been analyzed to understand the impact of the subject development on the Study Area intersections. The mitigation measures outlined in 2024 Future Background Scenario Analysis were carried over to this scenario. Table 20 summarizes the operational analysis of the 2024 Total Future conditions. Appendix M contains the 2024 Future Total Synchro and Sidra Sheets.

lutere etien	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL/T/R	В	0.36	11	11	F	0.92	64	61
Mer-Bleue Road at	WBL/T/R	F	1.52	266	691	D	0.85	34	76
Brian Coburn Boulevard	NBL/T/R	D	0.77	27	51	F	1.29	177	341
Roundabout	SBL/T/R	С	0.68	15	49	F	1.44	155	951
Kounaabout	Overall	F	1.52	115	691	F	1.44	119	951
Brian Coburn	EBL/T/R	А	0.26	5	9	А	0.61	10	39
Boulevard at Gerry	WBL/T/R	А	0.53	9	26	А	0.43	8	2
Lalonde Drive /	NBL/T/R	А	0.15	6	4	В	0.19	13	4
Jerome Jodoin Drive	SBL/T/R	С	0.50	19	16	А	0.18	8	4
Roundabout	Overall	Α	0.53	9	26	Α	0.61	9	39
	EBL	А	0.39	13	25	В	0.68	21	63
Mer-Bleue Road at Renaud Road Signalized	EBR	А	0.11	5	5	А	0.16	5	7
	NBL	А	0.27	9	14	А	0.33	14	13
	NBT	А	0.45	9	39	А	0.47	12	41
Signunzeu	SBT/R	А	0.52	8	36	С	0.76	18	73
	Overall	Α	0.51	9	-	С	0.71	16	-
	EBL	А	0.28	13	13	А	0.18	18	11
	EBT/R	А	0.15	10	9	А	0.22	17	18
	WBL	А	0.10	11	6	А	0.06	17	6
Mer-Bleue Road at	WBT/R	А	0.37	7	14	А	0.43	12	23
Decoeur Drive / Axis Way (Site Access #1)	NBL	А	0.01	7	1	А	0.03	6	2
Signalized	NBT/R	А	0.53	10	28	А	0.49	9	32
Signunzeu	SBL	А	0.31	12	11	А	0.50	15	22
	SBT/R	А	0.32	8	16	А	0.49	9	30
	Overall	Α	0.42	10	-	Α	0.44	10	-
Brian Coburn	EBT	-	-	-	-	-	-	-	-
Boulevard at Site	EBR	-	-	-	-	-	-	-	-
Access #2	WBT	-	-	-	-	-	-	-	-
Unsignalized	NBR	В	0.08	11	2	С	0.30	20	9

Table 20: 2024 Future Total Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane

With the addition of the site generated traffic, the Study Area is expected to operate with similar operational characteristics as the 2024 Future Background conditions at most intersection movements.

The operational performance of eastbound approach at Mer-Bleue Road and Brian Coburn Boulevard decreases from LOS E in 2024 Future Background horizon to LOS F in 2024 Future Total horizon during the PM peak period. A lower LOS is expected at this intersection with any additional traffic as many approaches fail or are approaching failure in the Background scenario.

The signalized intersections of Mer-Bleue Road at Renaud Road, and Mer-Bleue Road at Decoeur Drive / Axis Way, as well as the unsignalized intersection of Brian Coburn Boulevard and Site Access #2 operate well.

16.2.4 2029 Future Background Operations

The 2029 Future Background intersection volumes and other development traffic have been analyzed to allow a comparison between the future volumes with and without the proposed development. The mitigation measures outlined in 2024 Future Background Scenario Analysis were carried over to this scenario. Table 21 summarizes the operational analysis of the 2029 Future Background conditions. Appendix N contains the 2029 Future Background Synchro and Sidra sheets.

	l e n e		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Max Diana David at	EBL/T/R	А	0.25	8	7	F	0.88	60	51
Mer-Bleue Road at Brian Coburn	WBL/T/R	F	1.23	137	456	С	0.74	21	55
Brian Coburn Boulevard	NBL/T/R	В	0.57	14	32	F	1.34	199	385
Roundabout	SBL/T/R	В	0.54	13	26	F	1.10	61	398
Koundubout	Overall	F	1.23	66	456	F	1.34	84	398
Brian Coburn	EBL/T/R	А	0.27	5	10	В	0.65	11	45
Boulevard at Gerry	WBL/T/R	А	0.58	10	30	А	0.46	9	18
Lalonde Drive /	NBL/T/R	А	0.15	6	4	В	0.21	15	5
Jerome Jodoin Drive	SBL/T/R	С	0.59	24	21	А	0.20	9	5
Roundabout	Overall	Α	0.59	10	30	Α	0.65	10	45
Marin Diana Diana dia t	EBL	EBL	А	0.43	14	С	0.77	27	#84
	EBR	EBR	A	0.12	5	А	0.17	5	7
Mer-Bleue Road at Renaud Road	NBL	NBL	А	0.34	11	А	0.40	17	15
Signalized	NBT	NBT	А	0.47	10	А	0.49	12	45
Signunzeu	SBT/R	SBT	А	0.58	9	D	0.81	22	#92
	Overall	Α	0.57	10	-	С	0.78	20	-
	EBL	А	0.26	13	13	А	0.15	16	11
	EBT/R	А	0.14	10	10	А	0.20	15	17
Max Diana Data dat	WBL	А	0.09	12	6	А	0.04	15	5
Mer-Bleue Road at	WBT/R	А	0.29	8	13	А	0.29	12	19
Decoeur Drive / Axis	NBL	А	0.00	7	1	А	0.03	6	2
Way (Site Access #1) Signalized	NBT/R	А	0.45	9	31	А	0.50	9	37
Signunzeu	SBL	А	0.07	8	4	А	0.31	11	12
	SBT/R	А	0.30	8	19	А	0.47	8	32
	Overall	А	0.45	9	-	Α	0.49	9	-

Table 21: 2029 Future Background Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane

PHF = 1.0

- 95% percentile exceeds capacity; queue may be longer

The operational performance of the Study Area intersections remains relatively consistent with the 2024 Future Background horizon.

The operational performance of eastbound approach at Mer-Bleue Road and Brian Coburn Boulevard decreases from LOS E to LOS F during the PM peak period. As previously discussed in Section 16.2.3, a lower LOS is expected at this intersection with any additional traffic as many approaches fail or are approaching failure in the Background scenario.

The level of service of eastbound left, and southbound through/right movements at the intersection of Mer-Bleue Road and Renaud Road decrease from LOS B, and LOS C to LOS C, and LOS D, respectively. It was also noted that the volume for the 95th percentile cycle exceeds capacity at these movements. However, as V/C ratio of these approaches is less than one, it can be assumed that the 95th percentile queue will be rarely exceeded.

The signalized intersection of Mer-Bleue Road at Decoeur Drive / Axis Way operates well.

16.2.5 2029 Future Total Operations

The 2029 Total Future intersection volumes, including the site generated traffic and other development traffic, have been analyzed to understand the impact of the subject development on the Study Area intersections. Table 22 summarizes the operational analysis of the 2029 Future Total conditions. Appendix O contains the 2029 Future Total Synchro and Sidra Sheets.

Interception	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL/T/R	А	0.32	9	10	F	1.00	84	93
Mer-Bleue Road at	WBL/T/R	F	1.31	171	559	С	0.79	25	69
Brian Coburn Boulevard	NBL/T/R	С	0.64	16	39	F	1.41	226	449
Roundabout	SBL/T/R	В	0.57	15	29	F	1.24	104	570
Roundabout	Overall	F	1.31	81	559	F	1.41	111	570
Brian Coburn	EBL/T/R	А	0.28	5	10	В	0.67	11	49
Boulevard at Gerry	WBL/T/R	В	0.59	10	31	А	0.48	9	20
Lalonde Drive /	NBL/T/R	А	0.16	7	4	С	0.22	15	5
Jerome Jodoin Drive	SBL/T/R	D	0.61	26	21	А	0.21	9	5
Roundabout	Overall	Α	0.61	10	31	В	0.67	10	49
Mer-Bleue Road at Renaud Road	EBL	А	0.44	16	34	С	0.78	27	#85
	EBR	А	0.12	5	6	А	0.17	5	7
	NBL	А	0.33	11	17	А	0.41	17	15
	NBT	А	0.46	10	46	А	0.49	12	45
Signalized	SBT/R	А	0.58	9	48	D	0.82	22	#94
	Overall	Α	0.57	10	-	С	0.79	20	-
	EBL	А	0.29	14	13	А	0.21	21	11
	EBT/R	А	0.15	11	10	А	0.26	20	18
	WBL	А	0.10	12	6	А	0.07	19	6
Mer-Bleue Road at	WBT/R	А	0.38	8	16	А	0.52	18	27
Decoeur Drive / Axis	NBL	А	0.01	7	1	А	0.03	6	2
Way (Site Access #1) Signalized	NBT/R	А	0.55	10	31	А	0.50	8	42
Signunzeu	SBL	А	0.32	12	12	А	0.53	16	#28
	SBT/R	А	0.37	9	19	А	0.46	8	35
	Overall	Α	0.44	10	-	Α	0.50	10	-
Brian Coburn	EBT	-	-	-	-	-	-	-	-
Boulevard at Site	EBR	-	-	-	-	-	-	-	-
Access #2	WBT	-	-	-	-	-	-	-	-
Unsignalized	NBR	В	0.08	11	2	С	0.35	24	11

Table 22: 2029 Future Total Intersection Operations

Notes: Saturation flow rate of 1800 veh/h/lane

PHF = 1.0

With the addition of the site generated traffic, the Study Area is expected to operate with similar operational characteristics as the 2029 Future Background conditions.

The signalized intersections of Mer-Bleue Road at Renaud Road, and Mer-Bleue Road at Decoeur Drive / Axis Way, as well as the unsignalized intersection of Brian Coburn Boulevard and Site Access #2 operate well.

16.2.6 Network Intersection MMLOS

Intersection MMLOS is only undertaken at signalized intersections. The two signalized intersections considered in this study are Mer-Bleue Road at Renaud Road, and Mer-Bleue Road at Decoeur Drive / Axis Way. These intersections are currently stop-controlled and have been signalized in Synchro analysis as an improvement measure. As such, several conservative assumptions about the intersection configuration were made to evaluate the intersection MMLOS and can be seen in MMLOS worksheets in Appendix H. Table 23 summarizes the MMLOS analysis for these intersections in the Study Area for the existing and future horizons. The analysis is based on the general urban area targets.

Interrection	Horizon	Pedest	rian LOS Bicycle I		le LOS	Trans	it LOS	Truc	k LOS	Auto	LOS										
Intersection	Horizon	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target										
Mer-Bleue	2024 FB					_				A(C)											
Road &	2029 FB	С		D				_		A(C)											
Renaud Road	2024 FT		č	5		D						A(C)									
nenduu nouu	2029 FT		с		D		D		Е	A(C)	D										
Mer-Bleue	2024 FB	F	F	F	F	F	F	F	F										A(A)		
Road &	2029 FB										F		Р				A(A)				
Decoeur Drive	2024 FT									F	F	F	F	F	F	F	F	F	F	F	
/ Axis Way	2029 FT									A(A)											
Notes:	AM(PM)																				

 Table 23: Study Area Intersection MMLOS Analysis—All Horizons

Based on the new intersection configuration assumptions, the pedestrian LOS target is not met at Mer-Bleue Road and Decoeur Drive / Axis Way as a result of east-west crossing distances. The bicycle LOS is also not met at this intersection as a result of number of lanes and the operating speeds.

Transit LOS is only evaluated where there is an existing or a known future transit route, and Truck LOS is only evaluated along truck routes. Where applicable, these targets are met.

The Auto LOS is also met at both signalized Study Area intersections at all future horizons.

17 Recommendations

As can be seen in Sections 16.2.1 to 16.2.5, the need for modifications to the City's Road Network Concept is evident. During the 2024 Future Background horizon most of movements fail at Brian Coburn Boulevard and Mer-Bleue Road, and Brian Coburn Boulevard and Gerry Lalonde Drive / Jerome Jodoin Drive.

The volumes used in the model for the 2024 Future Background scenario consist of raw traffic counts, background growth, and developments found on the City's Development Application Search Tool. The Turning Movement Counts along at Brian Coburn Boulevard intersections were collected by the City for Brian Coburn Boulevard at Mer-Bleue Road in 2018 and by HDR for Brian Coburn Boulevard at Gerry Lalonde Drive in 2017. A 2% annual growth rate was applied to the traffic counts and is consistent with 2225 Mer-Bleue Road Transportation Impact Study (HDR, 2018). All background developments within one kilometre of the subject site, or those which impact

the Study Area intersections and were available through the City's Development Application Search Tool were added to the 2024 Future Background traffic volumes. These volumes were carried through the Study Area and distributed at major (arterial to arterial) road intersections using the existing turning movement splits.

The widening of Brian Coburn Boulevard from two to four lanes has been recommended as a mitigation measure. Sufficient ROW has been reserved by the City of Ottawa for this widening, including the segment along the subject site frontage. The widening alleviates congestion at both Study Area roundabouts, bringing the operational performance at Brian Coburn Boulevard and Gerry Lalonde Drive / Jerome Jodoin Drive to a satisfactory LOS. However, this is not sufficient to support growth at Mer-Bleue Road and Brian Coburn Boulevard intersection. As previously mentioned, this indicates that the capacity issues cannot be solved based on localized intersection improvements and instead require regional network improvements throughout Orleans by the City of Ottawa. These may include investments in transit infrastructure, incentivising businesses to provide work-from-home options for their employees and constructing alternative routes for vehicles to reach their destination. These potential regional road network modifications are outside of scope of this TIA.

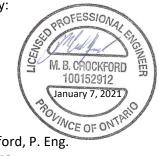
18 Conclusions

- A. The proposed development, located at 2275 Mer-Bleue Road, is a two-part development consisting of a Residential subdivision and a Mixed-Use block. One hundred and twelve townhouses are proposed as part of the Residential subdivision, and the Mixed-Use component consists of 170 apartment units and 15,000 square feet of retail space.
- B. Approximately 285 vehicle parking spaces and 90 bicycle parking spaces will be provided as part of the Mixed-Use building.
- C. Access to the Townhouses will be accommodated via the future intersection of Mer-Bleue Road and Decoeur Drive / Axis Way (Site Access #1), and access to the Mixed-Use component of the development will be accommodated via a right-in / right-out access at Brian Coburn Boulevard (Site Access #2). Site Access #2 is adjacent to the eastern property line and is approximately 130 metres east from Mer-Bleue Road, measured from centreline to centreline.
- D. The existing Study Area is currently served by bus routes #30, #234, and #302.
- E. The previous five years of collision history at the existing Study Area intersections has been reviewed. No patterns emerged that indicated that mitigation measures or further monitoring was required.
- F. The residential trip generation rates were identified using TRANS Trip Generation Report (2009) and the retail trip rates were identified using the ITE Trip Generation Manual. The Orleans mode shares were used to determine the trip generation by mode. Internal capture trips were accounted for in the Mixed-Use component trip generation.
- G. It was found that the proposed development can be anticipated to generate 238 AM, and 334 PM net new peak hour two-way vehicle trips. Minimum vehicle and bicycle parking space requirements are met.
- H. It was found that the Pedestrin LOS is not met along Mer-Bleue Road and Brian Coburn Boulevard segments adjacent to the subject site as a result of high vehicular volumes and speeds. Bicycle LOS is not met along Brian Coburn Boulevard due to a lack of cycling infrastructure. The Bicycle, Transit, and Truck LOS is met.
- I. Both signalization warrants and left-turn lane warrants were evaluated at Mer-Bleue Road and Decoeur Drive / Axis Way (Site Access #1), and Mer-Bleue Road at Renaud Road. Signalization was not warranted at either intersection, however as a result of Synchro analysis, signalization was recommended at intersections in 2024 Future Background horizon. Auxiliary left-turn lanes were added to each approach of signalized intersections.

- J. An eastbound right-turn lane is warranted at the intersection of Brian Coburn Boulevard and Site Access
 #2. Preliminary storage and taper lengths have been designed for this turn lane for operational analysis purposes, however this will be further refined as part of the future RMA and functional design.
- K. In the existing conditions operational analysis, westbound approach fails at Mer-Bleue Road at Brian Coburn Boulevard intersection and southbound approach fails at Brian Coburn Boulevard and Gerry Lalonde Drive.
- L. In the 2024 Future Background horizon, mitigation improvements were required at all Study Area intersections to improve the operational performance. These measures are listed below:
 - Widening of Brian Coburn Boulevard from two to four lanes throughout the Study Area
 - Signalization at Mer-Bleue Road and Renaud Road, and at Mer-Bleue Road and Decoeur Drive / Axis Way (Site Access #1)

As a result of the mitigation measures, traffic operations within the Study Area improved significantly. However, the LOS at westbound, southbound, and northbound approaches at Mer-Bleue Road and Brian Coburn Boulevard remain poor. This indicates that the capacity issues cannot be solved based on localized intersection improvements and instead require regional network improvements throughout Orleans by the City of Ottawa.

- M. The Study Area intersections are expected to operate with similar operational characteristics as the 2024 Future Background conditions during the 2024 Future Total horizon. The operational performance of eastbound approach at Mer-Bleue Road and Brian Coburn Boulevard decreases from LOS E to LOS F during the PM peak period. A lower LOS is expected at this intersection with any additional traffic as many approaches fail or are approaching failure in the Background scenario. Site Access #2 at Brian Coburn Boulevard is shown to operate at a satisfactory LOS.
- N. In the 2029 Future Background horizon the operational performance of the Study Area intersections remains relatively consistent with the 2024 Future Background horizon. The operations of Mer-Bleue Road at Brian Coburn Boulevard remain poor. The operational performance of eastbound approach at Mer-Bleue Road and Brian Coburn Boulevard decreases from LOS E to LOS F during the PM peak period. A lower LOS is expected at this intersection with any additional traffic as many approaches fail or are approaching failure in the Background scenario. The level of service of eastbound left, and southbound through/right movements at the intersection of Mer-Bleue Road and Renaud Road decrease from LOS B, and LOS C to LOS C, and LOS D, respectively.
- O. With the addition of the site generated traffic, the Study Area is expected to operate with similar operational characteristics to the 2029 Future Background conditions in the 2029 Future Total horizon. The operations of Mer-Bleue Road at Brian Coburn Boulevard remain poor.
- P. Based on the new intersection configuration assumptions, the pedestrian LOS target is not met at Mer-Bleue Road and Decoeur Drive / Axis Way as a result of east-west crossing distances. The bicycle LOS is also not met at this intersection as a result of number of lanes and the operating speeds. Other MMLOS targets are met at all horizons.
- Q. As can be seen in Sections 16.2.1 to 16.2.5, the need for Network Concept modifications as a result of Background traffic is evident. The widening of Brian Coburn Boulevard from two to four lanes has been recommended as a mitigation measure. The widening improved operational performance; however, this was not sufficient to bring the LOS at Mer-Bleue Road and Brian Coburn Boulevard above LOS F. This indicates that the capacity issues cannot be solved based on localized intersection improvements and instead require regional network improvements throughout Orleans by the City of Ottawa.



It has been noted that the proposed development accesses operate well and can be accommodated within the road network without negatively impacting the existing intersections. It is recommended that, from a transportation perspective, the proposed development application process proceeds.

Prepared By:

Viktoriya Zaytseva, E.I.T. 437-221-1343 <u>Viktoriya.Zaytseva@CGHTransportation.com</u>

Reviewed By:

Mark Crockford, P. Eng. 905-251-4070 Mark.Crockford@CGHTransportation.com

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines	Date:	04-Dec-20
Step 1 - Screening Form	Project Number:	2020-82
	Project Reference:	Caivan 2275 Mer-Bleue
1.1 Description of Proposed Development		
Municipal Address	2275 Mer-Bleue Road	
Description of Location	CON 11 LOT 3	
Land Use Classification	General Mixed Use Zone - GN	115[2156] S330-h
Development Size	32 back-to-back townhouse u units, and a 0.75 ha. Mid-rise	nits, 80 standard townhouse mixed-use development block
		ne connection to the residential
Accesses	development to the south. Or	ne access on Brian Coburn
	Boulevard.	
Phase of Development	Single Phase	
Buildout Year	2024	
TIA Requirement	Full TIA	Required

1.2 Trip Generation Trigger	
Land Use Type	Townhomes or apartments
Development Size	112 Units
Trip Generation Trigger	Yes

1.3 Location Triggers	
Does the development propose a new driveway to a boundary street that is	
designated as part of the City's Transit Priority, Rapid Transit or Spine	No
Bicycle Networks?	
Is the development in a Design Priority Area (DPA) or Transit-oriented	No
Development (TOD) zone?	No
Location Trigger	No

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	No
Are there any horizontal/vertical curvatures on a boundary street limits	Νο
sight lines at a proposed driveway?	NO
Is the proposed driveway within the area of influence of an adjacent traffic	
signal or roundabout (i.e. within 300 m of intersection in rural conditions,	Yes
or within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	Νο
serves an existing site?	NO
Is there is a documented history of traffic operations or safety concerns on	No
the boundary streets within 500 m of the development?	No
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{}$ appropriate field(s)] is either transportation engineering $\sqrt{}$ or transportation planning \Box .

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél.: 613-580-2424 Télécopieur: 613-560-6006

Dated at	<u>Newmarket</u>	this _	<u>28</u>	_day of	June.	, 2019.
	(City)					

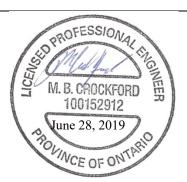
Name:

Mark Crockford (Please Print)

Professional Title:

Professional Engineer

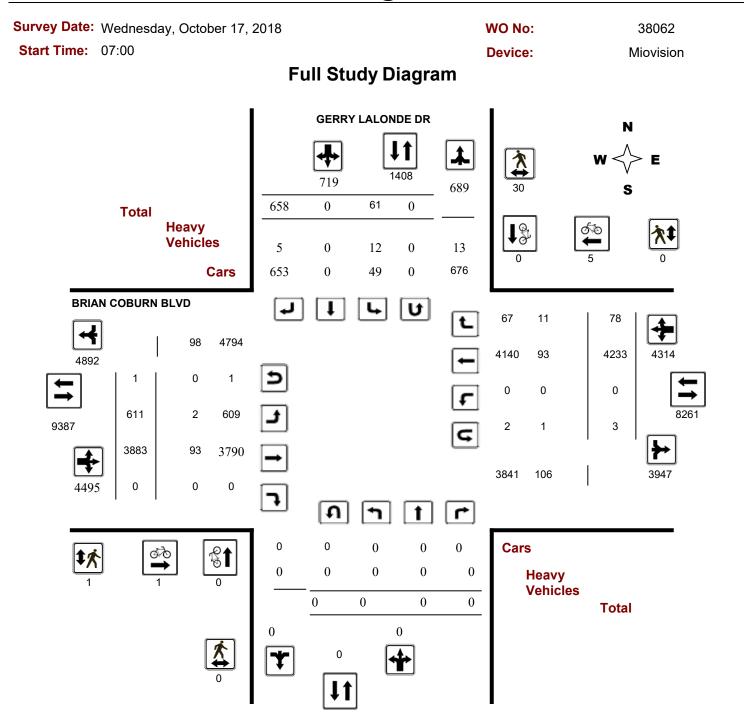
Signature of Individual certifier that s/he meets the above four criteria

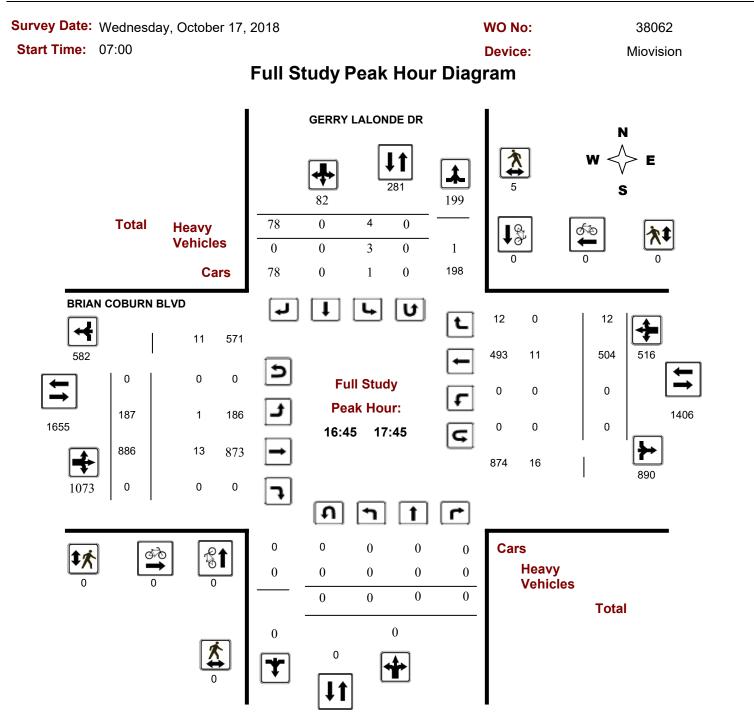

Office Contact Information (Please Print)

Address: 628 Haines Road

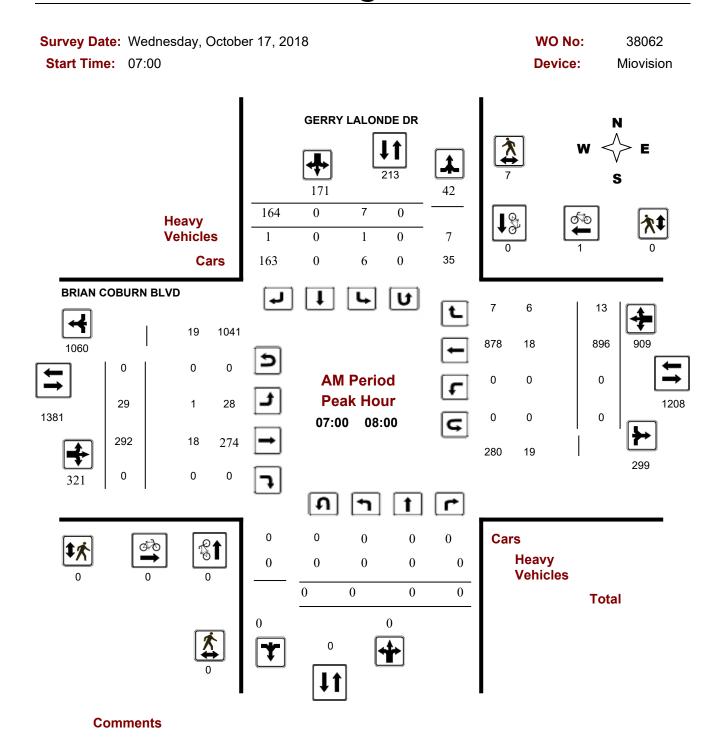
City / Postal Code: Newmarket / L3Y 6V5

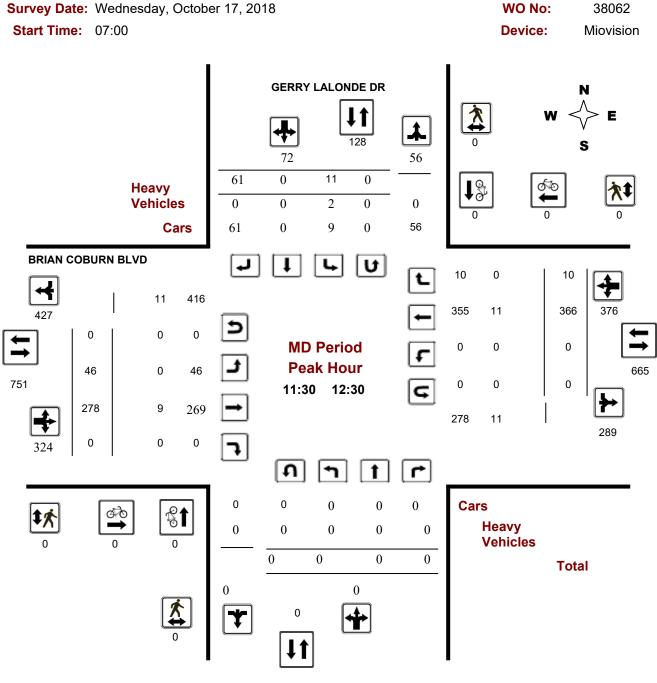
Telephone / Extension: (905) 251-4070


E-Mail Address: Mark.Crockford@CGHTransportation.com

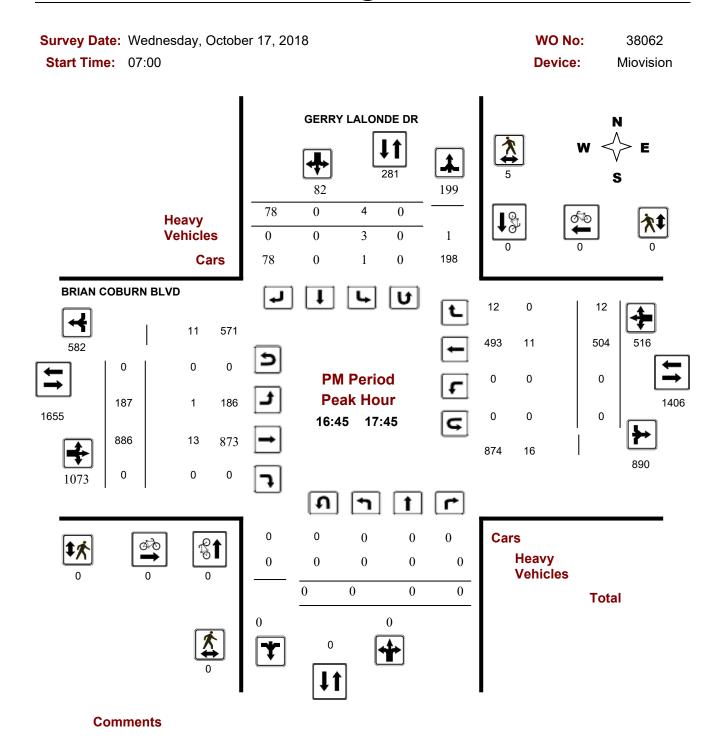


Turning Movement Count Data





Turning Movement Count - Peak Hour Diagram BRIAN COBURN BLVD @ GERRY LALONDE DR


Turning Movement Count - Peak Hour Diagram BRIAN COBURN BLVD @ GERRY LALONDE DR

Comments

Turning Movement Count - Peak Hour Diagram BRIAN COBURN BLVD @ GERRY LALONDE DR

Survey Da	ate: W	/ednes	sday,	Octobe	er 17, 2	2018						woı	No:			38	062		
Start Tim	e: 07	7:00										Devi	ce:			Miov	vision		
				F	ull S	Stud	y Sı	umma	ary (8	B HF	R Sta	ndar	rd)						
Survey Da	te: V	Vedne	esday,	Octob	er 17,	201	-	т	otal C	bser	/ed U-	Turns					AAD	T Facto	or
							١	Northboun	d: 0		South	bound:	0				.90		
								Eastboun	d: 1		West	bound:	3						
		GE	ERRY	LALO	NDE D	R					BF	RIAN C	ОВИ	RN BL	VD				
	Nor	thbou	nd		So	uthbou	und			E	astbou	Ind		V	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	0	0	0	0	7	0	164	171	171	29	292	0	321	0	896	13	909	1230	1401
08:00 09:00	0	0	0	0	9	0	109	118	118	28	260	0	288	0	747	6	753	1041	1159
09:00 10:00	0	0	0	0	4	0	71	75	75	24	244	0	268	0	517	9	526	794	869
11:30 12:30	0	0	0	0	11	0	61	72	72	46	278	0	324	0	366	10	376	700	772
12:30 13:30	0	0	0	0	9	0	57	66	66	38	327	0	365	0	324	6	330	695	761
15:00 16:00	0	0	0	0	11	0	55	66	66	103	750	0	853	0	417	13	430	1283	1349
16:00 17:00	0	0	0	0	4	0	63	67	67	173	890	0	1063	0	420	10	430	1493	1560
17:00 18:00	0	0	0	0	6	0	78	84	84	170	842	0	1012	0	546	11	557	1569	1653
Sub Total	0	0	0	0	61	0	658	719	719	611	3883	0	4494	0	4233	78	4311	8805	9524
U Turns				0				0	0				1				3	4	4
Total	0	0	0	0	61	0	658	719	719	611	3883	0	4495	0	4233	78	4314	8809	9528
EQ 12Hr	0	0	0	0	85	0	915	999	999	849	5397	0	6248	0	5884	108	5996	12245	13244
Note: These va	alues ar	e calcul	lated by	y multiply	/ing the	totals b	by the a	ppropriate	expans	sion fac	tor.			1.39					
AVG 12Hr	0	0	0	0	72	0	776	848	899	720	4578	0	5300	0	4991	92	5086	11020	11920
Note: These vo	olumes	are calo	culated	by multip	olying th	ne Equiv	/alent 1	2 hr. total	s by the	AADT	factor.			0.9					
AVG 24Hr	0	0	0	0	94	0	1016	1110	1110	944	5997	0	6942	0	6538	120	6663	13605	14715
Note: These vo				, ,	, 0		0	,	,		•		or.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Survey Dat	te: w	edne	sday,	Octol	ber 17	7, 201	8						wo	No:			3	8062	
Start Time): 07	7:00				Device:									Mio	ovisior	า		
					Full Study 15 Minute Increments														
		GE	RRYL		NDF			, tuu	y i.	/ 1011			OBU						
	NI	orthbou				outhbou	Ind				astbour		0201		estbour	d			
				N				S	STR				Е				w	STR	Grand
Time Period	LT	ST	RT	тот	LT	ST	RT	тот	тот	LT	ST	RT	тот	LT	ST	RT	тот	тот	Total
07:00 07:15	0	0	0	0	0	0	41	41	0	2	48	0	50	0	239	5	244	0	335
07:15 07:30	0	0	0	0	3	0	37	40	1	9	52	0	61	0	225	3	228	1	329
07:30 07:45	0	0	0	0	2	0	47	49	1	6	92	0	98	0	236	3	239	1	386
07:45 08:00	0	0	0	0	2	0	39	41	0	12	100	0	112	0	196	2	198	0	351
08:00 08:15	0	0	0	0	1	0	36	37	0	5	68	0	73	0	182	1	183	0	293
08:15 08:30	0	0	0	0	5	0	35	40	0	9	61	0	70	0	226	2	228	0	338
08:30 08:45	0	0	0	0	3	0	20	23	1	8	61	0	69	0	203	2	205	1	297
08:45 09:00	0	0	0	0	0	0	18	18	0	6	70	0	76	0	136	1	137	0	231
09:00 09:15	0	0	0	0	1	0	18	19	1	8	70	0	78	0	178	2	180	1	277
09:15 09:30	0	0	0	0	1	0	20	21	0	4	54	0	58	0	132	4	136	0	215
09:30 09:45	0	0	0	0	2	0	22	24	2	11	66	0	77	0	109	1	112	2	213
09:45 10:00	0	0	0	0	0	0	11	11	0	1	54	0	55	0	98	2	100	0	166
11:30 11:45	0	0	0	0	5	0	15	20	2	11	71	0	82	0	107	3	110	2	212
11:45 12:00	0	0	0	0	4	0	15	19	0	8	70	0	78	0	76	3	79	0	176
12:00 12:15	0	0	0	0	0	0	12	12	0	16	71	0	87	0	91	2	93	0	192
12:15 12:30	0	0	0	0	2	0	19	21	0	11	66	0	77	0	92	2	94	0	192
12:30 12:45	0	0	0	0	1	0	23	24	0	9	89	0	98	0	71	1	73	0	195
12:45 13:00	0	0	0	0	3	0	10	13	0	6	73	0	79	0	95	2	97	0	189
13:00 13:15	0	0	0	0	1	0	13	14	0	13	86	0	99	0	79	2	81	0	194
13:15 13:30	0	0	0	0	4	0	11	15	0	10	79	0	89	0	79	1	80	0	184
15:00 15:15	0	0	0	0	2	0	13	15	1	19	139	0	158	0	101	1	102	1	275
15:15 15:30	0	0	0	0	5	0	15	20	0	22	175	0	197	0	104	6	110	0	327
15:30 15:45	0	0	0	0	0	0	13	13	0	24	235	0	259	0	103	3	106	0	378
15:45 16:00	0	0	0	0	4	0	14	18	1	38	201	0	239	0	109	3	112	1	369
16:00 16:15	0	0	0	0	1	0	11	12	1	51	205	0	256	0	113	1	114	1	382
16:15 16:30	0	0	0	0	2	0	15	17	2	36	218	0	255	0	107	2	109	2	381
16:30 16:45	0	0	0	0	1	0	19	20	1	37	227	0	264	0	103	4	107	1	391
16:45 17:00	0	0	0	0	0	0	18	18	0	49	240	0	289	0	97	3	100	0	407
17:00 17:15	0	0	0	0	3	0	18	21	2	42	199	0	241	0	144	2	146	2	408
17:15 17:30	0	0	0	0	0	0	21	21	0	57	238	0	295	0	132	6	138	0	454
17:30 17:45	0	0	0	0	1	0	21	22	1	39	209	0	248	0	131	1	132	1	402
17:45 18:00	0	0	0	0	2	0	18	20	0	32	196	0	228	0	139	2	141	0	389
Total:	0	0	0	0	61	0	658	719	17	611	3883	0	4495	0	4233	78	4314	17	9,528

Note: U-Turns are included in Totals.

Survey Dat	e: Wednesda	y, October 17, 2	2018		WO No:		38062
Start Time					Device:	I	Viovision
	GE	RRY LALONDE	Full Study		D IUME RIAN COBURN E	BLVD	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	1	1	1
08:00 08:15	0	0	0	0	1	1	1
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	1	1	1
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	1	1	1
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	1	0	1	1
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	1	1	1
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	0	0	0	1	5	6	6

Survey Da	ate: Wednesda	y, October 17, 201	8		WO No:		38062
Start Tim	e: 07:00				Device:		Miovision
		F	ull Stuc	ly Pedestria	n Volume		
	(GERRY LALONDE		•	RIAN COBURN BL	VD	
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
7:00 07:15	0	1	1	0	0	0	1
7:15 07:30	0	2	2	0	0	0	2
7:30 07:45	0	3	3	0	0	0	3
7:45 08:00	0	1	1	0	0	0	1
08:00 08:15	0	5	5	0	0	0	5
8:15 08:30	0	0	0	0	0	0	0
8:30 08:45	0	0	0	1	0	1	1
8:45 09:00	0	0	0	0	0	0	0
9:00 09:15	0	2	2	0	0	0	2
9:15 09:30	0	0	0	0	0	0	0
9:30 09:45	0	0	0	0	0	0	0
9:45 10:00	0	0	0	0	0	0	0
1:30 11:45	0	0	0	0	0	0	0
1:45 12:00	0	0	0	0	0	0	0
2:00 12:15	0	0	0	0	0	0	0
2:15 12:30	0	0	0	0	0	0	0
2:30 12:45	0	0	0	0	0	0	0
2:45 13:00	0	1	1	0	0	0	1
13:00 13:15	0	0	0	0	0	0	0
3:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
5:15 15:30	0	0	0	0	0	0	0
5:30 15:45	0	1	1	0	0	0	1
5:45 16:00	0	0	0	0	0	0	0
6:00 16:15	0	2	2	0	0	0	2
6:15 16:30	0	0	0	0	0	0	0
6:30 16:45	0	5	5	0	0	0	5
6:45 17:00	0	2	2	0	0	0	2
7:00 17:15	0	1	1	0	0	0	1
7:15 17:30	0	1	1	0	0	0	1
7:30 17:45	0	1	1	0	0	0	1
7:45 18:00	0	2	2	0	0	0	2
Total	0	30	30	1	0	1	31

Survey Date: W	/edne	sday,	Octob	per 17	7, 201	8						wo	No:			3	8062	
Start Time: 07	7:00											Dev	ice:			Mio	ovisior	า
	Full Study Heavy Vehicles																	
	GF						, uu	yiic	, u v y			OBU		VD				
N	orthbou					nd			-			0001			d			
			N		outhbou		S	STR		astbour		Е		estbour		w	STR	Grand
Time Period	ST	RT	тот	LT	ST	RT	тот	тот	LT	ST	RT	тот	LT	ST	RT	тот	тот	Total
07:00 07:15 0	0	0	0	0	0	0	0	0	0	2	0	2	0	3	3	6	8	8
07:15 07:30 0	0	0	0	1	0	0	1	1	0	6	0	6	0	3	2	5	11	12
07:30 07:45 0	0	0	0	0	0	1	1	1	1	5	0	6	0	9	1	10	16	17
07:45 08:00 0	0	0	0	0	0	0	0	0	0	5	0	5	0	3	0	3	8	8
08:00 08:15 0	0	0	0	0	0	0	0	0	0	4	0	4	0	4	1	5	9	9
08:15 08:30 0	0	0	0	0	0	0	0	0	0	1	0	1	0	5	1	6	7	7
08:30 08:45 0	0	0	0	1	0	0	1	1	0	7	0	7	0	1	0	1	8	9
08:45 09:00 0	0	0	0	0	0	0	0	0	0	2	0	2	0	1	1	2	4	4
09:00 09:15 0	0	0	0	0	0	1	1	1	0	2	0	2	0	4	0	4	6	7
09:15 09:30 0	0	0	0	0	0	0	0	0	0	2	0	2	0	3	2	5	7	7
09:30 09:45 0	0	0	0	1	0	1	2	2	0	3	0	3	0	4	0	5	8	10
09:45 10:00 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1
11:30 11:45 0	0	0	0	2	0	0	2	2	0	4	0	4	0	4	0	4	8	10
11:45 12:00 0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	2	3	3
12:00 12:15 0	0	0	0	0	0	0	0	0	0	3	0	3	0	1	0	1	4	4
12:15 12:30 0	0	0	0	0	0	0	0	0	0	1	0	1	0	4	0	4	5	5
12:30 12:45 0	0	0	0	0	0	0	0	0	0	6	0	6	0	3	0	3	9	9
12:45 13:00 0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	2	2
13:00 13:15 0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
13:15 13:30 0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
15:00 15:15 0	0	0	0	0	0	1	1	1	0	3	0	3	0	3	0	3	6	7
15:15 15:30 0	0	0	0	0	0	0	0	0	0	3	0	3	0	4	0	4	7	7
15:30 15:45 0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	2	4	4
15:45 16:00 0	0	0	0	1	0	0	1	1	0	3	0	3	0	5	0	5	8	9
16:00 16:15 0	0	0	0	1	0	0	1	1	0	5	0	5	0	4	0	4	9	10
16:15 16:30 0	0	0	0	1	0	1	2	2	0	1	0	1	0	1	0	1	2	4
16:30 16:45 0	0	0	0	1	0	0	1	1	0	1	0	1	0	2	0	2	3	4
16:45 17:00 0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	4	4
17:00 17:15 0	0	0	0	2	0	0	2	2	0	2	0	2	0	3	0	3	5	7
17:15 17:30 0	0	0	0	0	0	0	0	0	1	4	0	5	0	5	0	5	10	10
17:30 17:45 0	0	0	0	1	0	0	1	1	0	3	0	3	0	3	0	3	6	7
17:45 18:00 0	0	0	0	0	0	0	0	0	0	3	0	3	0	1	0	1	4	4
Total: None 0	0	0	0	12	0	5	17	17	2	93	0	95	0	93	11	105	200	217

rvey D	Date: Wedne	sday, Octol	ber 17, 2018		wo	D No:	38062
art Tir	me: 07:00				De	vice:	Miovision
			Full S	tudy 15 Mir	nute U-Turr	n Total	
			GERRY LALO	-	BRIAN		
	Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	07:00	07:15	0	0	0	0	0
	07:15	07:30	0	0	0	0	0
	07:30	07:45	0	0	0	0	0
	07:45	08:00	0	0	0	0	0
	08:00	08:15	0	0	0	0	0
	08:15	08:30	0	0	0	0	0
	08:30	08:45	0	0	0	0	0
	08:45	09:00	0	0	0	0	0
	09:00	09:15	0	0	0	0	0
	09:15	09:30	0	0	0	0	0
	09:30	09:45	0	0	0	2	2
	09:45	10:00	0	0	0	0	0
	11:30	11:45	0	0	0	0	0
	11:45	12:00	0	0	0	0	0
	12:00	12:15	0	0	0	0	0
	12:15	12:30	0	0	0	0	0
	12:30	12:45	0	0	0	1	1
	12:45	13:00	0	0	0	0	0
	13:00	13:15	0	0	0	0	0
	13:15	13:30	0	0	0	0	0
	15:00	15:15	0	0	0	0	0
	15:15	15:30	0	0	0	0	0
	15:30	15:45	0	0	0	0	0
	15:45	16:00	0	0	0	0	0
	16:00	16:15	0	0	0	0	0
	16:15	16:30	0	0	1	0	1
	16:30	16:45	0	0	0	0	0
	16:45	17:00	0	0	0	0	0
	17:00	17:15	0	0	0	0	0
	17:15	17:30	0	0	0	0	0
	17:30	17:45	0	0	0	0	0
	17:45	18:00	0	0	0	0	0
	-	otal	0	0	1	3	4

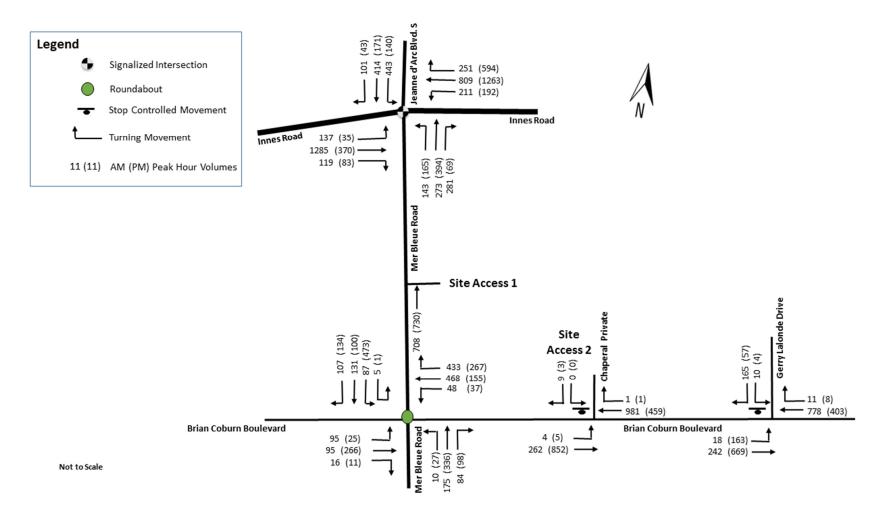
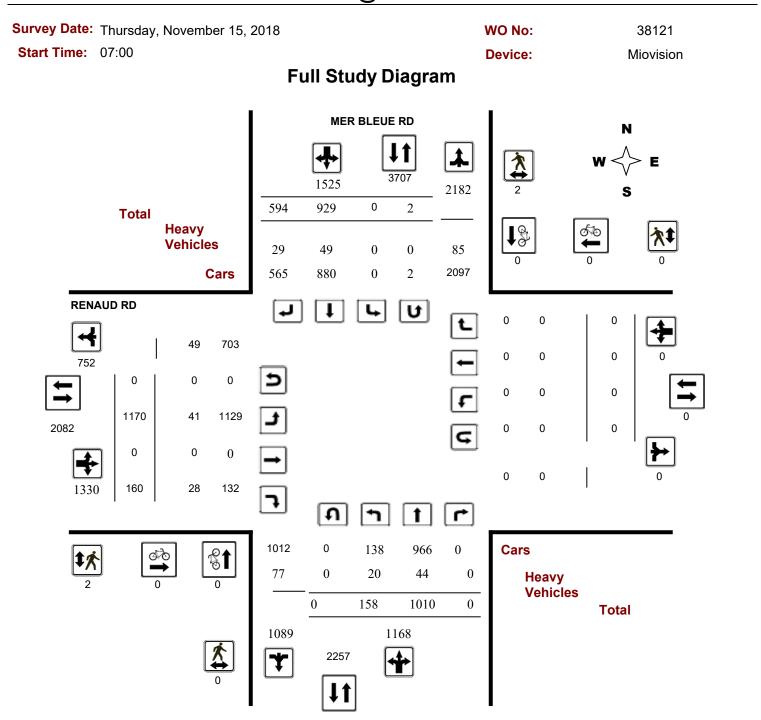
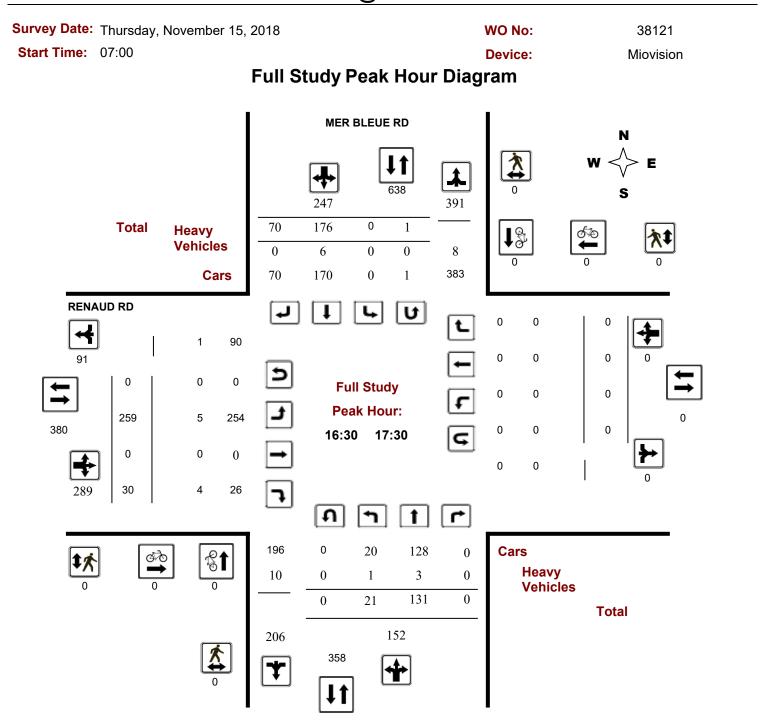
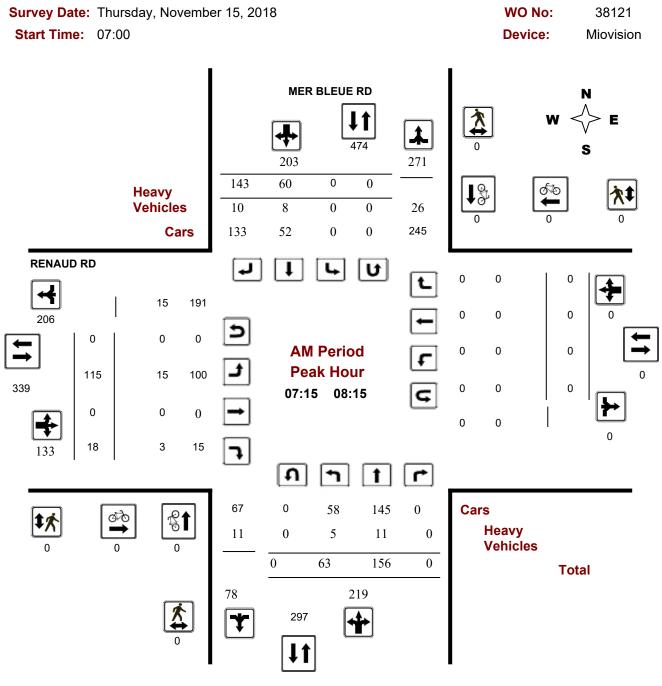
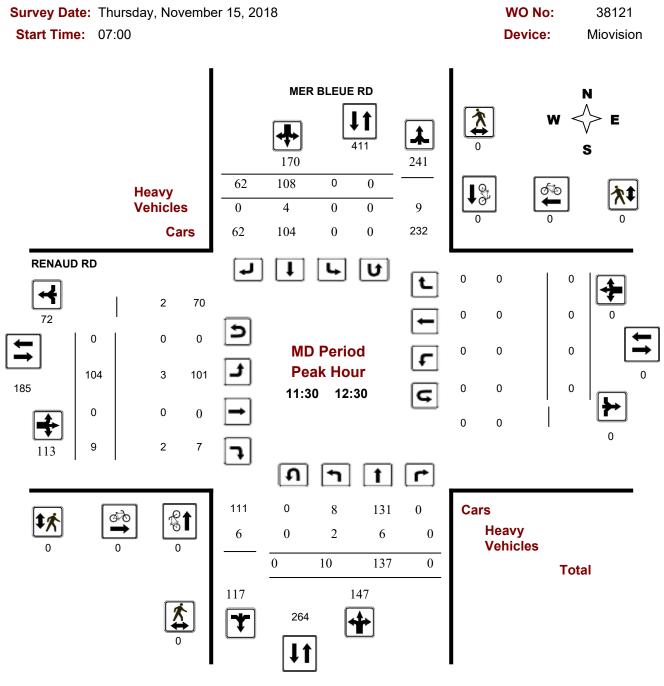
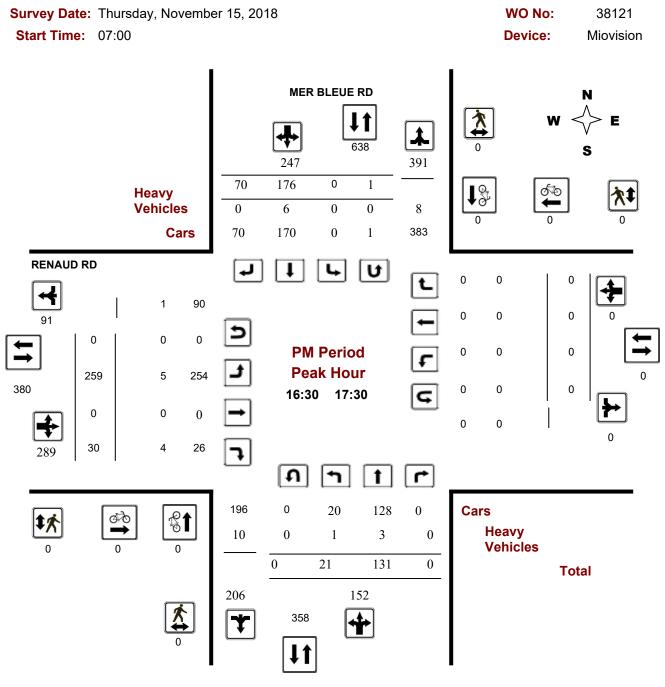




Exhibit 6: Existing 2017 Traffic Volumes




Turning Movement Count - Peak Hour Diagram RENAUD RD @ MER BLEUE RD

Comments


Turning Movement Count - Peak Hour Diagram RENAUD RD @ MER BLEUE RD

Comments

Turning Movement Count - Peak Hour Diagram RENAUD RD @ MER BLEUE RD

Comments

Survey Da	ate: T	hursda	ay, No	vembe	er 15,	2018						WO	No:			38	121		
Start Tim	1e: 0	7:00										Devi	ce:			Miov	ision/		
				F	ull S	Stud	y Sı	umma	ry (8	B HR	Sta	ndaı	d)						
Survey Da	te:	Thursd	ay, N						•) bserv			,				ΔΔΠ.	T Facto	٦r
-			-				١	Northbound	l: 0		South	bound:	2				.90		
								Eastbound	: 0		West	bound:	0				.90		
			MER	BLEU	E RD							RE	NAUE	RD					
	No	rthbour				uthbou	Ind			F	astbou				estbou	Ind			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grar Tot
07:00 08:00	67	148	0	215	0	42	147	189	404	103	0	17	120	0	0	0	0	120	52
08:00 09:00	21	131	0	152	0	68	86	154	306	128	0	14	142	0	0	0	0	142	44
09:00 10:00	10	128	0	138	0	76	50	126	264	84	0	12	96	0	0	0	0	96	36
11:30 12:30	10	137	0	147	0	108	62	170	317	104	0	9	113	0	0	0	0	113	43
12:30 13:30	5	96	0	101	0	127	47	174	275	90	0	10	100	0	0	0	0	100	37
15:00 16:00	11	123	0	134	0	151	62	213	347	183	0	31	214	0	0	0	0	214	56
16:00 17:00	21	121	0	142	0	178	62	240	382	235	0	42	277	0	0	0	0	277	65
17:00 18:00	13	126	0	139	0	179	78	257	396	243	0	25	268	0	0	0	0	268	66
Sub Total	158	1010	0	1168	0	929	594	1523	2691	1170	0	160	1330	0	0	0	0	1330	402
U Turns				0				2	2				0				0	0	:
Total	158	1010	0	1168	0	929	594	1525	2693	1170	0	160	1330	0	0	0	0	1330	402
EQ 12Hr	220	1404	0	1624	0	1291	826	2120	3743	1626	0	222	1849	0	0	0	0	1849	559
lote: These v	alues a	re calcul	ated by	y multiply	/ing the	totals b	y the a	ppropriate	expans	sion fact	or.			1.39					
AVG 12Hr	186	1191	0	1377	0	1095	700	1798	3369	1379	0	189	1568	0	0	0	0	1664	503
lote: These v	olumes	are calc	ulated	by multip	olying th	ne Equiv	alent 1	2 hr. totals	by the	AADT f	actor.			0.9					
AVG 24Hr	244	1560	0	1804	0	1435	917	2355	4159	1807	0	247	2054	0	0	0	0	2054	621
lote: These v	olumes	are calc	ulated	hv multir	olvina tł	ne Avera	ne Dai	lv 12 hr. to	tals hv	12 to 2/	1 exnans	sion fact	or	1.31					

Survey Date	e: Th	nursda	ay, No	vemb	oer 15	, 201	В						wo	No:			3	8121	
Start Time	: 07	2:00											Devi	ce:			Mic	ovisior	า
						F	ull S	tud	v 1!	5 Mi i	nute	Inc	rem	ente	2				
			MER I	BLEU	E RD			, tuu	,		indit		NAUD						
	N	orthbou				outhbou	nd			C .	astboui				estbour	d			
				N				S	STR				Е				w	STR	Grand
Time Period	LT	ST	RT	тот	LT	ST	RT	тот	тот	LT	ST	RT	тот	LT	ST	RT	тот	тот	Total
07:00 07:15	11	20	0	31	0	4	29	33	7	14	0	3	17	0	0	0	0	7	81
07:15 07:30	22	37	0	59	0	14	44	58	6	23	0	5	28	0	0	0	0	6	145
07:30 07:45	20	52	0	72	0	12	38	50	9	24	0	0	24	0	0	0	0	9	146
07:45 08:00	14	39	0	53	0	12	36	48	11	42	0	9	51	0	0	0	0	11	152
08:00 08:15	7	28	0	35	0	22	25	47	8	26	0	4	30	0	0	0	0	8	112
08:15 08:30	8	29	0	37	0	15	20	35	5	30	0	2	32	0	0	0	0	5	104
08:30 08:45	2	33	0	35	0	13	25	38	10	31	0	5	36	0	0	0	0	10	109
08:45 09:00	4	41	0	45	0	18	16	34	4	41	0	3	44	0	0	0	0	4	123
09:00 09:15	5	35	0	40	0	18	12	30	3	19	0	1	20	0	0	0	0	3	90
09:15 09:30	0	27	0	27	0	15	10	25	6	19	0	4	23	0	0	0	0	6	75
09:30 09:45	4	40	0	44	0	25	15	40	5	23	0	3	26	0	0	0	0	5	110
09:45 10:00	1	26	0	27	0	18	13	31	4	23	0	4	27	0	0	0	0	4	85
11:30 11:45	2	39	0	41	0	30	15	45	2	20	0	1	21	0	0	0	0	2	107
11:45 12:00	3	31	0	34	0	26	18	44	4	24	0	1	25	0	0	0	0	4	103
12:00 12:15	2	29	0	31	0	22	18	40	1	31	0	4	35	0	0	0	0	1	106
12:15 12:30	3	38	0	41	0	30	11	41	5	29	0	3	32	0	0	0	0	5	114
12:30 12:45	3	22	0	25	0	33	16	49	2	16	0	1	17	0	0	0	0	2	91
12:45 13:00	1	27	0	28	0	37	10	47	1	22	0	1	23	0	0	0	0	1	98
13:00 13:15	0	26	0	26	0	29	11	40	1	27	0	3	30	0	0	0	0	1	96
13:15 13:30	1	21	0	22	0	28	10	38	2	25	0	5	30	0	0	0	0	2	90
15:00 15:15	1	28	0	29	0	34	20	54	3	40	0	3	43	0	0	0	0	3	126
15:15 15:30	5	31	0	36	0	45	14	59	3	45	0	6	51	0	0	0	0	3	146
15:30 15:45	3	29	0	32	0	34	11	45	2	52	0	13	65	0	0	0	0	2	142
15:45 16:00	2	35	0	37	0	38	17	55	7	46	0	9	55	0	0	0	0	7	147
16:00 16:15	5	29	0	34	0	52	22	74	9	48	0	10	58	0	0	0	0	9	166
16:15 16:30	5	28	0	33	0	43	13	56	6	66	0	14	80	0	0	0	0	6	169
16:30 16:45	7	34	0	41	0	43	12	56	3	67	0	9	76	0	0	0	0	3	173
16:45 17:00	4	30	0	34	0	40	15	55	5	54	0	9	63	0	0	0	0	5	152
17:00 17:15	5	36	0	41	0	53	26	79	2	64	0	3	67	0	0	0	0	2	187
17:15 17:30	5	31	0	36	0	40	17	57	0	74	0	9	83	0	0	0	0	0	176
17:30 17:45	2	26	0	28	0	54	12	66	4	62	0	8	70	0	0	0	0	4	164
17:45 18:00	1	33	0	34	0	32	23	56	2	43	0	5	48	0	0	0	0	2	138
Total:	158	1010	0	1168	0	929	594	1525	142	1170	0	160	1330	0	0	0	0	142	4,023

Note: U-Turns are included in Totals.

Survey Dat	e: Thursday,	November 15, 2	018		WO No:		38121
Start Time	07:00				Device:	Ν	liovision
			Full Study	Cyclist V	olume		
		MER BLEUE RE		-	RENAUD RD		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

Survey Da	te: Thursday, I	November 15, 201	8		WO No:		38121
Start Time	e: 07:00				Device:		Miovision
		F	ull Stuc	ly Pedestria	n Volume		
				ly i cucotitu	RENAUD RD		
			J		KENAUD KD		
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	1	0	1	1
09:00 09:15	0	1	1	0	0	0	1
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	1	1	0	0	0	1
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
6:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	1	0	1	1
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
7:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	0	2	2	2	0	2	4

Survey Date): Th	nursd	ay, Nc	vemb	per 15	, 201	В						wo	No:			3	8121	
Start Time:	07	2:00											Dev	ice:			Mio	ovisior	ı
						F	ull S	stud	v He	avy	Veł	nicle	s						
			MER I	BLEU	E RD	•			<i>y</i>	jary			NAUD	RD					
	No	orthbou				outhbou	nd			F	astbour				estbour	nd			
				Ν				S	STR				Е				w	STR	Grand
Time Period	LT	ST	RT	тот	LT	ST	RT	TOT	тот	LT	ST	RT	E TOT	LT	ST	RT	тот	тот	Total
07:00 07:15	1	5	0	6	0	0	1	1	7	2	0	1	3	0	0	0	0	3	10
07:15 07:30	1	3	0	4	0	1	1	2	6	2	0	0	2	0	0	0	0	2	8
07:30 07:45	3	2	0	5	0	1	3	4	9	2	0	0	2	0	0	0	0	2	11
07:45 08:00	1	4	0	5	0	1	5	6	11	9	0	2	11	0	0	0	0	11	22
08:00 08:15	0	2	0	2	0	5	1	6	8	2	0	1	3	0	0	0	0	3	11
08:15 08:30	1	2	0	3	0	1	1	2	5	2	0	1	3	0	0	0	0	3	8
08:30 08:45	1	2	0	3	0	3	4	7	10	1	0	0	1	0	0	0	0	1	11
08:45 09:00	1	1	0	2	0	2	0	2	4	0	0	1	1	0	0	0	0	1	5
09:00 09:15	0	2	0	2	0	1	0	1	3	1	0	1	2	0	0	0	0	2	5
09:15 09:30	0	1	0	1	0	4	1	5	6	0	0	0	0	0	0	0	0	0	6
09:30 09:45	1	2	0	3	0	1	1	2	5	2	0	2	4	0	0	0	0	4	9
09:45 10:00	0	1	0	1	0	1	2	3	4	0	0	1	1	0	0	0	0	1	5
11:30 11:45	0	2	0	2	0	0	0	0	2	0	0	1	1	0	0	0	0	1	3
11:45 12:00	0	3	0	3	0	1	0	1	4	0	0	0	0	0	0	0	0	0	4
12:00 12:15	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	2
12:15 12:30	1	1	0	2	0	3	0	3	5	2	0	1	3	0	0	0	0	3	8
12:30 12:45	1	0	0	1	0	1	0	1	2	2	0	1	3	0	0	0	0	3	5
12:45 13:00	0	0	0	0	0	1	0	1	1	2	0	0	2	0	0	0	0	2	3
13:00 13:15	0	0	0	0	0	1	0	1	1	1	0	2	3	0	0	0	0	3	4
13:15 13:30	1	0	0	1	0	0	1	1	2	0	0	1	1	0	0	0	0	1	3
15:00 15:15	0	2	0	2	0	1	0	1	3	0	0	0	0	0	0	0	0	0	3
15:15 15:30	0	1	0	1	0	0	2	2	3	0	0	0	0	0	0	0	0	0	3
15:30 15:45	1	1	0	2	0	0	0	0	2	0	0	2	2	0	0	0	0	2	4
15:45 16:00	1	2	0	3	0	3	1	4	7	0	0	1	1	0	0	0	0	1	8
16:00 16:15	1	0	0	1	0	6	2	8	9	1	0	1	2	0	0	0	0	2	11
16:15 16:30	1	1	0	2	0	4	0	4	6	2	0	3	5	0	0	0	0	5	11
16:30 16:45	0	0	0	0	0	3	0	3	3	0	0	2	2	0	0	0	0	2	5
16:45 17:00	0	3	0	3	0	2	0	2	5	1	0	1	2	0	0	0	0	2	7
17:00 17:15	1	0	0	1	0	1	0	1	2	1	0	0	1	0	0	0	0	1	3
17:15 17:30	0	0	0	0	0	0	0	0	0	3	0	1	4	0	0	0	0	4	4
17:30 17:45	1	0	0	1	0	1	2	3	4	1	0	1	2	0	0	0	0	2	6
17:45 18:00	0	1	0	1	0	0	1	1	2	1	0	0	1	0	0	0	0	1	3
Total: None	20	44	0	64	0	49	29	78	142	41	0	28	69	0	0	0	0	69	211

		ay, Novemt	per 15, 2018		wo) No:	38121
tart Tim	e: 07:00					vice:	Miovision
			Full S	tudy 15 Mir	nute U-Turr	Total	
			MER BLEU	E RD	RE	NAUD RD	
_	Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	07:00	07:15	0	0	0	0	0
	07:15	07:30	0	0	0	0	0
	07:30	07:45	0	0	0	0	0
	07:45	08:00	0	0	0	0	0
	08:00	08:15	0	0	0	0	0
	08:15	08:30	0	0	0	0	0
	08:30	08:45	0	0	0	0	0
	08:45	09:00	0	0	0	0	0
	09:00	09:15	0	0	0	0	0
	09:15	09:30	0	0	0	0	0
	09:30	09:45	0	0	0	0	0
	09:45	10:00	0	0	0	0	0
	11:30	11:45	0	0	0	0	0
	11:45	12:00	0	0	0	0	0
	12:00	12:15	0	0	0	0	0
	12:15	12:30	0	0	0	0	0
	12:30	12:45	0	0	0	0	0
	12:45	13:00	0	0	0	0	0
	13:00	13:15	0	0	0	0	0
	13:15	13:30	0	0	0	0	0
	15:00	15:15	0	0	0	0	0
	15:15	15:30	0	0	0	0	0
	15:30	15:45	0	0	0	0	0
	15:45	16:00	0	0	0	0	0
	16:00	16:15	0	0	0	0	0
	16:15	16:30	0	0	0	0	0
	16:30	16:45	0	1	0	0	1
	16:45	17:00	0	0	0	0	0
_	17:00	17:15	0	0	0	0	0
	17:15	17:30	0	0	0	0	0
	17:30	17:45	0	0	0	0	0
	17:45	18:00	0	1	0	0	1
_	Tc	otal	0	2	0	0	2

Collision Data

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2015-09-24	2015	17:33	BRIAN COBURN BLVD @ MER BLEUE RD	01 - Clear	01 - Daylight	02 - Stop sign	03 - P.D. only	03 - Rear end	01 - Dry
2015-04-14	2015	15:51	BRIAN COBURN BLVD @ MER BLEUE RD	01 - Clear	01 - Daylight	02 - Stop sign	03 - P.D. only	02 - Angle	01 - Dry
2016-01-04	2016	19:37	BRIAN COBURN BLVD @ MER BLEUE RD	01 - Clear	07 - Dark	01 - Traffic signal	03 - P.D. only	03 - Rear end	01 - Dry
2016-10-04	2016	7:15	BRIAN COBURN BLVD @ MER BLEUE RD	01 - Clear	01 - Daylight	11 - Roundabout	03 - P.D. only	03 - Rear end	01 - Dry
2017-09-27	2017	18:30	BRIAN COBURN BLVD @ MER BLEUE RD	01 - Clear	05 - Dusk	11 - Roundabout	03 - P.D. only	03 - Rear end	01 - Dry
2017-02-07	2017	22:38	BRIAN COBURN BLVD @ MER BLEUE RD	03 - Snow	07 - Dark	11 - Roundabout	03 - P.D. only	07 - SMV other	03 - Loose snow
2017-03-08	2017	7:20	BRIAN COBURN BLVD @ MER BLEUE RD	04 - Freezing Rain	01 - Daylight	11 - Roundabout	03 - P.D. only	07 - SMV other	06 - Ice
2017-03-30	2017			01 - Clear	07 - Dark	11 - Roundabout	03 - P.D. only	02 - Angle	01 - Dry
2018-06-22	2018	10:17	BRIAN COBURN BLVD @ MER BLEUE RD (0014363)	01 - Clear	01 - Daylight	11 - Roundabout	03 - P.D. only	03 - Rear end	01 - Dry

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2015-02-20	2015	10:37	BRIAN COBURN BLVD @ GERRY LALONDE DR	01 - Clear	01 - Daylight	02 - Stop sign	03 - P.D. only	05 - Turning movement	01 - Dry
2017-05-08	2017	23:21	BRIAN COBURN BLVD @ GERRY LALONDE DR	01 - Clear	07 - Dark	02 - Stop sign	03 - P.D. only	07 - SMV other	01 - Dry
2018-10-10	2018	6:30	BRIAN COBURN BLVD @ GERRY LALONDE DR (0014327)	07 - Fog, mist, smoke, di	03 - Dawn	02 - Stop sign	03 - P.D. only	03 - Rear end	02 - Wet

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2016-08-14	2016	8:47	RENAUD RD @ MER BLEUE RD	01 - Clear	01 - Daylight	02 - Stop sign	03 - P.D. only	07 - SMV other	01 - Dry
2017-02-03	2017	16:33	RENAUD RD @ MER BLEUE RD	01 - Clear	01 - Daylight	02 - Stop sign	03 - P.D. only	02 - Angle	01 - Dry
2017-03-02	2017	16:06	RENAUD RD @ MER BLEUE RD	01 - Clear	01 - Daylight	02 - Stop sign	03 - P.D. only	03 - Rear end	01 - Dry
Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2017-10-18	2017	7:55	BRIAN COBURN BLVD btwn CHAPERAL PRIV & MER BLEUE RD	01 - Clear	01 - Daylight	10 - No control	02 - Non-fatal injury	03 - Rear end	01 - Dry
2018-09-05	2018	8:09	BRIAN COBURN BLVD btwn CHAPERAL PRIV & MER BLEUE RD (e2HGI)	01 - Clear	01 - Daylight	10 - No control	02 - Non-fatal injury	03 - Rear end	01 - Dry

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2018-03-19	2018	15:34	BRIAN COBURN BLVD btwn FERN CASEY ST & MER BLEUE RD (e2IA9)	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	01 - Approaching	01 - Dry
2018-05-16	2018	18:00	BRIAN COBURN BLVD btwn FERN CASEY ST & MER BLEUE RD (e2IA9)	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	04 - Sideswipe	01 - Dry
2018-12-02	2018	15:33	BRIAN COBURN BLVD btwn FERN CASEY ST & MER BLEUE RD (e2IA9)	02 - Rain	01 - Daylight	10 - No control	03 - P.D. only	05 - Turning movement	02 - Wet

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2014-02-12	2014	7:54	BRIAN COBURN BLVD btwn GERRY LALONDE DR & STRASBOURG ST	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	99 - Other	01 - Dry
2016-04-29	2016	10:41	BRIAN COBURN BLVD btwn GERRY LALONDE DR & STRASBOURG ST	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	03 - Rear end	01 - Dry
2017-06-05	2017	14:09	BRIAN COBURN BLVD btwn GERRY LALONDE DR & STRASBOURG ST	02 - Rain	01 - Daylight	10 - No control	02 - Non-fatal injury	01 - Approaching	02 - Wet
2018-01-08	2018	9:20	BRIAN COBURN BLVD btwn GERRY LALONDE DR & STRASBOURG ST (6ZT4Q	03 - Snow	01 - Daylight	10 - No control	03 - P.D. only	03 - Rear end	03 - Loose snow
2018-12-10	2018	0:43	BRIAN COBURN BLVD btwn GERRY LALONDE DR & STRASBOURG ST (6ZT4Q	01 - Clear	07 - Dark	10 - No control	02 - Non-fatal injury	07 - SMV other	02 - Wet

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2014-03-16	2014	16:29	Gerry Lalonde Dr btwn Brian Coburn Blvd and Trigoria Cres	01 - Clear	01 - Daylight	01 - Traffic signal	03 - P.D. only	02 - Angle	01 - Dry
2014-03-26	2014	17:00	Gerry Lalonde Dr btwn Brian Coburn Blvd and Trigoria Cres	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	03 - Rear end	01 - Dry
2014-05-21	2014	12:07	Gerry Lalonde Dr btwn Brian Coburn Blvd and Trigoria Cres	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only		01 - Dry

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2014-09-23	2014	20:57	MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD	07 - Fog, mist, smoke, di	07 - Dark	10 - No control	03 - P.D. only	07 - SMV other	01 - Dry
2014-11-04	2014	2:18	MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD	01 - Clear	07 - Dark	10 - No control	03 - P.D. only	07 - SMV other	01 - Dry
2015-02-26	2015	17:06	MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	04 - Sideswipe	01 - Dry
2015-02-08	2015	10:53	MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD	03 - Snow	01 - Daylight	10 - No control	03 - P.D. only	99 - Other	03 - Loose snow
2016-05-31	2016	12:02	MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	04 - Sideswipe	01 - Dry
2016-11-03	2016	7:19	MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD	02 - Rain	03 - Dawn	10 - No control	03 - P.D. only	04 - Sideswipe	02 - Wet

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2014-10-15	2014	16:34	MER BLEUE RD btwn RENAUD RD & DU PALAIS ST	02 - Rain	01 - Daylight	10 - No control	03 - P.D. only	03 - Rear end	02 - Wet

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Classification Of Accident	Initial Impact Type	Road Surface Condition
2015-02-14	2015	14:40	RENAUD RD btwn WHITE ST & MER BLEUE RD	01 - Clear	01 - Daylight	10 - No control	02 - Non-fatal injury	02 - Angle	03 - Loose snow
2015-02-21	. 2015	10:42	RENAUD RD btwn WHITE ST & MER BLEUE RD	03 - Snow	01 - Daylight	10 - No control	03 - P.D. only	07 - SMV other	03 - Loose snow
2016-06-30	2016	7:01	RENAUD RD btwn WHITE ST & MER BLEUE RD	01 - Clear	01 - Daylight	10 - No control	03 - P.D. only	05 - Turning movement	01 - Dry

LOCATION & GEOID	TOTAL_COLLISIONS	TOTAL_CYCLIST_ COLLISIONS	TOTAL_PEDESTRIAN_ COLLISIONS
BRIAN COBURN BLVD @ MER BLEUE RD (0014363)	9	0	0
BRIAN COBURN BLVD @ GERRY LALONDE DR (0014327)	3	0	0
RENAUD RD @ MER BLEUE RD (0012893)	3	0	0
BRIAN COBURN BLVD btwn CHAPERAL PRIV & MER BLEUE RD (e2HGI)	2	0	0
BRIAN COBURN BLVD btwn FERN CASEY ST & MER BLEUE RD (e2IA9)	3	0	0
BRIAN COBURN BLVD btwn GERRY LALONDE DR & STRASBOURG ST (6ZT4QS)	5	0	0
GERRY LALONDE DR btwn BRIAN COBURN BLVD & CHINIAN ST/TRIGORIA CRES (86L66A)	3	0	0
MER BLEUE RD btwn 210 S OF INNES RD & RENAUD RD (3ZA2S1B)	6	0	0
MER BLEUE RD btwn RENAUD RD & DU PALAIS ST (3ZBO5M)	1	0	0
RENAUD RD btwn WHITE ST & MER BLEUE RD (3ZA6P1)	3	0	0

Appendix D

Mer-Bleue Rd. at Decoeur Dr. Proposed Intersection Improvements - TrailsEdge East CTS

- *Mer Bleue Road / Axis Way / Decoeur*: This intersection would be the main access to the TrailsEdge East lands and Avalon West community to the east. It is anticipated that this intersection would initially operate as a two-way STOP-Controlled intersection until development progresses east and west of Mer Bleue Road and the need for a traffic control signal is met. For the purpose of this study, it is assumed that TrailsEdge East and Avalon West lands be fully developed by 2021 horizon year and therefore traffic signals were assumed to be in place by 2021. However, the intersection should be monitored at time closer to 2021 to ensure that development on either side is progressing as anticipated and traffic signals are warranted.
- *Mer Bleue Road / Renaud Road*: The existing All-Way STOP Controlled Tintersection would be converted to a 4-Way intersection by 2020 to serve the proposed Mattamy development east of Mer Bleue Road. The 4-Way STOP-Controlled intersection would operate at satisfactory overall LOS "D" during the afternoon peak hour of travel demand. The SB movement operates at a congested level of service during the afternoon peak hour. It should be noted that the 2405 Mer Bleue Road⁶ TIS assumed that traffic signals be in place by 2021 once the residential community (Mattamy) east of Mer Bleue Road is developed. It is recommended that the intersection be monitored at a time closer to 2021 as developments progress in the area to determine if signals are warranted. For the purpose of this study, the intersection was also simulated as a traffic signal with auxiliary lanes, which results in satisfactory level of service.
- All remaining study area intersections operate at satisfactory level of service during both peak hours of travel demand.

6.4 2026 FORECAST ANALYSIS

The 2026 forecast analysis indicates that:

- *Mer Bleue Road / Brian Coburn Boulevard*: The WB and EB movements continue to exhibit unsatisfactory level of service during the peak hour of travel demand as background traffic grows. Once again, this study assumed an aggressive build-out of adjacent developments, which assume a worst-case scenario on the adjacent roadway network.
- *Navan Road / Renaud Road*: The intersection exhibits satisfactory level of service on all approaches once the east leg of Renaud Road is closed. Traffic using Renaud Road is expected to divert to Brian Coburn Boulevard and head south on Navan Road to reach west of Navan Road (i.e. Anderson Road). This would alleviate pressure at the NB-LT movement and divert traffic to the SB-RT movement.
- All remaining study area intersections operate at satisfactory level of service during both peak hours of travel demand.

^{6 2405} Mer Bleue Road Transportation Impact Study, Stantec April 2014

Appendix E

Brian Coburn Blvd. at Jerome Jodoin Dr. Proposed Intersection Improvements – PIED Report

Report to Rapport au:

Planning Committee / Comité de l'urbanisme April 11, 2019 / 11 avril 2019

> and Council / et au Conseil April 24, 2019 / 24 avril 2019

Submitted on March 28, 2019 Soumis le 28 mars 2019

Submitted by Soumis par: Lee Ann Snedden Director / Directrice Planning Services / Services de la planification Planning, Infrastructure and Economic Development Department / Direction générale de la planification, de l'infrastructure et du développement économique

Contact Person Personne ressource: Jeff McEwen Manager/Gestionnaire, Development Review-Suburban Services/Examen des projets d'aménagement-Services suburbains 613-580-2424, 16597, Jeff.McEwen@ottawa.ca

Ward: CUMBERLAND (19)

File Number: ACS2019-PIE-PS-0030

SUBJECT: Front-Ending Report – Roundabout (Brian Coburn Boulevard at Gerry Lalonde Drive/Jerome Jodoin Drive)

OBJET: Rapport d'entente préalable – Carrefour giratoire (promenade Brian Coburn, à l'angle des promenades Gerry Lalonde et Jerome Jodoin)

REPORT RECOMMENDATIONS

That Planning Committee recommend that Council:

1. Delegate authority to the General Manager, Planning, Infrastructure and

Economic Development Department, to enter into a Front-Ending Agreement with Minto Communities - Canada for the design and construction of a roundabout at the intersection of Brian Coburn Boulevard and Gerry Lalonde Drive/Jerome Jodoin Drive as outlined in this report, to an upset limit of \$1,800,000 including applicable taxes and indexing, in accordance with the Front-Ending Agreement Principles and Policy set forth in Documents 1 and 2 and with the final form and content being to the satisfaction of the City Clerk and Solicitor;

- 2. Authorize the financial disbursement to reimburse the design and construction costs incurred by Minto Communities Canada pursuant to the execution of the Front-Ending Agreement;
- 3. Authorize the pre-committal of \$1,800,000 including applicable taxes (the upset limit of the Front-Ending Agreement) from the 2019 and 2020 Capital Budget/Development Charges Forecast subject to execution of the Front- Ending Agreement;
- 4. Authorize the expenditure of \$1,800,000 including applicable taxes (upset limit) in accordance with the reimbursement schedule set out in the Front-Ending Agreement.

RECOMMANDATIONS DU RAPPORT

Que le Comité de l'urbanisme recommande ce qui suit au Conseil :

- 1. Déléguer au directeur général de Planification, Infrastructure et Développement économique le pouvoir de conclure une entente préalable avec Minto Communities - Canada, en vue de procéder à la conception et à l'installation d'un carrefour giratoire à l'angle du boulevard Brian-Coburn et des promenades Gerry-Lalonde et Jerome-Jodoin, comme le décrit le présent rapport, jusqu'à concurrence de 1 800 000 \$, taxes applicables et indexation en sus, conformément aux principes et à la politique de l'entente préalable énoncés dans les documents 1 et 2, et dont la forme et le contenu définitifs seront à la satisfaction du greffier municipal et de l'avocat général;
- Autoriser la sortie des fonds nécessaires au remboursement des coûts de conception et de construction engagés par Minto Communities - Canada, dans le cadre de l'exécution de l'entente préalable;

- 3. Autoriser l'engagement préalable d'une somme de 1 800 000 \$, taxes applicables en sus, (la limite maximale de l'entente préalable) provenant du budget d'immobilisations de 2019 et 2020 et des prévisions de redevances d'aménagement, sous réserve de l'exécution de l'entente préalable;
- 4. Autoriser la dépense de 1 800 000 \$, taxes applicables en sus, (la limite maximale de l'entente préalable), conformément au calendrier de remboursement fixé dans l'entente préalable.

BACKGROUND

Minto Communities – Canada received draft plan of subdivision approval on January 9, 2007 and an extension and revision of that draft approval on October 2, 2014 for the lands at 2233 Mer-Bleue Road, which is located in Avalon West, between Mer-Bleue Road and Tenth Line Road in Orléans.

The intersection was originally to be a signalized intersection. An "Intersection Control and Roundabout Feasibility Study" prepared for the City of Ottawa by Robinson Consultants Inc. in January 2016 looked at roundabouts versus signals at Brian Coburn Boulevard for the intersections at Gerry Lalonde Drive, Strasbourg Street, Aquaview Drive, Esprit Drive and signals at Tenth Line Road. The study determined that mixed corridor with single-lane roundabouts at the intersections of Brian Coburn Boulevard at Gerry Lalonde Drive and Brian Coburn Boulevard at Strasbourg Street/Des Aubépines Drive and signals at Tenth Line Road, Aquaview Drive and Esprit Drive would operate at an acceptable level of service in both the 2021 and 2031 periods and is anticipated to have the lowest capital cost.

The proposed works include the design and construction of a single-lane roundabout at the intersection of Brian Coburn Boulevard and Gerry Lalonde Drive/Jerome Jodoin Drive in Orléans (Cumberland Ward 19). The roundabout is identified in the City of Ottawa 2014 Development Charge By-law as an intersection construction project.

The upset limit provided for the works is \$1,800,000 including applicable taxes for design and construction. Reimbursement for the roundabout is identified for 2020 if constructed in 2019. Minto Communities - Canada shall be required to enter into an agreement with the City for the design and construction of the roundabout as identified in the subdivision agreement. The construction of the roundabout will coincide with the opening of the intersection of Jerome Jodoin Drive at Brian Coburn Boulevard in 2019.

DISCUSSION

The intersection of Brian Coburn Boulevard and Gerry Lalonde Drive was originally to be a signalized intersection. An "Intersection Control and Roundabout Feasibility Study" prepared for the City of Ottawa by Robinson Consultants Inc. in January 2016 looked at roundabouts versus signals on Brian Coburn Boulevard. The study determined that a single-lane roundabout at this intersection would operate at an acceptable level of service in both the 2021 and 2031 periods and is anticipated to have the lowest capital cost.

The continuous, steady growth of the Minto Communities development south of Brian Coburn Boulevard requires a controlled intersection at Gerry Lalonde Drive/Jerome Jodoin Drive for access and egress. A roundabout is preferred to a traffic signal as it will provide the most efficient method for travelling along Brian Coburn Boulevard, without causing any additional delay to this road. The benefits of the roundabout are fewer conflict points, reductions in number and severity of collisions, slower speeds and therefore reduced pollution and fuel usages.

RURAL IMPLICATIONS

There are no rural implications associated with the proposed Front-Ending Agreement.

CONSULTATION

All development approvals were conducted according to the requirements of the *Planning Act* and the City's Public Notification and Consultation Policy. The frontending entities agree to the process outlined herein.

COMMENTS BY THE WARD COUNCILLOR

Councillor Blais fully supports the installation of the roundabout.

LEGAL IMPLICATIONS

There are no legal impediments to the implementation of this report's recommendation. Subject to Council approval, the City will be entering into a standard Front-Ending agreement with the developer to front end the cost of the roundabout at Brian Coburn Boulevard at Gerry Lalonde/Jerome Jodoin Drive, in accordance with the Council approved Front-Ending policy.

RISK MANAGEMENT IMPLICATIONS

There are no risk implications associated with the front-ending of the intersection.

ASSET MANAGEMENT IMPLICATIONS

The recommendations documented in this report are consistent with the City's <u>Comprehensive Asset Management (CAM) Program</u> objectives. The implementation of the CAM program results in timely decisions that minimize lifecycle costs and ensure the long-term affordability of assets. To fulfill its obligation to deliver quality services to the community, the City must ensure that assets supporting City services are managed in a way that balances service levels, risk and affordability.

Entering into Front-Ending Agreements with the Developers associated with the adjacent plan of subdivision for the design and construction of a roundabout at Brian Coburn Boulevard at Gerry Lalonde Drive/Jerome Jodoin Drive supports a level of service expectation and what needs to be done to achieve those levels.

FINANCIAL IMPLICATIONS

The front-ending report and subsequent agreement are in accordance with the Council approved Development Charges Background Study. The intersection of Coburn Boulevard at Gerry Lalonde Drive/Jerome Jodoin Drive is item number 1.XXX36 as listed in the 2014 Development Charges Background Study.

The project has an upset limit of \$1,800,000 including applicable taxes for reimbursement in 2020.

Development Charge	Up-Set Limit (including	Criteria for Repayment
Item	applicable taxes)	
A. Construction –	\$1,285,720	Repayment based on the
Intersection		actual value to upset limit.
roundabout		
B. 15% Engineering	\$192,855 (15% of construction)	Repayment based on the
		actual value to upset limit.
C.10% Project	\$128,570 (10% of Civil works	Repayment based on the
Management	for the intersection)	actual value to upset limit.

D. 15% Contingency	\$ 192,855 (15% contingency)	Repayment based on the
		actual value to upset limit.
		All contingencies must be
		justified and supported by
		invoices and payment

Repayment shall be based on the actual value to an upset limit of \$1,800,000 including applicable taxes. Should the actual costs exceed the upset limit, the additional costs shall be borne by the developer and the City shall not be obligated to compensate for additional costs.

Repayment is subject to fulfilment of the Front-Ending Agreement conditions, and will be based on the actual value of the costs incurred.

Pending Council approval for the City to enter into the Front-Ending Agreement, a capital account will be established with budget authority of \$1,800,000, 100 percent Roads and Related Services Development Charge funded.

Once the works are accepted, the City shall assume maintenance of the intersection roundabout. With this intersection currently in operation with stop control, the proposed geometric modifications will not have any additional operating impacts.

ACCESSIBILITY IMPACTS

All infrastructure will be designed in accordance with all relevant legislation and regulations.

ENVIRONMENTAL IMPLICATIONS

There are no environmental implications with the front ending of this intersection.

TERM OF COUNCIL PRIORITIES

This project addresses the following Term of Council Priority:

• TM4 – Improve safety for all road users.

SUPPORTING DOCUMENTATION

Document 1 Front-Ending Agreement Principles

Document 2 Council Approved Front-Ending Policy

Document 3 Location Map

DISPOSITION

Staff are recommending this report be considered at the April 24, 2019 Council meeting.

Legal Services to prepare the final form of the agreements in consultation with the Planning, Infrastructure and Economic Development Department.

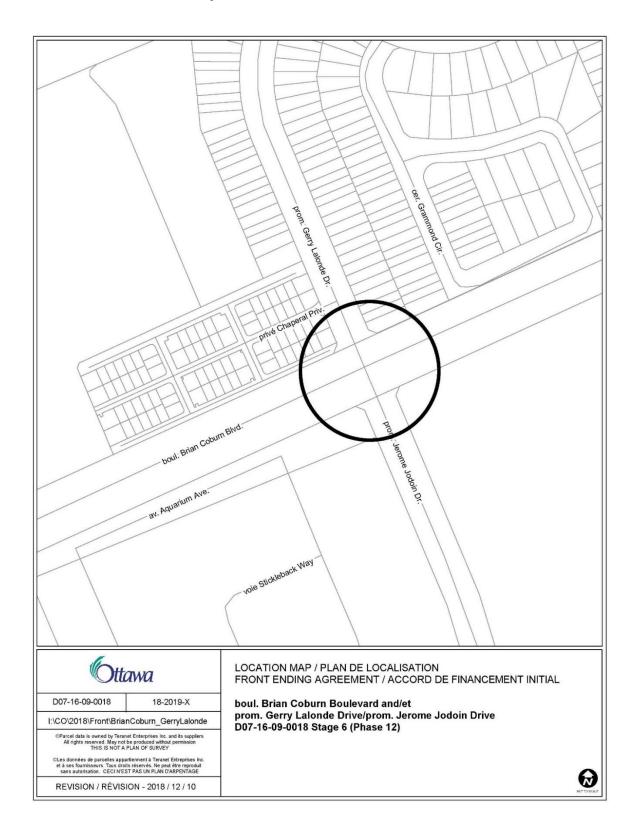
The Treasurer to earmark funds for repayment as noted in this report.

Document 1 – Front-Ending Agreement Principles

- 1. Minto Communities Canada are required to post 100 per cent securities for the full cost of the design and construction of traffic signals for the intersection of Brian Coburn Boulevard and Gerry Lalonde Drive/Jerome Jodoin Drive, including all associated works, estimated at \$1,800,000 including engineering, land remuneration, project management and contingences, and applicable taxes.
- 2. The cost of the roundabout of the intersection of Brian Coburn Boulevard and Gerry Lalonde Drive/Jerome Jodoin Drive, including all associated works, is set at an upset limit of \$1,800,000 including engineering, land remuneration, project management and contingencies, and applicable taxes. All costs incurred shall be justified and include supporting invoices and payment certificates.
- 3. The City will reimburse Minto Communities Canada after the works have been accepted by the City. Reimbursement will take place following acceptance in 2020, provided the applicant satisfies all requirements in accordance with the Council approved Front-Ending Policies in Document 2.
- 4. The repayment of construction costs for the roundabout of the Brian Coburn Boulevard and Gerry Lalonde Drive/Jerome Jodoin Drive intersection shall be pursuant to Council-approved Front-Ending Agreement Policy as referenced under Document 2.

Document 2 – Council Approved Front-Ending Policy

Front-Ending Agreements are requested by developers who wish to have specific growth-related capital works in place in advance of the City's capital project plans for emplacement of these same works: developers agree to finance the works at the "front-end" and recover their costs from the City at a later date. The following conditions must be met in order for the City to enter into a Front-Ending Agreement:


- 1. All Front-Ending Agreements with the City will be for growth-related capital works that have been included in a development charge study.
- 2. The contract for front-ended works shall be awarded by the front-ender in accordance with the City's Purchasing Policy of a competitive procurement process and subject to the review and satisfaction of the General Manager, Planning, Infrastructure and Economic Development Department. Where the front-ender does not award the work in accordance with the City's purchasing policy, they must demonstrate that competitive pricing has been obtained, through independent analysis of their engineer, to the satisfaction of the General Manager, Planning, Infrastructure and Economic Development Department. The contract for the work must be made available to the City to provide to the public.
- 3. Stormwater ponds and related sewer works that are 100 per cent development charge funded in the recommended by-laws will be paid back to the developer based on revenues as they are collected from the designated area. This means that at no time are the repayments to exceed the revenues received. Each Front-Ending Agreement will define the geographic area involved and a separate and specific deferred revenue account may be set up to keep track of the revenues collected and payments made. Crediting will also be allowed for the Front-Ending Agreements related to storm water ponds. Indexing shall apply to the outstanding balance in accordance with the rate of indexation pursuant to the Development Charge By-laws.
- 4. For all other capital projects, a lump sum payment, both the development charge portion and the City portion, will be made to the developer in the year the project is identified in the City's 10-year capital plan at the time the Front-Ending Agreement is approved. Should growth occur earlier than forecasted, then repayment would be accelerated to reflect the revised timing the City would have budgeted for the project. If growth occurs more slowly than forecasted, then the City will have an additional one to three years (one to three years from the year the project was identified in the 10-year plan) to make repayments. Only in this latter case will the City's portion of the payment be indexed beginning with the

year the project was identified in the 10-year plan.

- 5. Given that the City will be assuming operating costs earlier than anticipated through the Front-Ending Agreement process; the City is not to pay any carrying costs to the developer.
- 6. All development charges payable by developers must be paid up front in accordance with the City's by-law. With the exception of the stormwater ponds and related sewer works, there will not be any crediting allowed as a result of entering into a Front-Ending Agreement. On December 8, 2004, City Council approved, "That staff be directed to work with the industry to develop the details of a credit policy to be incorporated into the Front-Ending Policy".
- 7. In the case where multiple Front-Ending Agreements are in force in the same area-specific Development Charge By-law, and the City has approved the front-ended works for development charge reimbursements, the front-enders will share in the distribution of development charge revenues on a pro-rata basis with other storm water drainage projects. The pro-rated works shall be based on the balance of the outstanding amount owing on the date the repayment is due. Existing front-enders will be advised of new Front-Ending Agreements for stormwater works within the same benefiting area and area-specific development charge By-law.
- 8. The capital project upset limits for engineering, project management, and contingency shall be the established rates set in accordance with the City's Development Charge By-laws and accompanying background studies, as amended.
- 9. Land remuneration shall be subject to an appraisal by a professional land appraiser and the appraisal shall be conducted in accordance with the terms of reference as established in the City's Development Charge By-laws and accompanying background studies, as amended. The upset limit for land remuneration shall be the lesser of the appraised value and the upset limit in accordance with the City's Development Charge By-laws and accompanying background studies.
- 10. Indexing shall apply to the total project costs if the front-ended works have been delayed over a period of time; the front-ender provides justification for the delay, and with the written concurrence of the City.
- 11. Where a front-ender is eligible for development charge reimbursement, documentation is required to support the reimbursement in accordance with the

City's Purchasing Policy. The Front-Ending Agreement shall identify at which stage the documentation shall be required. The following documentation shall be forwarded to the City before payment is issued:

- An invoice summarizing the front-ended works, and separate cost items, if applicable, for land, construction costs, engineering fees, project management fees, contingency fees, and applicable taxes.
- Payment Certificates, including the final certificate, signed by the developer's civil engineer.
- All invoices supporting re-payment for the front-ended works.
- Statutory Declaration.
- Certificate of Substantial Performance.
- Workplace Safety and Insurance Board Clearance Certificate (WSIB).
- Certificate of Publication.
- 12. A report to Council is required to authorize staff to enter into a Front-Ending Agreement. The recommendation will include the financial commitment of the City, specify the funding source(s), the project timeline and where necessary, request that a specific deferred revenue account be established. The financial comment in the report will specify the timelines for the repayment, an operating budget impact and an estimate of the year in which the operating budget impact will begin. It should also indicate the year in which the project was originally identified in the City's 10- year capital plan. A capital project will be established upon Council approval to enter into a Front-Ending Agreement. The status of these projects will be provided to Council on a yearly basis.
- **13.** No capital project identified outside of the Council approved 10- year long range capital plan, shown in the Development Charge Background Study is eligible to be front-ended unless another item(s) of comparable value, funding allocation, and timing is delayed. A capital project identified with a post-period deduction applied to the gross cost will only have the development charge portion reimbursed if front-ended over the term of the by-law. Indexing would not be applicable to the repayment of the post-period component of the project cost. If growth occurs more slowly than forecasted, then the City Treasurer will have the authority to add an additional three years, without interest, to the repayment of the post-period component charges.

Document 3 – Location Map

ITE Internal Capture Rates

		Wee	ekday
		AM Peak Hour	PM Peak Hou
To OFFICE	From Retail	4%	31%
	From Restaurant	14%	30%
	From Cinema/Entertainment	0%	6%
	From Residential	3%	57%
	From Hotel	3%	0%
To RETAIL	From Office	32%	8%
	From Restaurant	8%	50%
	From Cinema/Entertainment	0%	4%
	From Residential	17%	10%
	From Hotel	4%	2%
To RESTAURANT	From Office	23%	2%
	From Retail	50%	29%
	From Cinema/Entertainment	0%	3%
	From Residential	20%	14%
	From Hotel	6%	5%
То	From Office	0%	1%
CINEMA/ENTERTAINMENT	From Retail	0%	26%
	From Restaurant	0%	32%
	From Residential	0%	0%
	From Hotel	0%	0%
To RESIDENTIAL	From Office	0%	4%
	From Retail	2%	46%
	From Restaurant	5%	16%
	From Cinema/Entertainment	0%	4%
	From Hotel	0%	0%
To HOTEL	From Office	0%	0%
	From Retail	0%	17%
	From Restaurant	4%	71%
	From Cinema/Entertainment	0%	1%
	From Residential	0%	12%

Table 6.2 Unconstrained Internal Person Trip Capture Rates for Trip Destinations within a Mixed-Use Development

Source: Bochner, B., K. Hooper, B. Sperry, and R. Dunphy. NCHRP Report 684: *Enhancing Internal Trip Capture Estimation for Mixed-Use Developments*. Washington, DC: Transportation Research Board, Tables 101 and 102, 2011.

ite=

		WEE	KDAY
		AM Peak Hour	PM Peak Hou
From OFFICE	To Retail	28%	20%
	To Restaurant	63%	4%
	To Cinema/Entertainment	0%	0%
	To Residential	1%	2%
	To Hotel	0%	0%
From RETAIL	To Office	29%	2%
	To Restaurant	13%	29%
	To Cinema/Entertainment	0%	4%
	To Residential	14%	26%
	To Hotel	0%	5%
From RESTAURANT	To Office	31%	3%
	To Retail	14%	41%
	To Cinema/Entertainment	0%	8%
	To Residential	4%	18%
	To Hotel	3%	7%
From	To Office	0%	2%
CINEMA/ENTERTAINMENT	To Retail	0%	21%
	To Restaurant	0%	31%
	To Residential	0%	8%
	To Hotel	0%	2%
From RESIDENTIAL	To Office	2%	4%
	To Retail	1%	42%
	To Restaurant	20%	21%
	To Cinema/Entertainment	0%	0%
	To Hotel	0%	3%
From HOTEL	To Office	75%	0%
	To Retail	14%	16%
	To Restaurant	9%	68%
	To Cinema/Entertainment	0%	0%
	To Residential	0%	2%

Table 6.1 Unconstrained Internal Person Trip Capture Rates for Trip Origins within a Mixed-Use Development

Source: Bochner, B., K. Hooper, B. Sperry, and R. Dunphy. NCHRP Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments. Washington, DC: Transportation Research Board, Tables 99 and 100, 2011.

TDM Checklists

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend

C The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	
	2.2	Bicycle skills training	
		Commuter travel	
BETTER 🖈	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER	★ 3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC ★	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC ★	6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments		Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS		
	7.1	Multimodal travel information		
		Commuter travel		
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students		
BETTER ★	710	Visitor travel Include multimodal travel option information in		
BETTER ★	1.1.2	invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)		
	7.2	Personalized trip planning		
		Commuter travel		
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees		
	7.3	Promotions		
		Commuter travel		
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes		
	8.	OTHER INCENTIVES & AMENITIES		
	8.1	Emergency ride home		
		Commuter travel		
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters		
	8.2	Alternative work arrangements		
		Commuter travel		
BASIC ★	8.2.1	Encourage flexible work hours		
BETTER	8.2.2	Encourage compressed workweeks		
BETTER ★	8.2.3	Encourage telework		
	8.3	Local business travel options		
		Commuter travel		
BASIC ★	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work		
	8.4	Commuter incentives		
		Commuter travel	1	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance		
	8.5	On-site amenities		
		Commuter travel		
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands		

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision) (Applicable to the residential component of the Mixed-Use Building only)

The measure is generally feasible and effective, and in most
cases would benefit the development and its users
The measure could maximize support for users of sustainable modes, and optimize development performance
The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	\checkmark
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC ★	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (<i>see Official</i> <i>Plan policy 4.3.12</i>)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

	Legend
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references				
	1.	WALKING & CYCLING: ROUTES					
	1.1	Building location & access points					
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances					
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations					
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort					
	1.2	Facilities for walking & cycling					
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations <i>(see Official Plan policy 4.3.3)</i>					
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible <i>(see Official</i> <i>Plan policy 4.3.12)</i>					

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible <i>(see Official Plan policy 4.3.6)</i>	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (<i>see Zoning By-law Section 111</i>)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi-family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

MMLOS Worksheets

Consultant	CGH Transportation	Project	2020-82
Scenario	2024 Future Background AM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-B	eue Road @ Dec	coeur Drive / Axi	s Way		Mer-Bleue Road	@ Renaud Ro	ad		
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes	7	7	3	3	3	3		3		
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive		
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control		
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed		
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No		
riar	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel		
Pedestrian	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m		
Ped	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings		
	PETSI Score	5	5	71	71	85	79		71		
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-
	Cycle Length	-									
	Effective Walk Time										
	Average Pedestrian Delay										
	Pedestrian Delay LoS		-			•		-	-	-	-
	Level of Service	F	F	С	C	В	В	-	С	-	-
			F	•			C	;			
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic		
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m		
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h		
o	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-
ycl	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed		
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		
	Left Turning Cyclist	F	F	С	С	С	С	-	С	-	-
	Level of Service	F	F	D	D	D	D	-	D	-	-
			F			D					
÷	Average Signal Delay	≤ 10 sec	≤ 10 sec								
ans	Lauri et Ormiter	В	В	-	-	-	-	-	-	-	-
Transit	Level of Service		E	3			-				
×	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection										
Truck		-	-	-	-	-	-	-	-	-	-
μ,	Level of Service						-				
H						0.0 - 0.60					
Auto	Volume to Capacity Ratio		0.0 -	0.60			0.0 - (0.60			

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2024 Future Background PM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-B	leue Road @ Deo	coeur Drive / Axi	s Way		Mer-Bleue Road	@ Renaud Ro	ad			
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	l
	Lanes	7	7	3	3	3	3		3			
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m			
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive			
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control			
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed			
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No			
riar	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel			
Pedestrian	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m			
bed	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings			
	PETSI Score	5	5	71	71	85	79		71			I
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-	l
	Cycle Length											
	Effective Walk Time Average Pedestrian Delay											1
	Pedestrian Delay LoS	_				-			-			I
		F	F	C	C	В	B		C		_	l
	Level of Service		· · ·	<u> </u>			••	-	, v		<u> </u>	
			F	•			C	;				
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	ļ
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic			
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m			
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h			
e	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-	l
ycl	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-	
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed			
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h			•
	Left Turning Cyclist	F	F	С	С	С	С	-	С	-	-	
	Level of Service	F	F	D	D	D	D	-	D	-	-	
			F	-		D						
it	Average Signal Delay	≤ 10 sec	≤ 10 sec									•
Transit		В	В	-	-	-	-	-	-	-	-	ļ
Tra	Level of Service		E	3			-					
	Effective Corner Radius											
×	Number of Receiving Lanes on Departure from Intersection											,
<u> </u>		-	-	-	-	-	-	-	-	-	-	
Truck												
Truc	Level of Service		-				-					
Auto	Level of Service Volume to Capacity Ratio		0.0 -				- 0.71 -					

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2024 Future Total AM	Date	05-Jan-21
Comments			

	INTERSECTIONS		leue Road @ Dec	coeur Drive / Axi	is Way		Mer-Bleue Road @) Renaud Ro	ad		
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes	7	7	3	3	3	3		3		
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive		
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control		
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed		
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No		
ian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel		
Pedestrian	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m		
	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings		
	PETSI Score	5	5	71	71	85	79		71		
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-
	Cycle Length	-									
	Effective Walk Time Average Pedestrian Delay										
	Pedestrian Delay LoS	-	-	-	-	-	-	-	-	-	-
		F	F	С	С	В	В	-	С	-	-
	Level of Service	F				C		<u>.</u>			
_	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic		
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m		
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h		
Ø	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-
- S	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed		
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		
	Left Turning Cyclist	F	F	С	С	С	С	-	С	-	-
	Level of Service	F	F	D	D	D	D	-	D	-	-
			F	=		D					
ų	Average Signal Delay	≤ 10 sec	≤ 10 sec								
Transit		В	В	-	-	-	-	-	-	-	-
Tra	Level of Service		E	3			-				
ck	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection										
Truck		-	-	-	-	-	-	-	-	-	-
	Level of Service		-				-				
	Volume to Capacity Ratio		0.0 -	0.60		0.0 - 0.60					
Auto											

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2024 Future Total PM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-B	leue Road @ Dec	coeur Drive / Axi	s Way		Mer-Bleue Road (@ Renaud Ro	ad		
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes	7	7	3	3	3	3		3		
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive		
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control		
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed		
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No		
riar	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel		
est	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m		
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings		
_	PETSI Score	5	5	71	71	85	79		71		
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-
	Cycle Length										
	Effective Walk Time										
	Average Pedestrian Delay										
	Pedestrian Delay LoS					-		-	-		-
	Level of Service	F	F	С	C	В	В	-	С	-	<u> </u>
			F	•		С					
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic		
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m		
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h		
٩	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-
ycl	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed		
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		
	Left Turning Cyclist	F	F	С	С	С	С	-	С	-	-
	Level of Service	F	F	D	D	D	D	-	D	-	-
			F				D				
Ħ	Average Signal Delay	≤ 10 sec	≤ 10 sec								
Transit		В	В	-	-	-	-	-	-	-	-
Tra	Level of Service		E	3			-				
Truck	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection										
3		-	-	-	-	-	-	-	-	-	-
Ē.											
F	Level of Service		-	•			-				
Auto	Level of Service Volume to Capacity Ratio		- 0.0				0.71 -				

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2029 Future Background AM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-Bl	leue Road @ Dec	coeur Drive / Axi	s Way		Mer-Bleue Road (@ Renaud Ro	ad			
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	l
	Lanes	7	7	3	3	3	3		3			
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m			
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive			
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control			
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed			
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No			
'ian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel			
sti	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m			
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings			
	PETSI Score	5	5	71	71	85	79		71			I
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-	
	Cycle Length											
	Effective Walk Time											ſ
	Average Pedestrian Delay Pedestrian Delay LoS	_		-	-			-		-	-	
		F	F	C	C	В	В		С			
	Level of Service	•			<u> </u>	5	·					
			F	•			C					
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic			
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m			
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h			
<u>e</u>	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-	
ycl	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-	
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed			
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h			
	Left Turning Cyclist	F	F	С	С	С	C	-	С	-	-	
	Level of Service	F	F	D	D	D	D	-	D	-	-	
			F	-			D					
H	Average Signal Delay	≤ 10 sec	≤ 10 sec									
nsi		В	В	-	-	-	-	-	-	-	-	
Transit	Level of Service		E	3			-					
×	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection											
Truck		-	-	-	-	-	-	-	-	-	-	l
	Level of Service		-				-					
Auto	Volume to Capacity Ratio		0.0 -	0.60			0.0 - 0).60				

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2029 Future Background PM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-B	leue Road @ Dec	coeur Drive / Axi	is Way		Mer-Bleue Road (@ Renaud Ro	ad		
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes	7	7	3	3	3	3		3		
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive		
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control		
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed		
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No		
rian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel		
esti	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m		
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings		
_	PETSI Score	5	5	71	71	85	79		71		
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-
	Cycle Length										
	Effective Walk Time Average Pedestrian Delay										
	Pedestrian Delay LoS	-		-	-	-				-	-
		F	F	С	C	В	В	_	С	_	_
	Level of Service						·				
			F	•			С				
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic		
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m		
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h		
٥	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-
yc	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed		
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		
	Left Turning Cyclist	F	F	С	С	С	C	-	С	-	-
	Level of Service	F	F	D	D	D	D	-	D	-	-
			F				D				
it	Average Signal Delay	≤ 10 sec	≤ 10 sec								
sui		В	В	-	-	-		-	-	-	-
Transit	Level of Service		E	3			-				
	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection										
Truck		-	<u></u>	-	-	-	-	-	-	-	-
	Level of Service		-				-				
0	Volume to Capacity Ratio		0.0 -	0.60			0.71 - (0.80			
Auto	Level of Service		A				С				

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2029 Future Total AM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-B	leue Road @ Dec	coeur Drive / Axi	is Way		Mer-Bleue Road @	🕖 Renaud Ro	ad		
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes	7	7	3	3	3	3		3		
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive		
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control		
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed		
_	Ped Signal Leading Interval?	No	No	No	No	No	No		No		
rian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel		
esti	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m		
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings		
	PETSI Score	5	5	71	71	85	79		71		
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-
	Cycle Length										
	Effective Walk Time Average Pedestrian Delay										
	Pedestrian Delay LoS	-	-	-	-	-	-	-	-	-	-
		F	F	С	С	В	В	-	С	-	-
	Level of Service						C			_ <u>_</u>	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic		
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m		
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h		
<u>e</u>	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-
Sycl	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	=	• •
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed		
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		
	Left Turning Cyclist	F	F	С	С	С	С	•	С	-	-
	Level of Service	F	F	D	D	D	D	-	D	-	-
			F	-			D				
Ŀ	Average Signal Delay	≤ 10 sec	≤ 10 sec								
Transit		В	В	-	-	-	-	-	-	-	-
Tra	Level of Service		E	3			-				
ck	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection										
Truck		-	-	-	-	-	-	-	-	-	-
	Level of Service		-				-				
			0.0 -	0.60			0.0 - 0	60			
Auto	Volume to Capacity Ratio		0.0 -	0.00			0.0 - 0	.00			

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant	CGH Transportation	Project	2020-82
Scenario	2029 Future Total PM	Date	05-Jan-21
Comments			

	INTERSECTIONS	Mer-B	leue Road @ Dec	coeur Drive / Axi	is Way		Mer-Bleue Road (@ Renaud Ro	ad		
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes	7	7	3	3	3	3		3		
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m		
	Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive	Permissive	No left turn / Prohib.		Permissive		
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control		
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed		RTOR allowed		
	Ped Signal Leading Interval?	No	No	No	No	No	No		No		
ian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel	No Right Turn	No Channel		No Channel		
estr	Corner Radius	5-10m	5-10m	5-10m	5-10m	No Right Turn	5-10m		5-10m		
Pede	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings		
	PETSI Score	5	5	71	71	85	79		71		
	Ped. Exposure to Traffic LoS	F	F	С	С	В	В	-	С	-	-
	Cycle Length										
Transit Bicycle Pedestrian	Effective Walk Time										
	Average Pedestrian Delay										
	Pedestrian Delay LoS					•		-		-	-
	Level of Service	F	F	С	С	В	В	-	С	-	-
			F	•			С	;			
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic		Mixed Traffic		
	Right Turn Lane Configuration	≤ 50 m Introduced right turn lane	≤ 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m		≤ 50 m		
	Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h		
Ð	Cyclist relative to RT motorists	В	В	D	D	D	D	-	D	-	-
^Y CI	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	-	Mixed Traffic	-	-
Bic	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed		No lane crossed		
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h		> 50 to < 60 km/h		
	Left Turning Cyclist	F	F	С	С	С	С	-	С	-	-
	Level of Comise	F	F	D	D	D	D	-	D	-	-
	Level of Service		F	-			D)			
t.	Average Signal Delay	≤ 10 sec	≤ 10 sec								
nsi		В	В	-	-	-	-	-	-	-	-
Tra	Level of Service		E	3			-				
	Effective Corner Radius Number of Receiving Lanes on Departure from Intersection										
Tra		-	-	-	-	-	-	-	-	-	-
	Level of Service		-				-				
	Volume to Capacity Ratio		0.0 -	0.60			0.71 -	0.80			
<u> </u>											

	EAST	WEST
	-	-
	-	-
	-	-
-		
	EAST	WEST
	-	
	-	
	-	
	-	-
-	-	-
-	-	-
-	-	-
	-	-
-	-	-
-	-	-
	-	-

Consultant Scenario Comments	2020 Existing		Project Date	2020-82 23-Dec-20							
SEGMENTS		Street A	Mer-Bleue Road - Brian Coburn Boulevard to Decoeur Drive	Brian Coburn Boulevard – Mer-Bleue Road to Jerome Jodoin Drive	Section	Section	Section	Section	Section	Section	Section
	Sidewalk Width Boulevard Width Avg Daily Curb Lane Traffic Volume		1 ≥ 2 m > 2 m > 3000	2 no sidewalk n/a > 3000	3	4	5	6	7	8	9
trian	Operating Speed On-Street Parking	_	> 60 km/h no	> 60 km/h no							
Pedestrian	Exposure to Traffic PLoS Effective Sidewalk Width Pedestrian Volume Crowding PLoS Level of Service	F	D 2.0 m 250 ped/hr B D	F 	- - -			-	• •	-	-
	Type of Cycling Facility		Curbside Bike Lane	Mixed Traffic					-		
	Number of Travel Lanes Operating Speed		2 ea. dir. (w median) >50 to 70 km/h	≤ 2 (no centreline) ≥ 60 km/h							
<u>.</u>	# of Lanes & Operating Speed LoS Bike Lane (+ Parking Lane) Width		C ≥ 1.8 m	F		-	-	-	-	-	-
Bicycle	Bike Lane Width LoS Bike Lane Blockages Blockage LoS	F	A Rare A	-	-	-	-	-	-	-	-
	Median Refuge Width (no median = < 1.8 m) No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed		< 1.8 m refuge ≤ 3 lanes ≤ 40 km/h	 < 1.8 m refuge ≤ 3 lanes ≤ 40 km/h 	-	-	-	-	-	-	-
	Unsignalized Crossing - Lowest LoS Level of Service		A C	F	-	-	-	-	-	-	-
sit	Facility Type	_	Mixed Traffic	Mixed Traffic							
Transit	Friction or Ratio Transit:Posted Speed Level of Service	D	Vt/Vp ≥ 0.8 D	Vt/Vp ≥ 0.8	-	-	-	-	-	-	-
Truck	Truck Lane Width Travel Lanes per Direction	в	≤ 3.5 m > 1	> 3.7 m 1							
Tra	Level of Service	В	А	В	-	-	-	-	-	-	-

Consultant Scenario Comments	2024 Future Background ts		Project Date	2020-82 23-Dec-20							
SEGMENTS		Street A	Mer-Bleue Road - Brian Coburn Boulevard to Decoeur Drive	Jerome Jodoin Drive	Section						
	Sidewalk Width Boulevard Width Avg Daily Curb Lane Traffic Volume		1 ≥ 2 m > 2 m > 3000	2 no sidewalk n/a > 3000	3	4	5	6	7	8	9
strian	Operating Speed On-Street Parking Exposure to Traffic PLoS	F	> 60 km/h no	> 60 km/h no	-	-	-	-	-	-	-
Pede	Effective Sidewalk Width Pedestrian Volume Crowding PLoS		2.0 m 250 ped/hr B		• •	-	-	-	-	-	-
	Level of Service		D	F	-	-	-	-	-	-	-
	Type of Cycling Facility Number of Travel Lanes		Curbside Bike Lane 2 ea. dir. (w median)	Mixed Traffic 4-5 lanes total							
	Operating Speed # of Lanes & Operating Speed LoS Bike Lane (+ Parking Lane) Width		>50 to 70 km/h C ≥ 1.8 m	≥ 60 km/h F	-	-	-	-	-	-	-
Bicycle	Bike Lane Width LoS Bike Lane Blockages	F	A Rare	- -	-	-	-	-	-	-	-
	Blockage LoS Median Refuge Width (no median = < 1.8 m) No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed		A < 1.8 m refuge ≤ 3 lanes ≤ 40 km/h	- < 1.8 m refuge ≤ 3 lanes ≤ 40 km/h	-	-	-	-	-	-	-
	Unsignalized Crossing - Lowest LoS Level of Service		A C	A F	-	-	-	-	-	-	-
Transit	Facility Type Friction or Ratio Transit:Posted Speed	D	Mixed Traffic Vt/Vp ≥ 0.8	Mixed Traffic Vt/Vp ≥ 0.8							
Tra	Level of Service		D	D	-	-	-	-	-	-	-
Truck	Truck Lane Width Travel Lanes per Direction	Α	≤ 3.5 m > 1	> 3.7 m > 1							
μ. H	Level of Service		А	Α	-	-	-	-	-	-	-

Consultant Scenario Comments	o 2024 Future Total		Project Date	2020-82 23-Dec-20							
SEGMENTS		Street A	Mer-Bleue Road - Brian Coburn Boulevard to Decoeur Drive	Brian Coburn Boulevard – Mer-Bleue Road to Jerome Jodoin Drive	Section						
			1	2	3	4	5	6	7	8	9
	Sidewalk Width Boulevard Width		≥ 2 m > 2 m	≥ 2 m 0.5 - 2 m							
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000							
⊆	Operating Speed		> 60 km/h	> 60 km/h							
Pedestrian	On-Street Parking		no	no							
est	Exposure to Traffic PLoS	E	D	E	-	-	-	-	-	-	-
eq	Effective Sidewalk Width		2.0 m	2.0 m							
<u> </u>	Pedestrian Volume		250 ped/hr	250 ped/hr							
	Crowding PLoS	1	В	В	-	-	-	-	-	-	-
	Level of Service		D	E	-	-	-	-	-	-	-
	Type of Cycling Facility		Curbside Bike Lane	Mixed Traffic							
	Number of Travel Lanes		2 ea. dir. (w median)	4-5 lanes total							
	Operating Speed		>50 to 70 km/h	≥ 60 km/h							
	# of Lanes & Operating Speed LoS	-	с	F	-	-	-	-	-	-	-
Bicycle	Bike Lane (+ Parking Lane) Width		≥ 1.8 m								
Š	Bike Lane Width LoS	F	Α	•	-	-	-	-	-	-	-
ä	Bike Lane Blockages Blockage LoS		Rare A								
	Median Refuge Width (no median = < 1.8 m)		<pre> A < 1.8 m refuge</pre>	∽ < 1.8 m refuge	-	-	-	-	-	-	-
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes							<u> </u>
	Sidestreet Operating Speed		≤ 40 km/h	≤ 40 km/h							
	Unsignalized Crossing - Lowest LoS		Α	Α	-	-	-	-	-	-	-
	Level of Service		С	F	-	-	-	-	-	-	-
sit	Facility Type		Mixed Traffic	Mixed Traffic							
sus	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8							
Transit	Level of Service		D	D	-	-	-	-	-	-	-
	Truck Lane Width		≤ 3.5 m	> 3.7 m							
Š	Travel Lanes per Direction		> 1	> 1							
Truck	Level of Service	A	А	А	-	-	-	-	-	-	-

Consultant Scenario Comments	io 2029 Future Background		Project Date	2020-82 23-Dec-20							
SEGMENTS		Street A	Mer-Bleue Road - Brian Coburn Boulevard to Decoeur Drive	Brian Coburn Boulevard – Mer-Bleue Road to Jerome Jodoin Drive	Section						
			1	2	3	4	5	6	7	8	9
	Sidewalk Width Boulevard Width		≥ 2 m > 2 m	≥ 2 m 0.5 - 2 m							
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000							
E	Operating Speed		> 60 km/h	> 60 km/h							
tri	On-Street Parking		no	no							
Pedestrian	Exposure to Traffic PLoS	E	D	E	-	-	-	-	-	-	-
ed	Effective Sidewalk Width		2.0 m	2.0 m							
<u> </u>	Pedestrian Volume		250 ped/hr	250 ped/hr							
	Crowding PLoS	-	В	В		-	-	-	-	-	-
	Level of Service		D	E	-	-	-	-	-	-	-
	Type of Cycling Facility		Curbside Bike Lane	Mixed Traffic							
	Number of Travel Lanes		2 ea. dir. (w median)	4-5 lanes total							
	Operating Speed		>50 to 70 km/h	≥ 60 km/h							
	# of Lanes & Operating Speed LoS		С	F	-	-	-	-	-	-	-
Bicycle	Bike Lane (+ Parking Lane) Width		≥ 1.8 m								
Š	Bike Lane Width LoS	F	Α	•	-	-	-	-	-	-	-
ä	Bike Lane Blockages	-	Rare								
	Blockage LoS Median Refuge Width (no median = < 1.8 m)		A < 1.8 m refuge	∽ < 1.8 m refuge	-	-	-	-	-	-	-
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes							
	Sidestreet Operating Speed		≤ 40 km/h	≤ 40 km/h							<u> </u>
	Unsignalized Crossing - Lowest LoS		A	A	-	-	-	-	-	-	-
	Level of Service		С	F	-	-	-	-	-	-	-
sit	Facility Type		Mixed Traffic	Mixed Traffic							
ans	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8							
Transit	Level of Service		D	D	-	-	-	-	-	-	-
	Truck Lane Width		≤ 3.5 m	> 3.7 m							
с Х	Travel Lanes per Direction		> 1	> 1							
Truck	Level of Service	A	А	А	-	-	-	-	-	-	-

Consultant Scenario Comments	o 2029 Future Total		Project Date	2020-82 23-Dec-20							
SEGMENTS		Street A	Mer-Bleue Road - Brian Coburn Boulevard to Decoeur Drive	Brian Coburn Boulevard – Mer-Bleue Road to Jerome Jodoin Drive	Section						
			1	2	3	4	5	6	7	8	9
	Sidewalk Width Boulevard Width		≥ 2 m > 2 m	≥ 2 m 0.5 - 2 m							
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000							
⊆	Operating Speed		> 60 km/h	> 60 km/h							
iria	On-Street Parking		no	no							
Pedestrian	Exposure to Traffic PLoS	E	D	E	-	-	-	-	-	-	-
pa	Effective Sidewalk Width		2.0 m	2.0 m							
ē.	Pedestrian Volume		250 ped/hr	250 ped/hr							
	Crowding PLoS	1	В	В	-	-	-	-	-	-	-
	Level of Service		D	E	-	-	-	-	-	-	-
	Type of Cycling Facility		Curbside Bike Lane	Mixed Traffic							
	Number of Travel Lanes		2 ea. dir. (w median)	4-5 lanes total							
	Operating Speed		>50 to 70 km/h	≥ 60 km/h							
	# of Lanes & Operating Speed LoS	-	с	F	-	-	-	-	-	-	-
Bicycle	Bike Lane (+ Parking Lane) Width		≥ 1.8 m								
Š	Bike Lane Width LoS	F	Α	•	-	-	-	-	-	-	-
ä	Bike Lane Blockages Blockage LoS		Rare A								
	Median Refuge Width (no median = < 1.8 m)		<pre> A < 1.8 m refuge</pre>	∽ < 1.8 m refuge	-	-	-	-	-	-	-
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes							
	Sidestreet Operating Speed		≤ 40 km/h	≤ 40 km/h							
	Unsignalized Crossing - Lowest LoS		Α	Α	-	-	-	-	-	-	-
	Level of Service		С	F	-	-	-	-	-	-	-
sit	Facility Type		Mixed Traffic	Mixed Traffic							
ans	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8							
Transit	Level of Service		D	D	-	-	-	-	-	-	-
	Truck Lane Width		≤ 3.5 m	> 3.7 m							
с х	Travel Lanes per Direction		> 1	> 1							<u> </u>
Truck	Level of Service	A	А	А	-	-	-	-	-	-	-

Signal Warrants

Mer-Bleue Road at Site Access #1 Future Background 2024

Justification #7

		Minimum R	equirement	Minimum Requirement			Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 70	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	831	138%	132%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	159	132%	132%	res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	672	112%		
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	82	164%	112%	No

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Mer-Bleue Road at Site Access #1 Future Background 2029

Justification #7

		Minimum R	equirement	Minimum Requirement			Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 10	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	915	152%	132%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	159	132%	152%	Tes
	A. Vehicle volumes, major street (average hour)	480	720	600	900	756	126%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	82	164%	126%	Yes

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Mer-Bleue Road at Site Access #1 Future Total 2024

Justification #7

		Minimum R	equirement	Minimum Requirement			Compliance		
Justification	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 10	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900 891 149%		149%	149%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	186	155%	149%	res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	706	118%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	83	167%	118%	No

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Mer-Bleue Road at Site Access #1 Future Total 2029

Justification #7

Justification		Minimum Requirement		Minimum Requirement			Compliance		
	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
	A. Vehicle volume, all approaches (average hour)	480	720	600	900	975	163%	155%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	186	155%		res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	790	132%	132%	Yes
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	83	167%		

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

March Road at Site Access #1 Future Total 2024

Justification #7

Justification		Minimum Requirement		Minimum Requirement			Compliance		
	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	1299	271%	47%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	57	47%		No
2. Delay to Cross Traffic	A. Vehicle volumes, major street (average hour)	480	720	600	900	1261	263%	0%	No
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	0	0%		

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

March Road at Site Access #1 Future Total 2029

Justification #7

Justification		Minimum Requirement		Minimum Requirement			Compliance		
	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Liture 70	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	1441	300%	47%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	57	47%		No
	A. Vehicle volumes, major street (average hour)	480	720	600	900	1403	292%	0%	No
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	0	0%		

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Mer-Bleue Road at Renaud Road Future Background 2024

Justification #7

Justification		Minimum Requirement		Minimum Requirement			Compliance		
	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 70	
	A. Vehicle volume, all approaches (average hour)	480	720	600	900	674	140%	140%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	271	226%		res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	493	103%	103%	No
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	147	294%		

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Mer-Bleue Road at Renaud Road Future Background 2029

Justification #7

Justification		Minimum Requirement		Minimum Requirement			Compliance		
	Description	1 Lane Highway		2 or More Lanes		Sectional		Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 70	
	A. Vehicle volume, all approaches (average hour)	480	720	600	900	749	156%	156%	Yes
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	305	254%		res
	A. Vehicle volumes, major street (average hour)	480	720	600	900	546	114%	114%	No
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	167	334%		

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

Mer-Bleue Road at Renaud Road Future Total 2024

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance			
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 10		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	677	141%	141%	Yes	
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	273	228%	141%	res	
	A. Vehicle volumes, major street (average hour)	480	720	600	900	495	103%			
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	148	297%	103%	No	

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

4. T-intersection factor corrected, applies only to 1B

Mer-Bleue Road at Renaud Road Future Total 2029

Justification #7

		Minimum R	Requirement	Minimum R	equirement		Compliance			
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	ional	Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little 70		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	752	157%	157%	Voc	
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	307	256%	157%	Yes	
	A. Vehicle volumes, major street (average hour)	480	720	600	900	547	114%			
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	169	337%	114%	No	

Notes

1. Refer to OTM Book 12, pg 88, Nov 2007

2. Lowest section percentage governs justification

3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4

4. T-intersection factor corrected, applies only to 1B

HV% Calculations

						[1] Mer	-Bleue R	load	& Brian C	obı	urn Boulev	/ard							
									AM										
	NBL		NBT	NBR		SBL	SBT		SBR	E	BL	EBT	EBR		WBL	WBT		WBR	
HV Volume																			
Total Volume																			
HV%		2%	29	%	2%	2%		2%	29	6	2%	29	6	2%	29	b b	2%		2%
									PM										
	NBL		NBT	NBR		SBL	SBT		SBR	El	BL	EBT	EBR		WBL	WBT		WBR	
HV Volume																			
Total Volume																			
HV%		2%	29	%	2%	2%		2%	29	6	2%	29	6	2%	2%	, D	2%		2%

	[2] Brian Coburn Boulevard & Gerry Lalonde Drive / Jerome Jodoin Drive													
	AM													
	NBL		NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	
HV Volume		0	0	0	1	0	1	1	18	0	0	18	6	
Total Volume		0	0	0	7	0	164	29	292	0	0	896	13	
HV%					14%		1%	3%	6%			2%	46%	
							PM							
	NBL		NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	
HV Volume		0	0	0	3	0	0	1	13	0	0	11	0	
Total Volume		0	0	0	4	0	78	187	886	0	0	504	12	
HV%					75%		0%	1%	1%			2%	0%	

	[3] Renaud Road & Mer-Bleue Road													
	AM													
	NBL		NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	
HV Volume		5	11	0	0	8	10	15	0	3	0	0	0	
Total Volume		63	156	0	0	60	143	115	0	18	0	0	0	
HV%		8%	7%			13%	7%	13%		17%				
							PM							
	NBL		NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	
HV Volume		1	3	0	0	6	0	5	0	4	0	0	0	
Total Volume		21	131	0	0	176	70	259	0	30	0	0	0	
HV%		5%	2%			3%	2%	2%		13%				

Appendix K

Synchro and Sidra 2020 Existing Worksheets

Intersection						
Int Delay, s/veh	7.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	۲.	•	el 👘		Y	
Traffic Vol, veh/h	30	366	979	14	7	171
Future Vol, veh/h	30	366	979	14	7	171
Conflicting Peds, #/hr	7	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	1050	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	3	6	2	46	14	1
Mvmt Flow	33	407	1088	16	8	190

Major/Minor	Major1	Ν	/lajor2		Minor2	
Conflicting Flow All	1111	0	-	0	1576	1103
Stage 1	-	-	-	-	1103	-
Stage 2	-	-	-	-	473	-
Critical Hdwy	4.13	-	-	-	6.54	6.21
Critical Hdwy Stg 1	-	-	-	-	5.54	-
Critical Hdwy Stg 2	-	-	-	-	5.54	-
Follow-up Hdwy	2.227	-	-	-	3.626	
Pot Cap-1 Maneuver	625	-	-	-	113	258
Stage 1	-	-	-	-	301	-
Stage 2	-	-	-	-	603	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	106	256
Mov Cap-2 Maneuver	r -	-	-	-	106	-
Stage 1	-	-	-	-	283	-
Stage 2	-	-	-	-	599	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 0.8		0		62.7	
HCM LOS					F	
Minor Lane/Major Mv	mt	EBL	EBT	WBT	WBR	SRI n1
	iiit	621		VUDI		243
Capacity (veh/h) HCM Lane V/C Ratio		0.054	-	-	-	0.814
HCM Control Delay (s		11.1	-	-	-	62.7
HCM Lane LOS	>)	B	-	-	-	02.7 F
HCM 95th %tile Q(vel	h)	0.2		-	-	6.2
	11/	0.2	-	_	-	0.2

Intersection			
Intersection Delay, s/veh	10.7		
Intersection LOS	В		

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	ef 🕺	
Traffic Vol, veh/h	133	19	66	179	100	185
Future Vol, veh/h	133	19	66	179	100	185
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	13	17	8	7	13	7
Mvmt Flow	148	21	73	199	111	206
Number of Lanes	1	0	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		1		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		1	
HCM Control Delay	10.6		10.9		10.6	
HCM LOS	В		В		В	

Lane	NBLn1	EBLn1	SBLn1
Vol Left, %	27%	88%	0%
Vol Thru, %	73%	0%	35%
Vol Right, %	0%	12%	65%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	245	152	285
LT Vol	66	133	0
Through Vol	179	0	100
RT Vol	0	19	185
Lane Flow Rate	272	169	317
Geometry Grp	1	1	1
Degree of Util (X)	0.372	0.26	0.399
Departure Headway (Hd)	4.922	5.549	4.54
Convergence, Y/N	Yes	Yes	Yes
Сар	727	642	788
Service Time	2.981	3.629	2.594
HCM Lane V/C Ratio	0.374	0.263	0.402
HCM Control Delay	10.9	10.6	10.6
HCM Lane LOS	В	В	В
HCM 95th-tile Q	1.7	1	1.9

Intersection							
Int Delay, s/veh	2.4						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	5	1	eî 👘		Y		
Traffic Vol, veh/h	195	991	602	12	4	81	
Future Vol, veh/h	195	991	602	12	4	81	
Conflicting Peds, #/hr	5	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	

RT Channelized	-	None	-	None	-	None	
Storage Length	1050	-	-	-	0	-	
Veh in Median Storag	e, # -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	75	2	
Mvmt Flow	217	1101	669	13	4	90	

Major/Minor	Major1		/lajor2		Minor2	
Conflicting Flow All	687	0	-	0	2216	681
Stage 1	-	-	-	-	681	-
Stage 2	-	-	-	-	1535	-
Critical Hdwy	4.12	-	-	-	7.15	6.22
Critical Hdwy Stg 1	-	-	-	-	6.15	-
Critical Hdwy Stg 2	-	-	-	-	6.15	-
Follow-up Hdwy	2.218	-	-	-	4.175	3.318
Pot Cap-1 Maneuver	907	-	-	-	29	450
Stage 1	-	-	-	-	390	-
Stage 2	-	-	-	-	134	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	r 903	-	-	-	22	448
Mov Cap-2 Maneuver		-	-	-	22	-
Stage 1	-	-	-	-	295	-
Stage 2	-	-	-	-	133	-
J						
Approach	EB		WB		SB	
HCM Control Delay, s	s 1.7		0		30.4	
HCM LOS					D	
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		903	-	-	-	234
HCM Lane V/C Ratio		0.24	-	-	-	0.404
HCM Control Delay (s		10.2	-	-	-	30.4
HCM Lane LOS		В	-	-	-	D

1.8

HCM 95th %tile Q(veh)

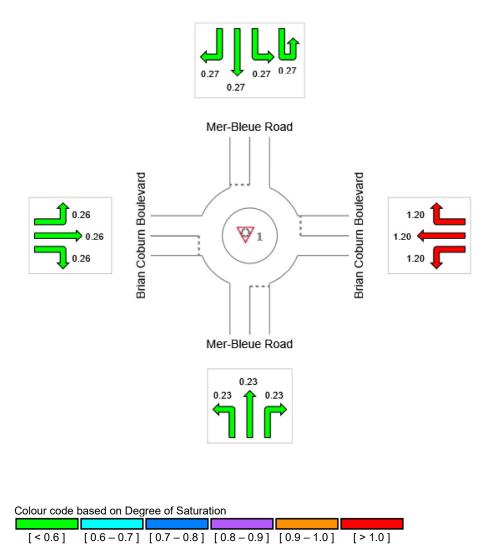
0.9

Intersection Delay, s/veh 14.5 Intersection LOS B

Movement EBL EBR NBL NBT SBT SBR Lane Configurations Y Image: Configuration of the second seco
Traffic Vol, veh/h319312218621191Future Vol, veh/h319312218621191Peak Hour Factor0.900.900.900.900.900.90
Future Vol, veh/h319312218621191Peak Hour Factor0.900.900.900.900.900.90
Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90
Heavy Vehicles, % 2 13 5 2 3 2
Mvmt Flow 354 34 24 207 234 101
Number of Lanes 1 0 0 1 1 0
Approach EB NB SB
Opposing Approach SB NB
Opposing Lanes 0 1 1
Conflicting Approach Left SB EB
Conflicting Lanes Left 1 1 0
Conflicting Approach Right NB EB
Conflicting Lanes Right 1 0 1
HCM Control Delay 16.8 12 13.5
HCM LOS C B B

Lane	NBLn1	EBLn1	SBLn1
Vol Left, %	11%	91%	0%
Vol Thru, %	89%	0%	70%
Vol Right, %	0%	9%	30%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	208	350	302
LT Vol	22	319	0
Through Vol	186	0	211
RT Vol	0	31	91
Lane Flow Rate	231	389	336
Geometry Grp	1	1	1
Degree of Util (X)	0.365	0.603	0.495
Departure Headway (Hd)	5.69	5.583	5.313
Convergence, Y/N	Yes	Yes	Yes
Сар	631	646	678
Service Time	3.737	3.621	3.355
HCM Lane V/C Ratio	0.366	0.602	0.496
HCM Control Delay	12	16.8	13.5
HCM Lane LOS	В	С	В
HCM 95th-tile Q	1.7	4	2.8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 AM]

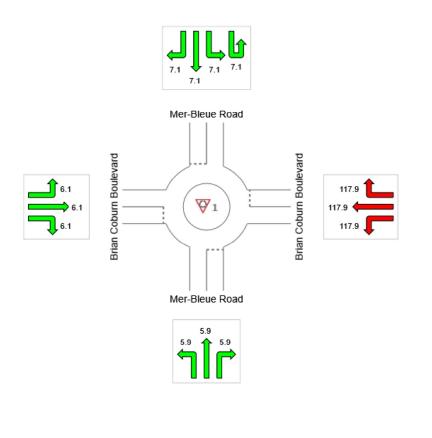
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	0.23	1.20	0.27	0.26	1.20

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 5, 2021 4:22:59 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Approa	Intersection		
	South	East	North	West	Intersection
Delay (Control)	5.9	117.9	7.1	6.1	61.9
LOS	А	F	А	А	F

Colour code	based	on Level	of Service
-------------	-------	----------	------------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 AM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection]			
	South	East	North	West		_			
LOS	A	F	A	A	F				
LOS	f ^N	Coburn Bou		<u>A</u>		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			Brian Coburn Boulevard
Colour co		ed on Le	vel of Se		LOS D	LOS E	LOS F		
L007	-, L	_00 D	L00		L00 D	L00 L	2001		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 AM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	Movement Performance - Vehicles											
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	19	2.0	0.231	5.9	LOS A	1.0	7.1	0.48	0.40	0.48	52.8
2	T1	277	2.0	0.231	5.9	LOS A	1.0	7.1	0.48	0.40	0.48	52.6
3	R2	162	2.0	0.231	5.9	LOS A	1.0	7.1	0.48	0.40	0.48	46.8
Appro	ach	458	2.0	0.231	5.9	LOS A	1.0	7.1	0.48	0.40	0.48	51.0
East:	Brian Col	ourn Bouleva	ard									
4	L2	70	2.0	1.202	117.9	LOS F	93.0	662.4	1.00	3.76	7.75	14.1
5	T1	552	2.0	1.202	117.9	LOS F	93.0	662.4	1.00	3.76	7.75	15.8
6	R2	550	2.0	1.202	117.9	LOS F	93.0	662.4	1.00	3.76	7.75	15.6
Appro	ach	1172	2.0	1.202	117.9	LOS F	93.0	662.4	1.00	3.76	7.75	15.6
North	: Mer-Bleu	ue Road										
7u	U	8	2.0	0.271	7.1	LOS A	1.1	8.2	0.57	0.55	0.57	51.8
7	L2	121	2.0	0.271	7.1	LOS A	1.1	8.2	0.57	0.55	0.57	47.3
8	T1	189	2.0	0.271	7.1	LOS A	1.1	8.2	0.57	0.55	0.57	50.5
9	R2	142	2.0	0.271	7.1	LOS A	1.1	8.2	0.57	0.55	0.57	50.7
Appro	ach	460	2.0	0.271	7.1	LOS A	1.1	8.2	0.57	0.55	0.57	49.9
West:	Brian Co	burn Boulev	ard									
10	L2	121	2.0	0.260	6.1	LOS A	1.1	7.8	0.47	0.40	0.47	51.8
11	T1	120	2.0	0.260	6.1	LOS A	1.1	7.8	0.47	0.40	0.47	48.4
12	R2	23	2.0	0.260	6.1	LOS A	1.1	7.8	0.47	0.40	0.47	49.4
Appro	bach	264	2.0	0.260	6.1	LOS A	1.1	7.8	0.47	0.40	0.47	50.3
All Ve	hicles	2354	2.0	1.202	61.9	LOS F	93.0	662.4	0.76	2.10	4.12	25.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

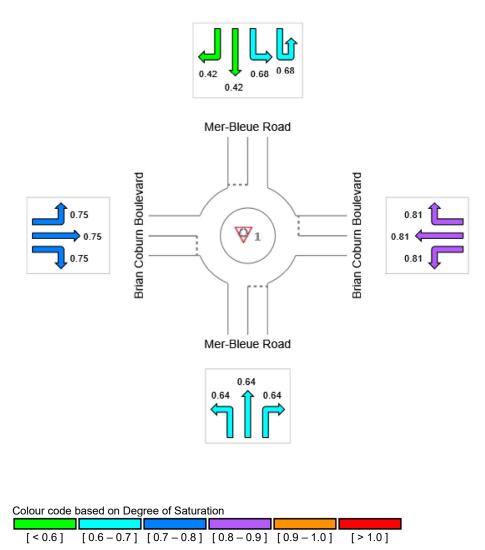
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 5, 2021 4:22:59 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 PM]

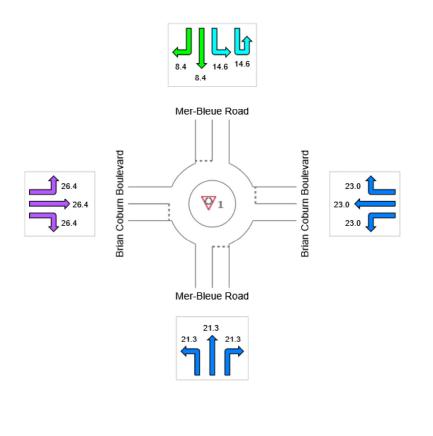
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	0.64	0.81	0.68	0.75	0.81

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 5, 2021 6:05:55 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

♥ Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 PM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Delay (Control)	21.3	23.0	12.2	26.4	19.0
LOS	С	С	В	D	С

Colour code based on Level of Service	
---------------------------------------	--

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 PM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Γ			Appro	aches		Intersection			
		South	East	North	West				
	LOS	С	С	В	D	С			
		fN Brian (Coburn Bou	evard		++	Mer-Bleue Road	Brian (Coburn Boulevard
		ode base							
•	LOS	4 L	OS B	LOS	S C	LOS D	OS E LOS F	_	

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

Site: 1 [Mer-Bleue & Brian Coburn Existing 2020 PM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	41	2.0	0.639	21.3	LOS C	4.1	29.5	0.82	1.03	1.52	42.5
2	T1	469	2.0	0.639	21.3	LOS C	4.1	29.5	0.82	1.03	1.52	42.4
3	R2	164	2.0	0.639	21.3	LOS C	4.1	29.5	0.82	1.03	1.52	35.3
Appro	ach	674	2.0	0.639	21.3	LOS C	4.1	29.5	0.82	1.03	1.52	41.0
East:	Brian Col	ourn Bouleva	ard									
4	L2	127	2.0	0.810	23.0	LOS C	13.2	93.9	0.92	1.38	2.16	35.6
5	T1	204	2.0	0.810	23.0	LOS C	13.2	93.9	0.92	1.38	2.16	37.5
6	R2	382	2.0	0.810	23.0	LOS C	13.2	93.9	0.92	1.38	2.16	36.5
Appro	ach	713	2.0	0.810	23.0	LOS C	13.2	93.9	0.92	1.38	2.16	36.7
North	: Mer-Bleu	ue Road										
7u	U	1	2.0	0.685	14.6	LOS B	9.1	64.9	0.77	0.96	1.35	45.8
7	L2	677	2.0	0.685	14.6	LOS B	9.1	64.9	0.77	0.96	1.35	40.4
8	T1	248	2.0	0.423	8.4	LOS A	2.2	15.5	0.57	0.51	0.57	50.8
9	R2	171	2.0	0.423	8.4	LOS A	2.2	15.5	0.57	0.51	0.57	49.9
Appro	ach	1097	2.0	0.685	12.2	LOS B	9.1	64.9	0.70	0.79	1.05	44.3
West:	Brian Co	burn Boulev	ard									
10	L2	32	2.0	0.747	26.4	LOS D	6.1	43.1	0.85	1.16	1.91	41.4
11	T1	356	2.0	0.747	26.4	LOS D	6.1	43.1	0.85	1.16	1.91	36.1
12	R2	38	2.0	0.747	26.4	LOS D	6.1	43.1	0.85	1.16	1.91	39.0
Appro	bach	426	2.0	0.747	26.4	LOS D	6.1	43.1	0.85	1.16	1.91	36.9
All Ve	hicles	2910	2.0	0.810	19.0	LOS C	13.2	93.9	0.80	1.04	1.56	40.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 5, 2021 6:05:55 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

Appendix L

2024 Future Background Synchro and Sidra Worksheets

	٦	\mathbf{r}	1	1	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	5	1	1 <u>20</u>	
Traffic Volume (vph)	189	51	114	405	209	240
Future Volume (vph)	189	51	114	405	209	240
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0		1000	0.0
Storage Lanes	1	1	1			0.0
Taper Length (m)	15.0		75.0			Ū
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	0.928	1.00
Flt Protected	0.950	0.000	0.950		0.520	
Satd. Flow (prot)	1496	1293	1566	1664	1505	0
Flt Permitted	0.950	1233	0.468	1004	1505	U
Satd. Flow (perm)	1496	1293	0.400	1664	1505	0
	1490	Yes	//1	1004	1305	Yes
Right Turn on Red					120	res
Satd. Flow (RTOR)	50	51		50	139	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	136.7	
Travel Time (s)	49.8	4.00	4.00	25.6	8.2	4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	17%	8%	7%	13%	7%
Adj. Flow (vph)	189	51	114	405	209	240
Shared Lane Traffic (%)						_
Lane Group Flow (vph)	189	51	114	405	449	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
• • • •	0.0	0.0	0.0	9.4	0.0 9.4	
Detector 2 Position(m)				9.4 0.6	9.4 0.6	
Detector 2 Size(m)						
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel				~ ~ ~	0.0	
Detector 2 Extend (s)	_	_	_	0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	

	≯	\mathbf{F}	•	Ť	Ļ	1	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Permitted Phases		4	2				
Detector Phase	4	4	2	2	6		
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	25.0	25.0	24.0	24.0	25.2		
Total Split (s)	25.0	25.0	24.0	24.0	25.2		
Total Split (%)	49.8%	49.8%	47.8%	47.8%	50.2%		
Maximum Green (s)	20.7	20.7	19.7	19.7	20.5		
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.3	4.3	4.3	4.3	4.7		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		
Recall Mode	None	None	Min	Min	Min		
Walk Time (s)	7.0	7.0	7.0	7.0	7.0		
Flash Dont Walk (s)	13.5	13.5	12.5	12.5	13.5		
Pedestrian Calls (#/hr)	0	0	0	0	0		
Act Effct Green (s)	11.3	11.3	18.7	18.7	18.4		
Actuated g/C Ratio	0.33	0.33	0.54	0.54	0.53		
v/c Ratio	0.39	0.11	0.27	0.45	0.52		
Control Delay	12.6	4.6	9.3	9.3	8.1		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	12.6	4.6	9.3	9.3	8.1		
LOS	В	А	А	А	А		
Approach Delay	10.9			9.3	8.1		
Approach LOS	В			А	А		
Queue Length 50th (m)	6.8	0.0	3.6	14.3	10.8		
Queue Length 95th (m)	23.1	4.8	13.2	37.6	34.7		
Internal Link Dist (m)	667.8			332.1	112.7		
Turn Bay Length (m)	95.0		30.0				
Base Capacity (vph)	918	813	523	1130	1054		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.21	0.06	0.22	0.36	0.43		
Intersection Summary							
Area Type:	Other						
Cycle Length: 50.2							
Actuated Cycle Length: 34	1.4						
Natural Cycle: 55							
Control Type: Actuated-Ur	ncoordinated						
Maximum v/c Ratio: 0.52							
Intersection Signal Delay: 9.2 Intersection LOS: A							
Intersection Capacity Utiliz						of Service B	
Analysis Period (min) 15							

Splits and Phases:	3: Mer-Bleue Road & Renaud Road	
↑ Ø2		A 04
24 s		25 s
↓ ø6		
25.2 s		

Lanes, Volumes, Timings2024 Fur5: Mer-Bleue Road & Axis Way/Decoeur Drive

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBT NBR SEL SSR Lane Configurations Image Image <th></th> <th>۶</th> <th>+</th> <th>\mathbf{F}</th> <th>4</th> <th>Ļ</th> <th>•</th> <th>•</th> <th>1</th> <th>1</th> <th>1</th> <th>ţ</th> <th>-∢</th>		۶	+	\mathbf{F}	4	Ļ	•	•	1	1	1	ţ	-∢
Traffic Volume (vph) 86 61 10 32 64 90 2 669 13 23 380 22 Future Volume (vph) 1800 100 1.0	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 86 61 10 32 64 90 2 669 13 23 380 22 Future Volume (vph) 1800 100 1.0	Lane Configurations	۲.	î,		۲.	î,		۲	≜1 ≽		5	≜1 ≽	
Future Volume (vph) 86 61 10 32 64 90 2 669 13 23 380 120 Ideal Flow (vph) 1800 <				10			90			13			22
Ideal Flow (php) 1800													
Storage Length (m) 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.955 10.0 0.955 10.0 0.955 10.0 0.955 10.0 0.955 10.0 0.955 10.0 0.955 0 10.0													
Storage Lanes 1 0 1 0 1 0 1 0 1 0 Taper Length (m) 15.0 15.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 992 0.992													
Taper Length (m) 15.0 15.0 75.0 75.0 Lane Uili Factor 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.950 0.992 Fit Protected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 Stdt. Flow (prot) 1658 1708 0 1658 1548 3154 0 1658 0.950 Stdt. Flow (prot) 1150 1708 0 1241 1592 0 889 3154 0 684 2985 0 Stdt. Flow (prot) 1150 1708 10 190 10 90 3 10 10 100 <													
Lane Util Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 0.95 Fit Preceded 0.950				Ŭ			Ŭ			Ŭ	-		Ŭ
Frt 0.979 0.912 0.997 0.990 Flt Protected 0.950 0.950 0.950 0.950 Flt Protected 0.950 0.950 0.950 0.950 Stat. Flow (prot) 1658 1708 0 1658 154 0 1658 0.392 Stat. Flow (perm) 1150 1708 0 121 1592 0 899 3154 0 684 2985 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Stat. Flow (RTOR) 10 90 3 10 100 1.00			1 00	1 00		1 00	1 00		0.95	0.95		0.95	0.95
Fit Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1658 1708 0 1658 1592 0 1658 3154 0 1658 2985 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 10 90 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10.0		1.00			1.00					0.00			0.00
Satd. Flow (prot) 1658 1708 0 1658 1592 0 1658 3154 0 1658 2985 0 FIt Permitted 0.659 0.711 0.515 0.392 0 1688 2985 0 Satd. Flow (perm) 1150 1708 0 1241 1582 0 899 3154 0 684 2985 0 Link Speed (RD) 10 90 3 10 10 100 100 100 100 100 100 100 100 1.00		0 950	0.010		0 950	0.012		0 950	0.001		0 950	0.002	
Fit Permitted 0.659 0.711 0.515 0.392 Satd. Flow (perm) 1150 1708 0 1241 1592 0 899 3154 0 684 2985 0 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 10 90 3 10 10 100			1708	0		1592	0		3154	0		2985	0
Satd. Flow (perm) 1150 1708 0 1241 1592 0 8399 3154 0 684 2985 0 Right Turn on Red Yes	ů ,		1700	0		1002	0		0104	U		2000	U
Right Turn on Red Yes Yes Yes Yes Yes Stad. Flow (RTOR) 10 90 3 10 Link Speed (kh) 50 50 60 60 Link Distance (m) 221.2 188.0 167.0 463.6 Travel Time (s) 15.9 13.5 10.0 1.00			1708	0		1502	0		315/	0		2085	0
Satd. Flow (RTOR) 10 90 3 10 Link Speed (k/h) 50 50 60 60 Link Distance (m) 221.2 188.0 167.0 463.6 Travel Time (s) 15.9 13.5 10.0 1.00		1150	1700		1271	1002		033	5154		004	2305	
Link Speed (k/h) 50 50 60 60 Link Distance (m) 221.2 188.0 167.0 463.6 Travel Time (s) 15.9 13.5 10.0 27.8 Peak Hour Factor 1.00 <td></td> <td></td> <td>10</td> <td>163</td> <td></td> <td>00</td> <td>163</td> <td></td> <td>3</td> <td>163</td> <td></td> <td>10</td> <td>163</td>			10	163		00	163		3	163		10	163
Link Distance (m) 221.2 188.0 167.0 463.6 Travel Time (s) 15.9 13.5 10.0 27.8 Peak Hour Factor 1.00													
Travel Time (s) 15.9 13.5 10.0 27.8 Peak Hour Factor 1.00 1													
Peak Hour Factor 1.00	· · · · · · · · · · · · · · · · · · ·												
Heavy Vehicles (%) 2% 380 22 Shared Lane Traffic (%) 380 22 0 Enter Blocked Intersection No		1 00		1.00	1.00		1 00	1.00		1 00	1.00		1.00
Adj. Flow (vph) 86 61 10 32 64 90 2 669 13 23 380 22 Shared Lane Traffic (%)													
Shared Lane Traffic (%) Lane Group Flow (vph) 86 71 0 32 154 0 2 682 0 23 402 0 Enter Blocked Intersection No	, ()												
Lane Group Flow (vph) 86 71 0 32 154 0 2 682 0 23 402 0 Enter Blocked Intersection No No<		80	61	10	32	64	90	2	669	13	23	380	22
Enter Blocked Intersection No No <th< td=""><td></td><td></td><td>- 4</td><td><u>,</u></td><td></td><td></td><td><u>,</u></td><td>_</td><td></td><td><u>,</u></td><td></td><td>400</td><td></td></th<>			- 4	<u>,</u>			<u>,</u>	_		<u>,</u>		400	
Lane Alignment Left Left Right Median Width(m) 3.5 3.5 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.09													
Median Width(m) 3.5 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane													
Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane		Left		Right	Left		Right	Left		Right	Left		Right
Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane Headway Factor 1.09													
Two way Left Turn Lane Headway Factor 1.09 </td <td>()</td> <td></td>	()												
Headway Factor 1.09			3.0			3.0			3.0			3.0	
Turning Speed (k/h) 25 15 25 16 25 16 25 16 <td></td>													
Number of Detectors 1 2 1			1.09			1.09			1.09			1.09	
Detector Template Left Thru Left <td></td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td>15</td>				15			15			15			15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0													
Trailing Detector (m) 0.0													
Detector 1 Position(m) 0.0													
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex													
Detector 1 Type CI+Ex													
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Extend (s) 0.0	Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm NA	Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm NA	Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm NA						9.4			9.4			9.4	
Detector 2 TypeCI+ExCI+ExCI+ExDetector 2 ChannelDetector 2 Extend (s)0.00.00.0Turn TypePermNAPermNAPermNAPermNAPerm	()											0.6	
Detector 2 ChannelDetector 2 Extend (s)0.00.00.0Turn TypePermNAPermNAPermNAPermNAPerm													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Perm NA Perm NA Perm NA Perm NA													
Turn Type Perm NA Perm NA Perm NA Perm NA			0.0			0.0			0.0			0.0	
		Perm			Perm			Perm			Perm		
	Protected Phases	. •////	4			8			2			6	

Lanes, Volumes, Timings2024 Fut5: Mer-Bleue Road & Axis Way/Decoeur Drive

5. Mer-Bieue Roa		vvay/L	Jecoeu		C					2210	Mei-Dieu	C NOUC
	٦	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	37.0	37.0		37.0	37.0		38.0	38.0		38.0	38.0	
Total Split (%)	49.3%	49.3%		49.3%	49.3%		50.7%	50.7%		50.7%	50.7%	
Maximum Green (s)	31.3	31.3		31.3	31.3		32.1	32.1		32.1	32.1	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	10.5	10.5		10.5	10.5		17.6	17.6		17.6	17.6	
Actuated g/C Ratio	0.30	0.30		0.30	0.30		0.50	0.50		0.50	0.50	
v/c Ratio	0.25	0.14		0.09	0.29		0.00	0.43		0.07	0.27	
Control Delay	12.6	9.8		10.8	7.1		7.0	8.9		7.7	7.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	12.6	9.8		10.8	7.1		7.0	8.9		7.7	7.7	
LOS	В	Α		В	Α		А	А		Α	А	
Approach Delay		11.3			7.7			8.9			7.7	
Approach LOS		В			Α			А			А	
Queue Length 50th (m)	3.5	2.4		1.2	2.5		0.1	15.0		0.8	7.8	
Queue Length 95th (m)	12.2	9.2		5.7	12.6		0.8	27.5		3.7	15.6	
Internal Link Dist (m)		197.2			164.0			143.0			439.6	
Turn Bay Length (m)	30.0			30.0			30.0			35.0		
Base Capacity (vph)	1038	1543		1120	1446		827	2904		629	2749	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.05		0.03	0.11		0.00	0.23		0.04	0.15	
Intersection Summary												
Area Type:	Other											
Cycle Length: 75												
Actuated Cycle Length: 34	4.9											
Natural Cycle: 75												
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.43												
Intersection Signal Delay:	8.7			lr	ntersectior	1 LOS: A						
Intersection Capacity Utiliz)		10	CU Level o	of Service	eΑ					
Analysis Period (min) 15												

Splits and Phases:	5: Mer-Bleue Road & Axis Way/Decoeur Drive		
1 ø2		<u>_</u> Ø4	
38 s		37 s	
Ø6		₩ Ø8	
38 s		37 s	

	۶	\mathbf{F}	1	1	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	5	1	ef.	
Traffic Volume (vph)	398	85	73	365	443	124
Future Volume (vph)	398	85	73	365	443	124
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0			0.0
Storage Lanes	1	1	1			0.0
Taper Length (m)	15.0	•	75.0			Ū
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	0.970	1.00
Flt Protected	0.950	0.000	0.950		0.570	
Satd. Flow (prot)	1658	1339	1610	1745	1680	0
Flt Permitted	0.950	1998	0.298	1745	1000	U
		1220		17/5	1680	0
Satd. Flow (perm)	1658	1339	505	1745	1000	
Right Turn on Red		Yes			22	Yes
Satd. Flow (RTOR)		85			33	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	129.9	
Travel Time (s)	49.8			25.6	7.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	13%	5%	2%	3%	2%
Adj. Flow (vph)	398	85	73	365	443	124
Shared Lane Traffic (%)						
Lane Group Flow (vph)	398	85	73	365	567	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5	J -		3.5	3.5	J •
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane	0.0			0.0	0.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	1.03	25	1.03	1.03	1.03
	25 1	15	25 1	2	2	IJ
Number of Detectors			•			
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				Cl+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
. ,	Prot	Perm	Perm	NA	NA	
Turn Type Drotocted Dhases		Feilil	Feilil			
Protected Phases	4			2	6	

	٨	\mathbf{i}	1	Ť	Ļ	~		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Permitted Phases		4	2					
Detector Phase	4	4	2	2	6			
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0			
Minimum Split (s)	24.8	24.8	23.8	23.8	25.2			
Total Split (s)	26.0	26.0	34.0	34.0	34.0			
Total Split (%)	43.3%	43.3%	56.7%	56.7%	56.7%			
Maximum Green (s)	21.7	21.7	29.7	29.7	29.3			
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7			
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	4.3	4.3	4.3	4.3	4.7			
Lead/Lag								
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Recall Mode	None	None	Min	Min	Min			
Walk Time (s)	7.0	7.0	7.0	7.0	7.0			
Flash Dont Walk (s)	13.5	13.5	12.5	12.5	13.5			
Pedestrian Calls (#/hr)	0	0	0	0	0			
Act Effct Green (s)	16.0	16.0	20.0	20.0	19.6			
Actuated g/C Ratio	0.35	0.35	0.44	0.44	0.43			
v/c Ratio	0.68	0.16	0.33	0.47	0.76			
Control Delay	20.6	4.6	13.5	11.5	18.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	20.6	4.6	13.5	11.5	18.0			
LOS	С	А	В	В	В			
Approach Delay	17.8			11.8	18.0			
Approach LOS	В			В	В			
Queue Length 50th (m)	25.1	0.0	3.3	17.9	31.4			
Queue Length 95th (m)	62.0	7.2	12.4	40.9	72.5			
Internal Link Dist (m)	667.8			332.1	105.9			
Turn Bay Length (m)	95.0		30.0					
Base Capacity (vph)	852	730	354	1225	1177			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.47	0.12	0.21	0.30	0.48			
Intersection Summary								
Area Type:	Other							
Cycle Length: 60								
Actuated Cycle Length: 4	5.2							
Natural Cycle: 60								
Control Type: Actuated-L								
Maximum v/c Ratio: 0.76								
Intersection Signal Delay: 16.1 Intersection LOS: B								
Intersection Capacity Util	ization 75.3%)		10	CU Level of	of Service D		
Analysis Period (min) 15								

Splits and Phases:	3: Mer-Bleue Road & Renaud Road	
↑ ø₂		A 04
34 s		26 s
↓ ø6		
34 s		

Lanes, Volumes, Timings2024 Fur5: Mer-Bleue Road & Axis Way/Decoeur Drive

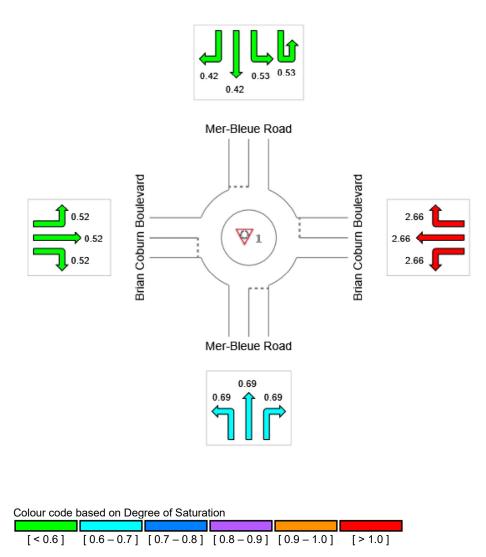
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations 1 4 85 52 10 735 21 90 637 Inter Configurations 47 88 5 14 85 52 10 735 21 90 637 Ideal Flow (vphp) 1800 <th>SBR 87 1800 0.0 0 0.95</th>	SBR 87 1800 0.0 0 0.95
Traffic Volume (vph) 47 88 5 14 85 52 10 735 21 90 637 Future Volume (vph) 47 88 5 14 85 52 10 735 21 90 637 Ideal Flow (vphp) 1800 160 0.95 0.95	87 1800 0.0 0
Traffic Volume (vph) 47 88 5 14 85 52 10 735 21 90 637 Future Volume (vph) 47 88 5 14 85 52 10 735 21 90 637 Ideal Flow (vphp) 1800 160 0.95 0.95	87 1800 0.0 0
Future Volume (vph) 47 88 5 14 85 52 10 735 21 90 637 Ideal Flow (vphp) 1800 100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	87 1800 0.0 0
Ideal Flow (vphpl) 1800 100 1.00 <td>1800 0.0 0</td>	1800 0.0 0
Storage Length (m) 30.0 0.0 30.0 0.0 30.0 0.0 35.0 Storage Lanes 1 0 1 0 1 0 1 0 1 Taper Length (m) 15.0 15.0 75.0 75.0 75.0 Lane Util. Factor 1.00 1.00 1.00 1.00 0.950 0.956 0.950 Fit 0.950 5 5 274 10.10 1.00 <	0.0 0
Storage Lanes 1 0 1 0 1 0 1 Taper Length (m) 15.0 75.0 75.0 75.0 Lane Util, Factor 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.955 Frt 0.992 0.943 0.996 0.950 0.982 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.376 0.376 0.365 5345, Flow (perm) 1167 1731 0 1216 1646 0 656 3152 0 637 2974 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes 25 1.00	0
Taper Length (m) 15.0 75.0 75.0 Lane Util, Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.950 0.982 Fit 0.992 0.943 0.996 0.950 0.982 0.982 Fit Protected 0.950 0.950 0.950 0.950 0.950 0.950 Satd, Flow (port) 11658 1731 0 1216 1646 0 1658 3152 0 637 2974 Right Turn on Red Yes Yes Yes Yes Yes 20 637 2974 Link Speed (k/h) 50 50 60 600 600 11k 11k <td></td>	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.950 <	0.95
Frt 0.992 0.943 0.996 0.950 Satd. Flow (prot) 1658 1731 0 1658 1646 0 1658 3152 0 1658 2974 Flt Permitted 0.669 0.697 0.376 0.365 2974 Satd. Flow (perm) 1167 1731 0 1216 1646 0 656 3152 0 637 2974 Right Turn on Red Yes Yes Yes Yes Yes 126 126 126 126 126 126 126 126 126 126 126 127 126 <td>0.00</td>	0.00
Fit Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1658 1731 0 1658 1646 0 1658 3152 0 1658 2974 Fit Permitted 0.669 0.697 0.376 0.365 0.365 2974 Satd. Flow (perm) 1167 1731 0 1216 1646 0 656 3152 0 637 2974 Right Turn on Red Yes Yes Yes Yes 20 637 2974 Link Speed (k/h) 50 50 60 60 60 60 60 60 10.8 27.5 294 458.1 1734 458.1 1734 458.1 1734 458.1 1374 458.1 10.0 1.00 <	
Satd. Flow (prot) 1658 1731 0 1658 1646 0 1658 3152 0 1658 2974 Fit Permitted 0.669 0.697 0.376 0.365 0.365 0.365 0.365 0.376 0.376 0.376 0.376 0.376 2974 Right Turn on Red Yes Yes Yes Yes Yes 275 Link Speed (k/h) 50 50 60 60 60 60 Link Distance (m) 269.4 286.1 179.4 458.1 77.5 77.5 27.5 Peak Hour Factor 1.00 <	
Fit Permitted 0.669 0.697 0.376 0.365 Satd. Flow (perm) 1167 1731 0 1216 1646 0 656 3152 0 637 2974 Right Turn on Red Yes Yes Yes Yes Yes 255 Link Speed (k/h) 50 50 60 600 601 Link Speed (k/h) 269.4 286.1 1779.4 458.1 77.5 Peak Hour Factor 1.00 1.0	0
Satd. Flow (perm) 1167 1731 0 1216 1646 0 656 3152 0 637 2974 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 5 49 5 25 11k Speed (k/h) 50 637 27.5 60 90 637 29 60 10 75 60	Ū
Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 5 49 5 25 Link Speed (k/h) 50 50 60 60 Link Distance (m) 269.4 286.1 179.4 458.1 Travel Time (s) 19.4 20.6 10.8 27.5 Peak Hour Factor 1.00 1	0
Satd. Flow (RTOR) 5 49 5 25 Link Speed (k/h) 50 50 60 60 Link Distance (m) 269.4 286.1 179.4 458.1 Travel Time (s) 19.4 20.6 10.8 27.5 Peak Hour Factor 1.00 <td>Yes</td>	Yes
Link Speed (k/h) 50 50 60 60 Link Distance (m) 269.4 286.1 179.4 458.1 Travel Time (s) 19.4 20.6 10.8 27.5 Peak Hour Factor 1.00 <td>163</td>	163
Link Distance (m) 269.4 286.1 179.4 458.1 Travel Time (s) 19.4 20.6 10.8 27.5 Peak Hour Factor 1.00	
Travel Time (s) 19.4 20.6 10.8 27.5 Peak Hour Factor 1.00 1	
Peak Hour Factor 1.00 1.0	
Heavy Vehicles (%)2%2%2%2%2%2%2%2%2%2%2%2%2%13%Adj. Flow (vph)47885148552107352190637Shared Lane Traffic (%)Lane Group Flow (vph)4793014137010756090724Enter Blocked IntersectionNoNoNoNoNoNoNoNoNoNoNoLane AlignmentLeftLeftRightLeftLeftRightLeftLeftLeftLeftLeftMedian Width(m)3.53.53.53.53.53.53.53.5Link Offset(m)0.00.00.00.00.00.00.0Crosswalk Width(m)3.03.03.03.03.03.03.0Two way Left Turn Lane1.091.091.091.091.091.091.091.091.091.09Headway Factor1.091.091.091.091.091.091.091.091.091.091.091.09Turning Speed (k/h)251525152515251525Number of Detectors1212121212	1.00
Adj. Flow (vph) 47 88 5 14 85 52 10 735 21 90 637 Shared Lane Traffic (%) Iane Group Flow (vph) 47 93 0 14 137 0 10 756 0 90 724 Enter Blocked Intersection No Si 3.5 3.5 3.5 3.5 3.5 3.0 Si Si Si Si Si Si Si Si Si Si<	1.00
Shared Lane Traffic (%) Lane Group Flow (vph) 47 93 0 14 137 0 10 756 0 90 724 Enter Blocked Intersection No No <td>2%</td>	2%
Lane Group Flow (vph) 47 93 0 14 137 0 10 756 0 90 724 Enter Blocked Intersection No N	87
Enter Blocked IntersectionNoNoNoNoNoNoNoNoNoNoLane AlignmentLeftLeftRightLeftRightLeftRightLeftLeftRightLef	
Lane Alignment Left Left Right Left Right Left Right Left Right Left Left Right Left Left Left </td <td>0</td>	0
Median Width(m) 3.5 3.5 3.5 3.5 Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane	No
Link Offset(m) 0.0 0.0 0.0 0.0 0.0 Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane	Right
Crosswalk Width(m) 3.0 3.0 3.0 3.0 3.0 Two way Left Turn Lane	
Two way Left Turn LaneHeadway Factor1.09<	
Headway Factor1.09<	
Turning Speed (k/h) 25 15 25 15 25 15 25 Number of Detectors 1 2 1 2 1 2 1 2	
Number of Detectors 1 2 1	1.09
	15
Detector Template Left Thru Left Thru Left Thru Left Thru	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0	
Trailing Detector (m) 0.0	
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6	
Detector 1 Type CI+Ex CI	
Detector 1 Channel	
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4	
Detector 2 Size(m) 0.6 0.6 0.6 0.6	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	
Detector 2 Channel	
Detector 2 Extend (s) 0.0 0.0 0.0 0.0	
Turn Type Perm NA Perm NA Perm NA Perm NA	
Protected Phases 4 8 2 6	

01-07-2021 VZ CGH Transportation Page 7 Lanes, Volumes, Timings2024 Fur5: Mer-Bleue Road & Axis Way/Decoeur Drive

		viay/E			•							
	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	36.1	36.1		36.1	36.1		38.9	38.9		38.9	38.9	
Total Split (%)	48.1%	48.1%		48.1%	48.1%		51.9%	51.9%		51.9%	51.9%	
Maximum Green (s)	30.0	30.0		30.0	30.0		33.0	33.0		33.0	33.0	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.1	6.1		6.1	6.1		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	10.4	10.4		10.4	10.4		19.1	19.1		19.1	19.1	
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.52	0.52		0.52	0.52	
v/c Ratio	0.14	0.19		0.04	0.27		0.03	0.46		0.27	0.46	
Control Delay	12.7	12.1		11.7	9.9		6.9	8.9		10.4	8.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	12.7	12.1		11.7	9.9		6.9	8.9		10.4	8.8	
LOS	В	В		В	А		A	А		В	А	
Approach Delay		12.3			10.1			8.9			9.0	
Approach LOS		В			В			A			А	
Queue Length 50th (m)	2.1	4.0		0.6	3.9		0.3	17.4		3.6	16.2	
Queue Length 95th (m)	8.5	13.3		3.8	15.2		2.1	30.4		11.5	28.9	
Internal Link Dist (m)		245.4			262.1			155.4			434.1	
Turn Bay Length (m)	30.0	1-00		30.0			30.0			35.0		
Base Capacity (vph)	1012	1502		1054	1434		592	2848		575	2689	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.05	0.06		0.01	0.10		0.02	0.27		0.16	0.27	
Intersection Summary	-											
Area Type:	Other											
Cycle Length: 75												
Actuated Cycle Length: 36	6.5											
Natural Cycle: 75												
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.46						1.00						
Intersection Signal Delay:					ntersection		0					
Intersection Capacity Utili	zation 67.2%			10	CU Level	of Service	ЭC					
Analysis Period (min) 15												

Splits and Phases:	5: Mer-Bleue Road & Axis Way/Decoeur Drive		
1 ø2		<u>→</u> _{Ø4}	
38.9 s		36.1 s	
Ø6		₩ Ø8	
38.9 s		36.1 s	

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM]

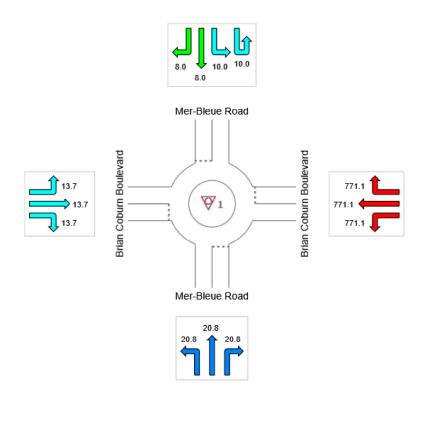
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

	Approaches				Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.69	2.66	0.53	0.52	2.66

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 7:35:51 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

V Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

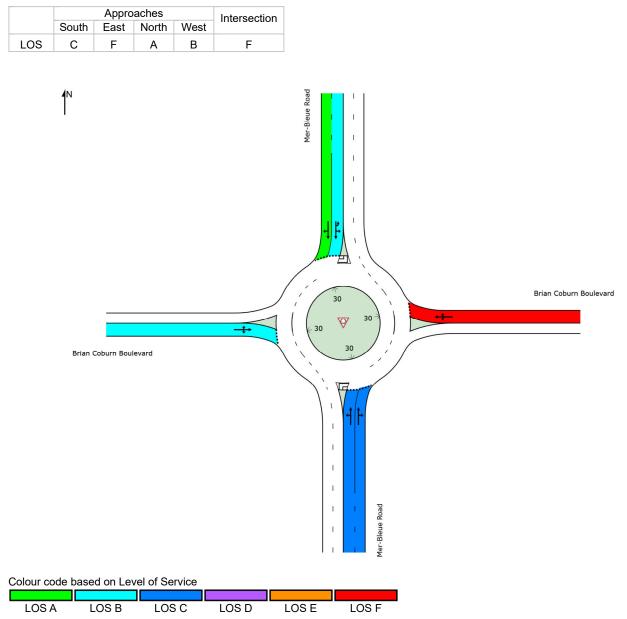
		Intersection			
	South	East	North	West	Intersection
Delay (Control)	20.8	771.1	9.1	13.7	314.6
LOS	С	F	А	В	F

Colour code based of	on Level of Service
----------------------	---------------------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control


HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

MOVEMENT SUMMARY

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	- Veh	icles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	27	2.0	0.688	20.8	LOS C	5.6	40.0	0.83	1.09	1.65	42.9
2	T1	556	2.0	0.688	20.8	LOS C	5.6	40.0	0.83	1.09	1.65	42.7
3	R2	284	2.0	0.688	20.8	LOS C	5.6	40.0	0.83	1.09	1.65	35.5
Appro	ach	867	2.0	0.688	20.8	LOS C	5.6	40.0	0.83	1.09	1.65	40.8
East:	Brian Col	ourn Bouleva	ırd									
4	L2	103	2.0	2.664	771.1	LOS F	297.9	2121.2	1.00	8.18	25.45	2.7
5	T1	656	2.0	2.664	771.1	LOS F	297.9	2121.2	1.00	8.18	25.45	3.1
6	R2	688	2.0	2.664	771.1	LOS F	297.9	2121.2	1.00	8.18	25.45	3.1
Appro	ach	1447	2.0	2.664	771.1	LOS F	297.9	2121.2	1.00	8.18	25.45	3.1
North:	: Mer-Bleu	ue Road										
7u	U	370	2.0	0.534	10.0	LOS B	4.0	28.6	0.61	0.57	0.73	47.7
7	L2	185	2.0	0.534	10.0	LOS B	4.0	28.6	0.61	0.57	0.73	42.6
8	T1	274	2.0	0.417	8.0	LOS A	2.2	15.5	0.53	0.44	0.53	51.1
9	R2	160	2.0	0.417	8.0	LOS A	2.2	15.5	0.53	0.44	0.53	50.2
Appro	ach	989	2.0	0.534	9.1	LOS A	4.0	28.6	0.58	0.51	0.65	48.1
West:	Brian Co	burn Bouleva	ard									
10	L2	155	2.0	0.518	13.7	LOS B	3.0	21.6	0.73	0.87	1.15	47.0
11	T1	162	2.0	0.518	13.7	LOS B	3.0	21.6	0.73	0.87	1.15	42.6
12	R2	28	2.0	0.518	13.7	LOS B	3.0	21.6	0.73	0.87	1.15	44.6
Appro	ach	345	2.0	0.518	13.7	LOS B	3.0	21.6	0.73	0.87	1.15	45.0
All Ve	hicles	3648	2.0	2.664	314.6	LOS F	297.9	2121.2	0.82	3.73	10.77	8.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

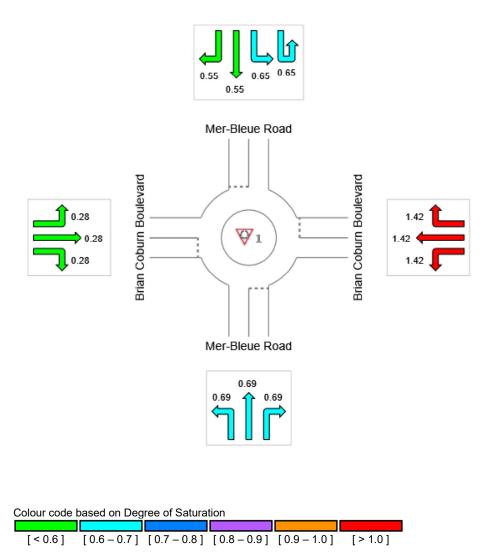
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 7:35:51 AM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM - Widened]

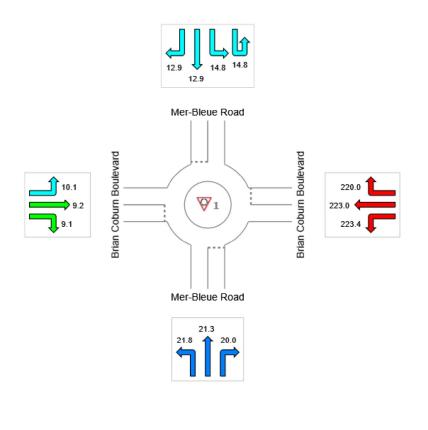
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

	Approaches				Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.69	1.42	0.65	0.28	1.42

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:29:29 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Delay (Control)	20.9	221.6	13.9	9.6	97.5
LOS	С	F	В	А	F

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection				
	South	East	North	West		_			
LOS	С	F	В	Α	F				
	f N Bria	n Coburn Bo				Mer-Bieue Road	e Road		Brian Coburn Boulevard
Colour co									
LOSA	4 L	OS B	LOS	S C	LOS D	LOS E	LOS F		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 1 [Mer-Bleue & Brian Coburn 2024 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	27	2.0	0.689	21.8	LOS C	5.4	38.6	0.83	1.08	1.65	42.5
2	T1	556	2.0	0.689	21.3	LOS C	5.6	40.0	0.82	1.08	1.65	42.6
3	R2	284	2.0	0.689	20.0	LOS C	5.6	40.0	0.82	1.08	1.64	36.2
Appro	ach	867	2.0	0.689	20.9	LOS C	5.6	40.0	0.82	1.08	1.65	40.9
East:	Brian Col	ourn Bouleva	ard									
4	L2	103	2.0	1.418	223.4	LOS F	73.3	522.0	1.00	4.24	12.21	8.6
5	T1	656	2.0	1.418	223.0	LOS F	82.5	587.1	1.00	4.29	12.34	9.7
6	R2	688	2.0	1.418	220.0	LOS F	82.5	587.1	1.00	4.59	13.23	9.5
Appro	ach	1447	2.0	1.418	221.6	LOS F	82.5	587.1	1.00	4.43	12.76	9.5
North:	: Mer-Bleu	ue Road										
7u	U	370	2.0	0.647	14.8	LOS B	6.2	43.9	0.76	0.99	1.37	45.3
7	L2	185	2.0	0.647	14.8	LOS B	6.2	43.9	0.76	0.99	1.37	40.0
8	T1	274	2.0	0.554	12.9	LOS B	4.1	29.2	0.71	0.86	1.12	47.7
9	R2	160	2.0	0.554	12.9	LOS B	4.1	29.2	0.71	0.86	1.12	47.3
Appro	ach	989	2.0	0.647	13.9	LOS B	6.2	43.9	0.74	0.93	1.26	45.3
West:	Brian Co	burn Boulev	ard									
10	L2	155	2.0	0.282	10.1	LOS B	1.1	7.7	0.66	0.67	0.68	47.7
11	T1	162	2.0	0.282	9.2	LOS A	1.1	7.7	0.64	0.65	0.65	47.7
12	R2	28	2.0	0.282	9.1	LOS A	1.1	7.6	0.64	0.65	0.65	48.8
Appro	ach	345	2.0	0.282	9.6	LOS A	1.1	7.7	0.65	0.66	0.67	47.8
All Ve	hicles	3648	2.0	1.418	97.5	LOS F	82.5	587.1	0.85	2.33	5.86	19.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

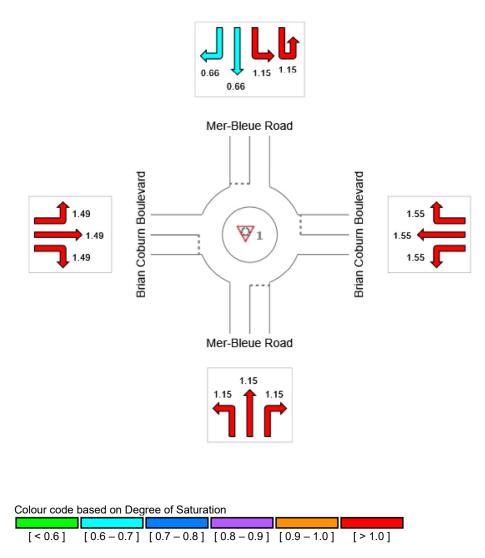
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:29:29 AM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM]

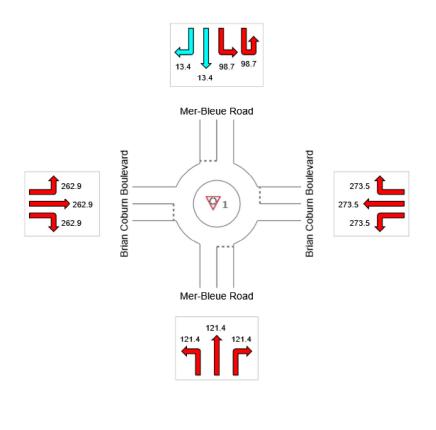
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

	Approaches			Intersection	
	South	East	North	West	Intersection
Degree of Saturation	1.15	1.55	1.15	1.49	1.55

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 7:38:13 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

V Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

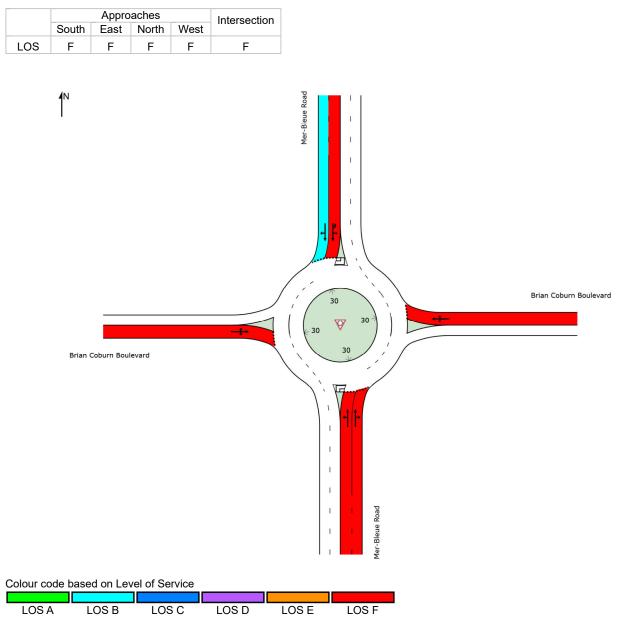
All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Delay (Control)	121.4	273.5	67.8	262.9	150.4
LOS	F	F	F	F	F

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

✓ Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	50	2.0	1.148	121.4	LOS F	30.1	214.2	1.00	2.66	6.99	18.9
2	T1	671	2.0	1.148	121.4	LOS F	30.1	214.2	1.00	2.66	6.99	18.8
3	R2	235	2.0	1.148	121.4	LOS F	30.1	214.2	1.00	2.66	6.99	13.5
Appro	ach	956	2.0	1.148	121.4	LOS F	30.1	214.2	1.00	2.66	6.99	17.6
East:	Brian Col	ourn Bouleva	ard									
4	L2	201	2.0	1.549	273.5	LOS F	119.9	853.8	1.00	5.51	15.69	7.1
5	T1	261	2.0	1.549	273.5	LOS F	119.9	853.8	1.00	5.51	15.69	8.1
6	R2	500	2.0	1.549	273.5	LOS F	119.9	853.8	1.00	5.51	15.69	8.0
Appro	ach	962	2.0	1.549	273.5	LOS F	119.9	853.8	1.00	5.51	15.69	7.9
North:	: Mer-Bleu	ue Road										
7u	U	339	2.0	1.155	98.7	LOS F	87.4	622.6	1.00	3.27	6.25	22.9
7	L2	825	2.0	1.155	98.7	LOS F	87.4	622.6	1.00	3.27	6.25	17.9
8	T1	463	2.0	0.657	13.4	LOS B	8.1	57.3	0.73	0.86	1.19	47.2
9	R2	199	2.0	0.657	13.4	LOS B	8.1	57.3	0.73	0.86	1.19	46.8
Appro	ach	1826	2.0	1.155	67.8	LOS F	87.4	622.6	0.90	2.39	4.41	25.3
West:	Brian Co	burn Boulev	ard									
10	L2	61	2.0	1.490	262.9	LOS F	63.3	450.6	1.00	4.02	12.44	11.5
11	T1	424	2.0	1.490	262.9	LOS F	63.3	450.6	1.00	4.02	12.44	8.4
12	R2	49	2.0	1.490	262.9	LOS F	63.3	450.6	1.00	4.02	12.44	10.5
Appro	ach	534	2.0	1.490	262.9	LOS F	63.3	450.6	1.00	4.02	12.44	9.0
All Ve	hicles	4278	2.0	1.549	150.4	LOS F	119.9	853.8	0.96	3.36	8.53	14.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

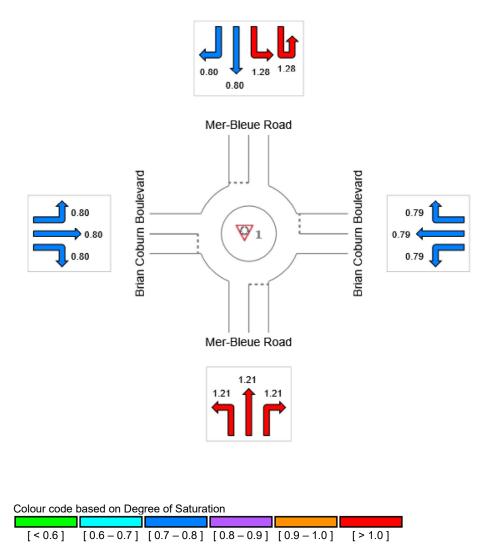
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 7:38:13 AM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM - Widened]

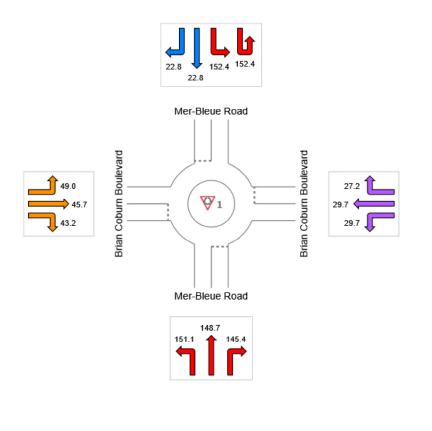
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

	Approaches			Intersection	
	South	East	North	West	Intersection
Degree of Saturation	1.21	0.79	1.28	0.80	1.28

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:30:41 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

	Approaches				Intersection
	South	East	North	West	Intersection
Delay (Control)	148.0	28.4	105.5	45.8	90.2
LOS	F	D	F	Е	F

Colour code	based c	n Level of	Service
-------------	---------	------------	---------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

INTERSECTION SUMMARY

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Performance Measure	Vehicles	Persons
Fravel Speed (Average)	20.8 km/h	20.8 km/h
Travel Distance (Total)	3553.5 veh-km/h	4264.1 pers-km/h
Travel Time (Total)	171.2 veh-h/h	205.4 pers-h/h
Demand Flows (Total)	4278 veh/h	5134 pers/h
Percent Heavy Vehicles (Demand)	2.0 %	5154 pers/fi
Degree of Saturation	1.283	
Practical Spare Capacity	-33.8 %	
Effective Intersection Capacity	-33.8 % 3333 veh/h	
	5555 Ven/m	
Control Delay (Total)	107.19 veh-h/h	128.63 pers-h/h
Control Delay (Average)	90.2 sec	90.2 sec
Control Delay (Worst Lane)	152.4 sec	
Control Delay (Worst Movement)	152.4 sec	152.4 sec
Geometric Delay (Average)	0.0 sec	
Stop-Line Delay (Average)	90.2 sec	
dling Time (Average)	58.4 sec	
ntersection Level of Service (LOS)	LOS F	
95% Back of Queue - Vehicles (Worst Lane)	105.7 veh	
95% Back of Queue - Distance (Worst Lane)	752.7 m	
Queue Storage Ratio (Worst Lane)	0.61	
Total Effective Stops	10731 veh/h	12877 pers/h
Effective Stop Rate	2.51	2.51
Proportion Queued	0.95	0.95
Performance Index	533.7	533.7
Cost (Total)	6144.99 \$/h	6144.99 \$/h
Fuel Consumption (Total)	528.3 L/h	στι 4.00 φ/Π
Carbon Dioxide (Total)	1246.5 kg/h	
Tydrocarbons (Total)	0.126 kg/h	
Carbon Monoxide (Total)	1.209 kg/h	
NOx (Total)	1.315 kg/h	

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Site Model Variability Index (Iterations 3 to N): 5.3 %

Number of Iterations: 7 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 2.5% 1.2% 0.6%

Intersection Performance - Annual Values						
Performance Measure	Vehicles	Persons				
Demand Flows (Total)	2,053,440 veh/y	2,464,128 pers/y				
Delay	51,451 veh-h/y	61,741 pers-h/y				
Effective Stops	5,150,652 veh/y	6,180,782 pers/y				
Travel Distance	1,705,658 veh-km/y	2,046,790 pers-km/y				
Travel Time	82,174 veh-h/y	98,609 pers-h/y				

2,949,594 \$/y	2,949,594 \$/y
253,577 L/y	
598,325 kg/y	
60 kg/y	
580 kg/y	
631 kg/y	
	253,577 L/y 598,325 kg/y 60 kg/y

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:30:41 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection				
	South	East	North	West		_			
LOS	F	D	F	Е	F				
Colour cc	¶N Briar	n Coburn Ba					Wer-Bleue Road		Brian Coburn Boulevard
LOSA	4 L	.OS B	LOS	S C	LOS D	LOS E	LOS F		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 1 [Mer-Bleue & Brian Coburn 2024 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h		
South	: Mer-Ble	ue Road												
1	L2	50	2.0	1.215	151.1	LOS F	33.7	240.0	1.00	2.87	7.92	16.3		
2	T1	671	2.0	1.215	148.7	LOS F	38.2	272.0	1.00	2.96	8.21	16.4		
3	R2	235	2.0	1.215	145.4	LOS F	38.2	272.0	1.00	3.09	8.63	11.9		
Appro	ach	956	2.0	1.215	148.0	LOS F	38.2	272.0	1.00	2.99	8.30	15.4		
East:	Brian Col	ourn Bouleva	ard											
4	L2	201	2.0	0.790	29.7	LOS D	7.7	54.6	0.88	1.26	2.12	32.1		
5	T1	261	2.0	0.790	29.7	LOS D	8.0	57.1	0.88	1.26	2.12	34.1		
6	R2	500	2.0	0.790	27.2	LOS D	8.0	57.1	0.88	1.27	2.12	34.4		
Appro	ach	962	2.0	0.790	28.4	LOS D	8.0	57.1	0.88	1.26	2.12	33.8		
North:	: Mer-Bleu	ue Road												
7u	U	339	2.0	1.283	152.4	LOS F	105.7	752.7	1.00	4.38	9.80	17.5		
7	L2	825	2.0	1.283	152.4	LOS F	105.7	752.7	1.00	4.38	9.80	13.3		
8	T1	463	2.0	0.795	22.8	LOS C	12.4	88.6	0.91	1.34	2.05	41.8		
9	R2	199	2.0	0.795	22.8	LOS C	12.4	88.6	0.91	1.34	2.05	42.0		
Appro	ach	1826	2.0	1.283	105.5	LOS F	105.7	752.7	0.97	3.27	6.99	19.6		
West:	Brian Co	burn Boulev	ard											
10	L2	61	2.0	0.796	49.0	LOS E	4.9	35.1	0.94	1.27	2.23	33.1		
11	T1	424	2.0	0.796	45.7	LOS E	5.2	36.9	0.93	1.27	2.23	28.6		
12	R2	49	2.0	0.796	43.2	LOS E	5.2	36.9	0.93	1.27	2.23	32.7		
Appro	ach	534	2.0	0.796	45.8	LOS E	5.2	36.9	0.93	1.27	2.23	29.6		
All Ve	hicles	4278	2.0	1.283	90.2	LOS F	105.7	752.7	0.95	2.51	5.59	20.8		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

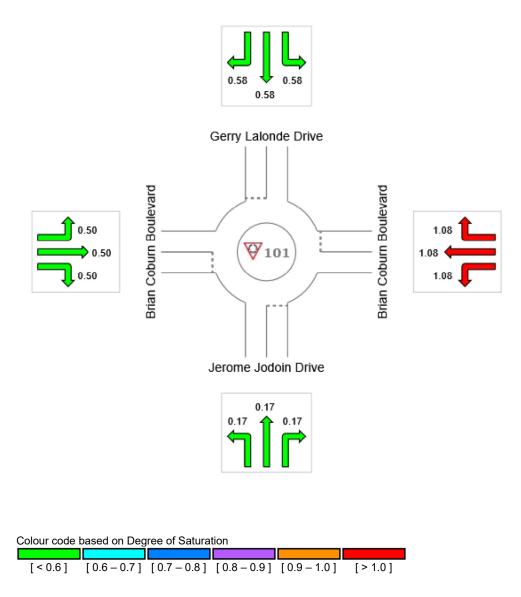
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:30:41 AM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM]

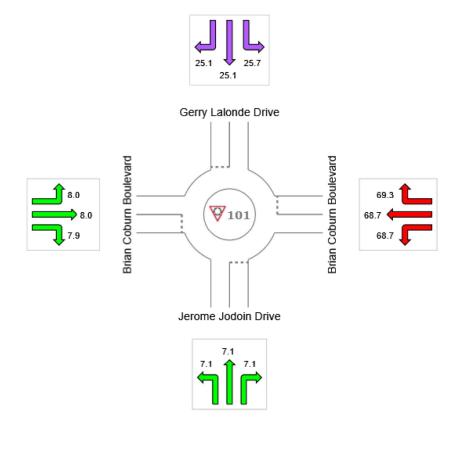
New Site Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Degree of Saturation	0.17	1.08	0.58	0.50	1.08

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:46:56 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM]

New Site Site Category: (None) Roundabout

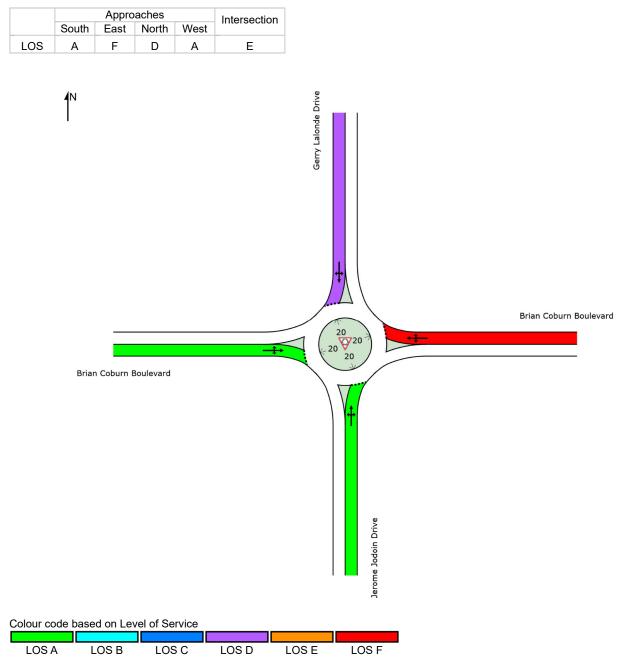
All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Delay (Control)	7.1	68.7	25.1	8.0	43.4
LOS	Α	F	D	А	E

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM]

New Site Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h	
South	: Jerome	Jodoin Driv										111/1	
1	L2	105	2.0	0.169	7.1	LOS A	0.7	4.9	0.61	0.60	0.61	48.4	
2	T1	1	2.0	0.169	7.1	LOS A	0.7	4.9	0.61	0.60	0.61	48.5	
3	R2	11	2.0	0.169	7.1	LOS A	0.7	4.9	0.61	0.60	0.61	47.6	
Appro	ach	117	2.0	0.169	7.1	LOS A	0.7	4.9	0.61	0.60	0.61	48.4	
East:	Brian Co	burn Boulev	/ard										
4	L2	6	2.0	1.080	68.7	LOS F	103.0	736.6	1.00	2.11	3.34	27.6	
5	T1	1239	2.0	1.080	68.7	LOS F	103.0	736.6	1.00	2.11	3.34	27.7	
6	R2	15	46.0	1.080	69.3	LOS F	103.0	736.6	1.00	2.11	3.34	27.0	
Appro	ach	1260	2.5	1.080	68.7	LOS F	103.0	736.6	1.00	2.11	3.34	27.6	
North	: Gerry La	alonde Drive	Э										
7	L2	8	14.0	0.580	25.7	LOS D	3.0	21.7	0.86	1.03	1.45	40.4	
8	T1	1	2.0	0.580	25.1	LOS D	3.0	21.7	0.86	1.03	1.45	40.7	
9	R2	206	2.0	0.580	25.1	LOS D	3.0	21.7	0.86	1.03	1.45	40.0	
Appro	ach	215	2.4	0.580	25.1	LOS D	3.0	21.7	0.86	1.03	1.45	40.1	
West:	Brian Co	burn Boule	vard										
10	L2	43	3.0	0.505	8.0	LOS A	4.0	29.1	0.14	0.04	0.14	50.2	
11	T1	593	6.0	0.505	8.0	LOS A	4.0	29.1	0.14	0.04	0.14	50.3	
12	R2	30	2.0	0.505	7.9	LOS A	4.0	29.1	0.14	0.04	0.14	49.3	
Appro	ach	666	5.6	0.505	8.0	LOS A	4.0	29.1	0.14	0.04	0.14	50.2	
All Ve	hicles	2258	3.4	1.080	43.4	LOS E	103.0	736.6	0.71	1.32	2.08	33.9	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

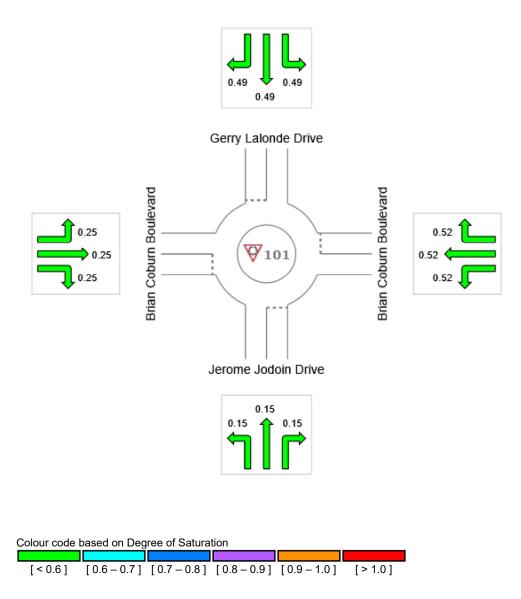
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:46:56 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM - Widened]

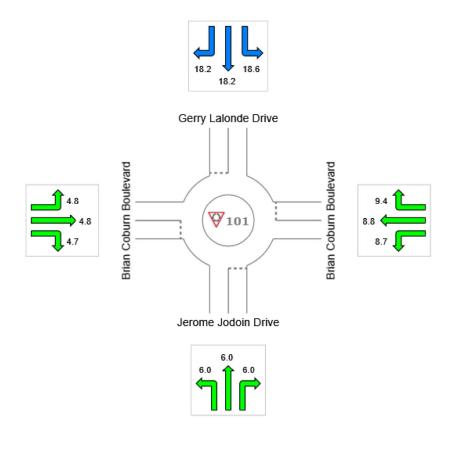
New Site Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Degree of Saturation	0.15	0.52	0.49	0.25	0.52

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:41:04 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM - Widened]

New Site Site Category: (None) Roundabout

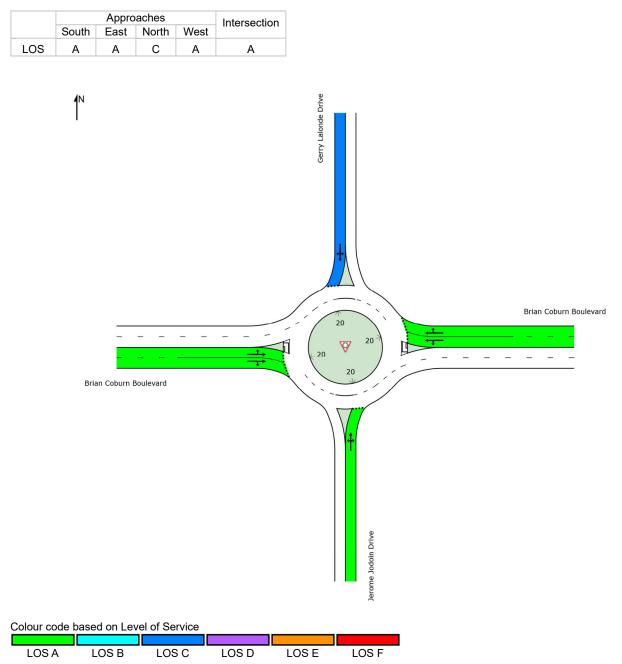
All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Delay (Control)	6.0	8.8	18.2	4.8	8.3
LOS	А	А	С	А	А

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB AM - Widened]

New Site Site Category: (None) Roundabout

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles			
South	South: Jerome Jodoin Drive													
1	L2	105	2.0	0.146	6.0	LOS A	0.5	3.8	0.54	0.52	0.54	49.3		
2	T1	1	2.0	0.146	6.0	LOS A	0.5	3.8	0.54	0.52	0.54	49.3		
3	R2	11	2.0	0.146	6.0	LOS A	0.5	3.8	0.54	0.52	0.54	48.4		
Appro	ach	117	2.0	0.146	6.0	LOS A	0.5	3.8	0.54	0.52	0.54	49.3		
East:	Brian Co	burn Boulev	/ard											
4	L2	6	2.0	0.521	8.7	LOS A	3.5	24.8	0.45	0.29	0.45	50.0		
5	T1	1239	2.0	0.521	8.8	LOS A	3.5	24.8	0.45	0.29	0.45	50.1		
6	R2	15	46.0	0.521	9.4	LOS A	3.5	24.8	0.45	0.29	0.45	47.6		
Appro	ach	1260	2.5	0.521	8.8	LOS A	3.5	24.8	0.45	0.29	0.45	50.1		
North:	: Gerry L	alonde Drive	Э											
7	L2	8	14.0	0.488	18.6	LOS C	2.2	15.9	0.81	0.93	1.24	44.0		
8	T1	1	2.0	0.488	18.2	LOS C	2.2	15.9	0.81	0.93	1.24	44.3		
9	R2	206	2.0	0.488	18.2	LOS C	2.2	15.9	0.81	0.93	1.24	43.6		
Appro	ach	215	2.4	0.488	18.2	LOS C	2.2	15.9	0.81	0.93	1.24	43.6		
West:	Brian Co	oburn Boule	vard											
10	L2	43	3.0	0.247	4.8	LOS A	1.2	8.8	0.09	0.02	0.09	52.4		
11	T1	593	6.0	0.247	4.8	LOS A	1.2	8.8	0.09	0.02	0.09	52.7		
12	R2	30	2.0	0.247	4.7	LOS A	1.2	8.8	0.09	0.02	0.09	51.5		
Appro	ach	666	5.6	0.247	4.8	LOS A	1.2	8.8	0.09	0.02	0.09	52.6		
All Ve	hicles	2258	3.4	0.521	8.3	LOS A	3.5	24.8	0.38	0.28	0.42	50.1		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

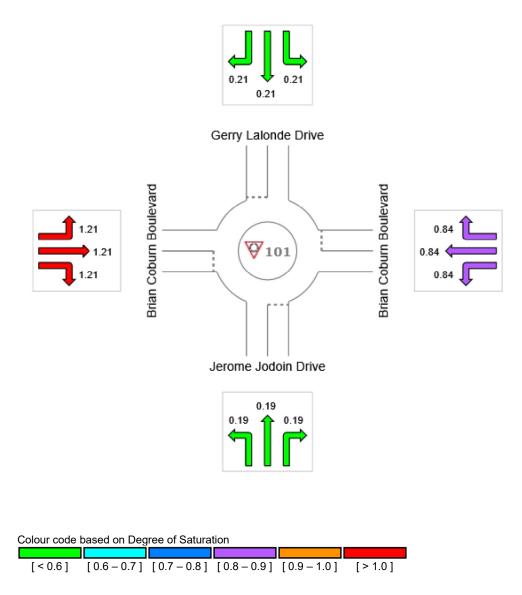
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:41:04 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM]

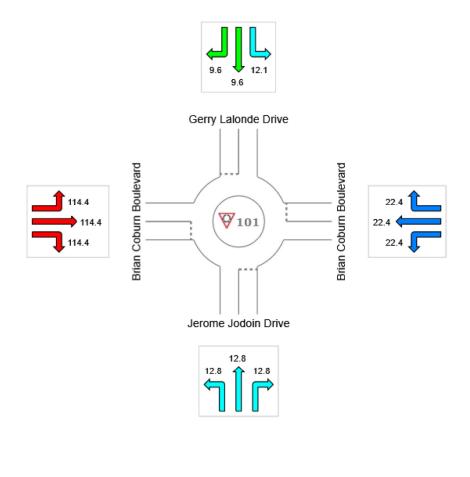
New Site Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Degree of Saturation	0.19	0.84	0.21	1.21	1.21

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:47:50 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM]

New Site Site Category: (None) Roundabout

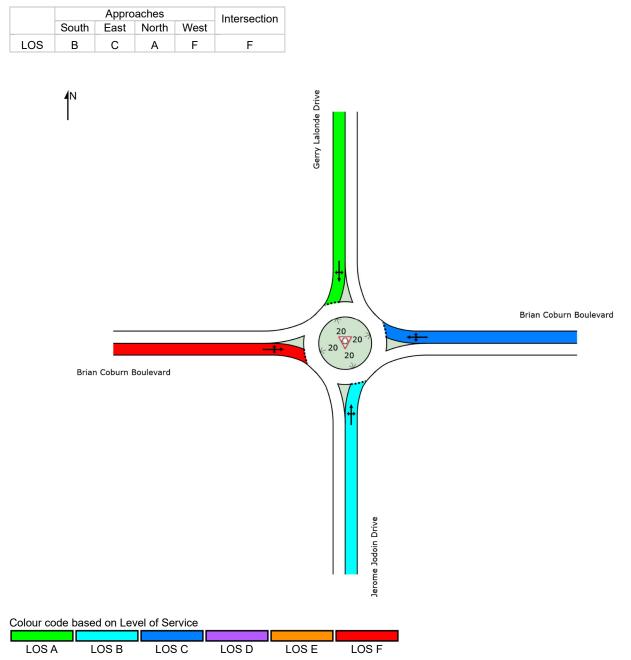
All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Delay (Control)	12.8	22.4	9.7	114.4	77.1
LOS	В	С	Α	F	F

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM]

New Site Site Category: (None) Roundabout

Move	ment P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued		Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
South	: Jerome	Jodoin Driv	e									
1	L2	57	2.0	0.188	12.8	LOS B	0.7	4.8	0.76	0.76	0.76	45.3
2	T1	1	2.0	0.188	12.8	LOS B	0.7	4.8	0.76	0.76	0.76	45.4
3	R2	12	2.0	0.188	12.8	LOS B	0.7	4.8	0.76	0.76	0.76	44.6
Appro	ach	70	2.0	0.188	12.8	LOS B	0.7	4.8	0.76	0.76	0.76	45.2
East:	Brian Co	burn Boulev	ard									
4	L2	20	2.0	0.839	22.4	LOS C	24.4	173.5	1.00	1.32	2.00	42.1
5	T1	847	2.0	0.839	22.4	LOS C	24.4	173.5	1.00	1.32	2.00	42.2
6	R2	13	2.0	0.839	22.4	LOS C	24.4	173.5	1.00	1.32	2.00	41.5
Appro	ach	880	2.0	0.839	22.4	LOS C	24.4	173.5	1.00	1.32	2.00	42.2
North:	Gerry La	alonde Drive	9									
7	L2	4	75.0	0.206	12.1	LOS B	0.8	5.7	0.68	0.68	0.68	46.7
8	T1	1	2.0	0.206	9.6	LOS A	0.8	5.7	0.68	0.68	0.68	49.3
9	R2	102	2.0	0.206	9.6	LOS A	0.8	5.7	0.68	0.68	0.68	48.2
Appro	ach	107	4.7	0.206	9.7	LOS A	0.8	5.7	0.68	0.68	0.68	48.2
West:	Brian Co	burn Boule	vard									
10	L2	236	2.0	1.207	114.4	LOS F	401.8	2860.9	1.00	0.94	1.98	20.5
11	T1	1271	2.0	1.207	114.4	LOS F	401.8	2860.9	1.00	0.94	1.98	20.6
12	R2	95	2.0	1.207	114.4	LOS F	401.8	2860.9	1.00	0.94	1.98	20.4
Appro	ach	1602	2.0	1.207	114.4	LOS F	401.8	2860.9	1.00	0.94	1.98	20.5
All Ve	hicles	2659	2.1	1.207	77.1	LOS F	401.8	2860.9	0.98	1.05	1.90	25.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

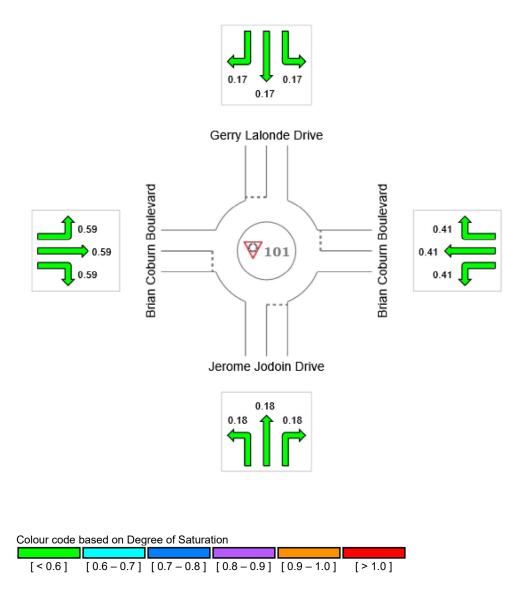
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:47:50 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM - Widened]

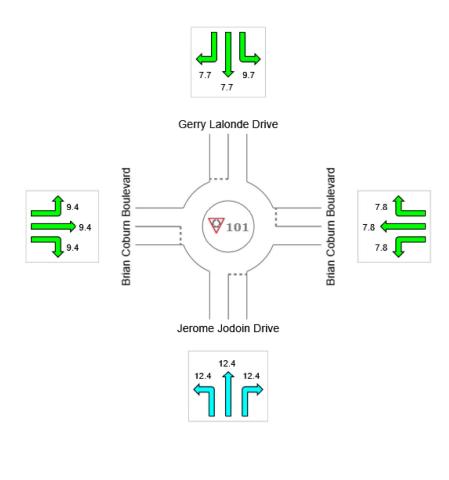
New Site Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.18	0.41	0.17	0.59	0.59

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:42:23 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM - Widened]

New Site Site Category: (None) Roundabout

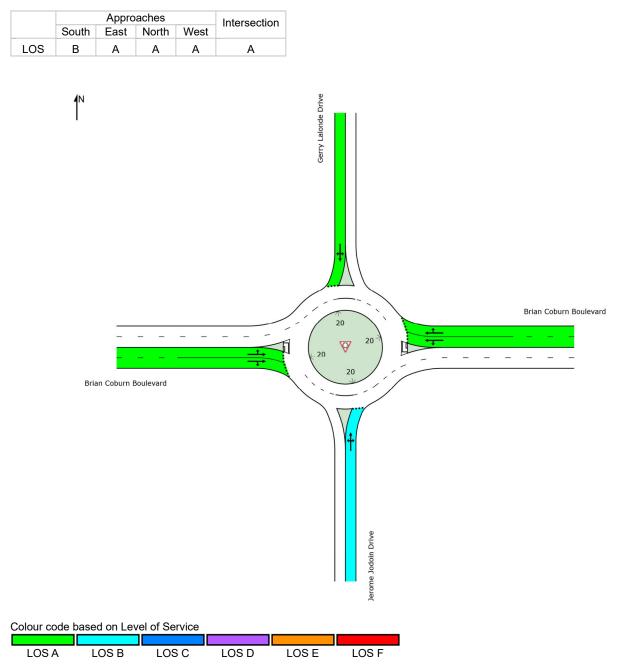
All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Delay (Control)	12.4	7.8	7.8	9.4	8.9
LOS	В	А	А	А	А

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 101 [Brian Coburn & Gerry Lalonde 2024 FB PM - Widened]

New Site Site Category: (None) Roundabout

Move	Movement Performance - Vehicles												
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles		
South	: Jerome	Jodoin Driv	е										
1	L2	57	2.0	0.182	12.4	LOS B	0.6	4.2	0.76	0.76	0.76	45.8	
2	T1	1	2.0	0.182	12.4	LOS B	0.6	4.2	0.76	0.76	0.76	45.8	
3	R2	12	2.0	0.182	12.4	LOS B	0.6	4.2	0.76	0.76	0.76	45.0	
Appro	ach	70	2.0	0.182	12.4	LOS B	0.6	4.2	0.76	0.76	0.76	45.7	
East:	Brian Co	burn Boulev	ard										
4	L2	20	2.0	0.414	7.8	LOS A	2.2	15.6	0.52	0.42	0.52	50.7	
5	T1	847	2.0	0.414	7.8	LOS A	2.2	15.6	0.52	0.42	0.52	50.8	
6	R2	13	2.0	0.414	7.8	LOS A	2.2	15.6	0.52	0.42	0.52	49.6	
Appro	ach	880	2.0	0.414	7.8	LOS A	2.2	15.6	0.52	0.42	0.52	50.8	
North	: Gerry La	alonde Drive	;										
7	L2	4	75.0	0.171	9.7	LOS A	0.6	4.3	0.61	0.61	0.61	48.4	
8	T1	1	2.0	0.171	7.7	LOS A	0.6	4.3	0.61	0.61	0.61	50.9	
9	R2	102	2.0	0.171	7.7	LOS A	0.6	4.3	0.61	0.61	0.61	49.8	
Appro	ach	107	4.7	0.171	7.8	LOS A	0.6	4.3	0.61	0.61	0.61	49.8	
West:	Brian Co	burn Boule	/ard										
10	L2	236	2.0	0.590	9.4	LOS A	5.1	36.3	0.21	0.07	0.21	48.9	
11	T1	1271	2.0	0.590	9.4	LOS A	5.1	36.3	0.21	0.07	0.21	49.5	
12	R2	95	2.0	0.590	9.4	LOS A	5.1	36.3	0.21	0.07	0.21	48.5	
Appro	ach	1602	2.0	0.590	9.4	LOS A	5.1	36.3	0.21	0.07	0.21	49.3	
All Ve	hicles	2659	2.1	0.590	8.9	LOS A	5.1	36.3	0.34	0.23	0.34	49.7	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:42:23 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

Appendix M

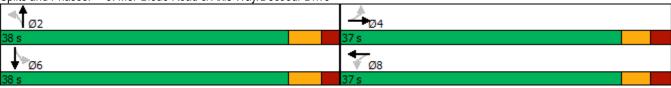
2024 Future Total Synchro and Sidra Worksheets

						,
	≯	\rightarrow	1	Ť	↓	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	<u>אוטר</u>	<u> </u>	<u> </u>	
Traffic Volume (vph)	192	51	114	405	209	242
Future Volume (vph)	192	51	114	405	209	242
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0	1000	1000	0.0
Storage Lanes	95.0	0.0	30.0			0.0
•	15.0	I	75.0			0
Taper Length (m)		1.00		1.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt Elt Drotoctod	0.050	0.850	0.050		0.928	
Fit Protected	0.950	4000	0.950	4004	4505	^
Satd. Flow (prot)	1496	1293	1566	1664	1505	0
Flt Permitted	0.950	1000	0.465	1001	4505	-
Satd. Flow (perm)	1496	1293	766	1664	1505	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		51			140	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	136.7	
Travel Time (s)	49.8			25.6	8.2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	17%	8%	7%	13%	7%
Adj. Flow (vph)	192	51	114	405	209	242
Shared Lane Traffic (%)		•.				
Lane Group Flow (vph)	192	51	114	405	451	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5	rtight	Len	3.5	3.5	rtight
()	0.0			5.5 0.0	5.5 0.0	
Link Offset(m)						
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane	1 00	4.00	4.00	1.00	4.00	4.00
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	0.0	0.0	9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	Cl+Ex	
Detector 2 Channel				0.0	0.0	
Detector 2 Extend (s)		_	-	0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	

Minimum Split (s) 25.0 25.0 25.0 25.0 35.0 35.0 Total Split (s) 25.0 25.0 35.0 35.0 35.0 Total Split (s) 20.7 20.7 30.7 30.3 33 Waimum Green (s) 20.7 30.7 30.3 33 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead/Lag Lead/Lag Vericle Extension (s) 3.0 3.0 3.0 3.0 Recall Mode None None Nin Min Min Win Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flesh Dont Walk (s) 13.5 13.5 12.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 Act Effct Green		٦	\mathbf{F}	1	1	ţ	~
Permitted Phases 4 2 Detector Phase 4 4 2 2 6 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Initial (s) 25.0 25.0 25.0 25.0 35.0 35.0 Total Split (%) 41.7% 41.7% 58.3% 58.3% 58.3% Maximum Green (s) 20.7 30.7 30.7 30.3 3.3 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Vehicle Extension (s) 10.5 13.5 12.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Vehicle Extension (s) 13.5 13.5 12.5 13.5 12.5 13.5 Plash Dut Walk (s) <td>Lane Group</td> <td>EBL</td> <td>EBR</td> <td>NBL</td> <td>NBT</td> <td>SBT</td> <td>SBR</td>	Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Detector Phase 4 4 2 2 6 Switch Phase							
Switch Phase Ninimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 25.0 25.1 25.0 25.0		4			2	6	
Minimum Split (s) 25.0 25.0 25.0 25.0 35.0 35.0 35.0 Total Split (s) 25.0 25.0 35.0 35.0 35.0 35.0 Total Split (s) 20.7 30.7 30.7 30.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead/Lag Lead/Lag Vericle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Fedestrian Calls (#/hr) 0<	Switch Phase						
Total Split (s) 25.0 25.0 35.0 35.0 35.0 Total Split (%) 41.7% 41.7% 58.3% 58.3% 58.3% Maximum Green (s) 20.7 20.7 30.7 30.3 33.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 1.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Wain (s) 1.3.5 13.5 12.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 .// .// .// .// .// .// .// .// .// .// .// .	Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Total Split (s) 25.0 25.0 35.0 35.0 35.0 Total Split (%) 41.7% 41.7% 58.3% 58.3% 58.3% Maximum Green (s) 20.7 20.7 30.7 30.3 33 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.7 Lead-Lag Lead-Lag Lead-Lag Vehicle Extension (s) 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk (s) 13.5 13.5 12.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0		25.0	25.0	24.0	24.0	25.2	
Maximum Green (s) 20.7 20.7 30.7 30.7 30.3 Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Win Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 12.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Actuated g/C Ratio 0.33 0.33 0.55 0.54 v/c Ratio Vic Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 10.4 9.2 8.0 <td></td> <td>25.0</td> <td>25.0</td> <td>35.0</td> <td>35.0</td> <td>35.0</td> <td></td>		25.0	25.0	35.0	35.0	35.0	
Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 Lest Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead/Lag Lead/Lag Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 Actuated g/C Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 13.2 4.8 9.2 9.2 8.0 Approach LOS B A A Approach LOS B A A		41.7%	41.7%	58.3%	58.3%	58.3%	
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Wehicle Extension (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Acttated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A A A	Maximum Green (s)	20.7	20.7	30.7	30.7	30.3	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None Min Min Min Wehicle Extension (s) 7.0 <td< td=""><td></td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.7</td><td></td></td<>		3.3	3.3	3.3	3.3	3.7	
Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Actuated g/C Ratio 0.33 0.35 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 0	All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.33 0.33 0.55 0.54 v/c Ratio 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0<	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 12.5 13.5 Pedestrian Calls (#hr) 0 0 0 Pedestrian Calls (#hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length S0th (m) 9.2 0.0 0 0 0 0 <td< td=""><td></td><td>4.3</td><td>4.3</td><td>4.3</td><td>4.3</td><td>4.7</td><td></td></td<>		4.3	4.3	4.3	4.3	4.7	
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None Nin Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#hr) 0 0 0 0 0 Actuated g/C Ratio 0.33 0.33 0.55 0.54 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 322.1 112.7 Tur							
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act ated g/C Ratio 0.33 0.33 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 0 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 11.5 11.5 19.2 18.9 Actuated g/C Ratio 0.33 0.33 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (• •	3.0	3.0	3.0	3.0	3.0	
Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 11.5 11.5 19.2 19.2 18.9 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A Approach Delay 11.4 9.2 8.0 Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Intermal Link Dist (m) 667.8 332.1 112.7 Turm Bay Length (m) 95.0 3	· · · · · · · · · · · · · · · · · · ·						
Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 11.5 11.5 19.2 19.2 18.9 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach Delay 11.4 9.2 8.0 A Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0							
Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 11.5 11.5 19.2 19.2 18.9 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 V/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach Delay 11.4 9.2 8.0 Actuated gueue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348	()						
Act Effct Green (s) 11.5 11.5 19.2 19.2 18.9 Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0	()						
Actuated g/C Ratio 0.33 0.33 0.55 0.55 0.54 v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 112.7 Turn Bay Length (m) 95.0 30.0 30.0 36.3 34.84 1348 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Act Effct Green (s)						
v/c Ratio 0.39 0.11 0.27 0.45 0.52 Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 0.33	()						
Control Delay 13.2 4.8 9.2 9.2 8.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 112.7 Turn Bay Length (m) 95.0 30.0<	v/c Ratio						
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 112.7 Turn Bay Length (m) 95.0 30.0 30.0 332.1 112.7 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary A	Control Delay						
Total Delay 13.2 4.8 9.2 9.2 8.0 LOS B A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary Intersection Signal Delay: 9.2 Intersection LOS: A Natural Cycle: 55 S							
LOS B A A A A Approach Delay 11.4 9.2 8.0 Approach LOS B A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 0.33 Intersection Summary Area Type: Other Other Cycle Length: 60 Actuated Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection LOS: A Intersection LOS: A I							
Approach Delay 11.4 9.2 8.0 Approach LOS B A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 38.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 10 10 10 10 10 10 <td>LOS</td> <td></td> <td></td> <td>А</td> <td></td> <td></td> <td></td>	LOS			А			
Approach LOS B A A Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary Vertex Cycle Length: 60 Vertex Cycle Length: 35.2 Vertex Cycle Length: 35.2 Vertex Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Vertex Cycle Length: 35.2 <							
Queue Length 50th (m) 7.2 0.0 3.6 14.3 10.8 Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary Area Type: Other Other Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection LOS: A Intersection Signal Delay: 9.2 Intersection LOS: A ICU Level of Service B	Approach LOS						
Queue Length 95th (m) 25.4 5.2 13.6 39.0 36.0 Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary	••		0.0	3.6			
Internal Link Dist (m) 667.8 332.1 112.7 Turn Bay Length (m) 95.0 30.0 30.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary Area Type: Other Oth							
Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary							
Base Capacity (vph) 908 805 683 1484 1348 Starvation Cap Reductn 0				30.0			
Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary			805		1484	1348	
Spillback Cap Reductn00000Storage Cap Reductn00000Reduced v/c Ratio0.210.060.170.270.33Intersection SummaryArea Type:OtherCycle Length: 60	,						
Storage Cap Reductn00000Reduced v/c Ratio0.210.060.170.270.33Intersection SummaryArea Type:OtherCycle Length: 60Control Cycle Length: 35.2Actuated Cycle Length: 35.2Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.52Intersection LOS: AIntersection Signal Delay: 9.2Intersection LOS: AIntersection Capacity Utilization 57.9%ICU Level of Service B							
Reduced v/c Ratio 0.21 0.06 0.17 0.27 0.33 Intersection Summary Area Type: Other Cycle Length: 60 Control Cycle Length: 35.2 Actuated Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection LOS: A Intersection Capacity Utilization 57.9% ICU Level of Service B			0				
Area Type: Other Cycle Length: 60 Actuated Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection LOS: A Intersection Capacity Utilization 57.9% ICU Level of Service B			-	-	-	-	
Cycle Length: 60 Actuated Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection Capacity Utilization 57.9% ICU Level of Service B	Intersection Summary						
Actuated Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection Capacity Utilization 57.9% ICU Level of Service B	Area Type:	Other					
Actuated Cycle Length: 35.2 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection Capacity Utilization 57.9% ICU Level of Service B							
Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection Capacity Utilization 57.9% ICU Level of Service B		.2					
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.2 Intersection Capacity Utilization 57.9% ICU Level of Service B	Natural Cycle: 55						
Maximum v/c Ratio: 0.52Intersection Signal Delay: 9.2Intersection LOS: AIntersection Capacity Utilization 57.9%ICU Level of Service B		coordinated					
Intersection Capacity Utilization 57.9% ICU Level of Service B	Maximum v/c Ratio: 0.52						
Intersection Capacity Utilization 57.9% ICU Level of Service B	Intersection Signal Delay:	9.2			Ir	ntersectior	n LOS: A
					10	CU Level o	of Service B
	Analysis Period (min) 15						

Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

	۶	+	\mathbf{F}	4	Ļ	•	•	1	*	1	ţ	-∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	4Î		۲.	eî 🗧		ሻ	¥î≽		ሻ	A	
Traffic Volume (vph)	86	61	10	34	64	132	2	669	16	87	380	22
Future Volume (vph)	86	61	10	34	64	132	2	669	16	87	380	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	1		0.0	1		0.0	1		0.0	1		0
Taper Length (m)	15.0		Ŭ	15.0		•	75.0		•	75.0		U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	1.00	0.979		1.00	0.899	1.00		0.996	0.00		0.992	0.00
Flt Protected	0.950	0.010		0.950	0.000		0.950	0.000		0.950	0.002	
Satd. Flow (prot)	1658	1708	0	1658	1569	0	1658	3152	0	1658	2985	0
Flt Permitted	0.634	1100	Ū	0.711	1000	Ű	0.515	0102	Ű	0.391	2000	Ű
Satd. Flow (perm)	1106	1708	0	1241	1569	0	899	3152	0	682	2985	0
Right Turn on Red	1100	1700	Yes	1271	1000	Yes	000	0102	Yes	002	2000	Yes
Satd. Flow (RTOR)		10	100		132	100		4	100		10	100
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		221.2			188.0			167.0			463.6	
Travel Time (s)		15.9			13.5			107.0			27.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	13%	2%
Adj. Flow (vph)	86	61	10	34	64	132	2 /0	669	16	87	380	270
Shared Lane Traffic (%)	00	01	10	07		102	2	005	10	01	000	
Lane Group Flow (vph)	86	71	0	34	196	0	2	685	0	87	402	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	3.5	rugin	Lon	3.5	rugitt	Lon	3.5	rugin	Lon	3.5	rugni
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane		0.0			0.0			0.0			0.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	1.00	15	25	1.00	15	25	1.00	15	25	1.00	15
Number of Detectors	1	2	10	1	2	10	1	2	10	1	2	10
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel		01 2/		OF EX			01 2/			01 24	01 2/	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2		. onn	6	
		т			0			4			0	


VZ

Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

227	75	Mer	-Ble	eue	Ro	bad

	۶	-	\mathbf{r}	4	←	•	•	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	37.0	37.0		37.0	37.0		38.0	38.0		38.0	38.0	
Total Split (%)	49.3%	49.3%		49.3%	49.3%		50.7%	50.7%		50.7%	50.7%	
Maximum Green (s)	31.3	31.3		31.3	31.3		32.1	32.1		32.1	32.1	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	10.7	10.7		10.7	10.7		15.8	15.8		15.8	15.8	
Actuated g/C Ratio	0.28	0.28		0.28	0.28		0.41	0.41		0.41	0.41	
v/c Ratio	0.28	0.15		0.10	0.37		0.01	0.53		0.31	0.32	
Control Delay	13.3	9.9		10.9	6.8		7.0	10.2		11.5	8.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	13.3	9.9		10.9	6.8		7.0	10.2		11.5	8.4	
LOS	В	А		В	А		А	В		В	А	
Approach Delay		11.8			7.4			10.2			9.0	
Approach LOS		В			А			В			А	
Queue Length 50th (m)	3.5	2.4		1.3	2.5		0.1	15.1		3.3	7.8	
Queue Length 95th (m)	12.5	9.3		6.1	13.9		0.9	28.2		11.3	15.9	
Internal Link Dist (m)		197.2			164.0			143.0			439.6	
Turn Bay Length (m)	30.0			30.0			30.0			35.0		
Base Capacity (vph)	921	1425		1034	1329		768	2694		582	2552	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.09	0.05		0.03	0.15		0.00	0.25		0.15	0.16	
Interception Cummers												
Intersection Summary	th a r											
	ther											
Cycle Length: 75												
Actuated Cycle Length: 38.3												
Natural Cycle: 75	n n di n a t a d											
Control Type: Actuated-Uncoc	Junated											
Maximum v/c Ratio: 0.53					to your atte							
Intersection Signal Delay: 9.6	- CO 00/				ntersection		0					
Intersection Capacity Utilizatio	00.2%			IC	CU Level of	or Service						
Analysis Period (min) 15												

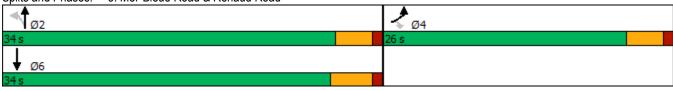
Splits and Phases: 5: Mer-Bleue Road & Axis Way/Decoeur Drive

	-	\mathbf{r}	1	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† †	1		^		1
Traffic Volume (vph)	661	76	0	1562	0	51
Future Volume (vph)	661	76	0	1562	0	51
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		25.0	0.0		0.0	0.0
Storage Lanes		1	0		0	1
Taper Length (m)			15.0		15.0	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3316	1483	0	3316	0	1510
Flt Permitted						
Satd. Flow (perm)	3316	1483	0	3316	0	1510
Link Speed (k/h)	60			60	50	
Link Distance (m)	110.9			308.2	141.0	
Travel Time (s)	6.7			18.5	10.2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	661	76	0	1562	0	51
Shared Lane Traffic (%)						
Lane Group Flow (vph)	661	76	0	1562	0	51
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: 0	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization 48.9% ICU Level of Service A						
Analysis Period (min) 15						

Intersection

Int Delay, s/veh	0.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	- 11	1		- 11		1	
Traffic Vol, veh/h	661	76	0	1562	0	51	
Future Vol, veh/h	661	76	0	1562	0	51	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	250	-	-	-	0	
Veh in Median Storage	, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	661	76	0	1562	0	51	

Major/Minor	Major1	Ма	ajor2	Mi	nor1	
Conflicting Flow All	0	0	-	-	-	331
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	665
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	-	-	-	665
Mov Cap-2 Maneuve	r –	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Annroach	FB		WR		NR	


Approach	EB	WB	NB
HCM Control Delay, s	0	0	10.9
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	665	-	-	-
HCM Lane V/C Ratio	0.077	-	-	-
HCM Control Delay (s)	10.9	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

-						,
	≯	\rightarrow	1	Ť	↓	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	<u> </u>	<u> </u>	1001	ODIX
Traffic Volume (vph)	401	85	73	т 365	443	127
Future Volume (vph)	401	85	73	365	443	127
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
,		0.0	30.0	1000	1000	0.0
Storage Length (m)	95.0					
Storage Lanes	1	1	75.0			0
Taper Length (m)	15.0	4 00	75.0	4.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.970	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1658	1339	1610	1745	1680	0
Flt Permitted	0.950		0.295			
Satd. Flow (perm)	1658	1339	500	1745	1680	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		85			34	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	129.9	
Travel Time (s)	49.8			25.6	7.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	13%	5%	2%	3%	2%
Adj. Flow (vph)	401	85	73	365	443	127
	401	00	13	305	445	121
Shared Lane Traffic (%)	404	05	70	265	E70	0
Lane Group Flow (vph)	401	85	73	365	570	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.0	0.0	
	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Type Detector 1 Channel						
	0.0	0.0	0.0	0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				Cl+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
1 10100100 1 110363	+			2	0	

Lane Group EBL EBR NBL NBT SBT SBR Permitted Phases 4 2 6		٦	\mathbf{r}	1	1	Ŧ	4
Permitted Phases 4 2 Detector Phase 4 4 2 2 6 Switch Phase Minimul Initial (s) 10.0 10.0 10.0 10.0 Minimul Initial (s) 24.8 24.8 23.8 23.8 25.2 Total Split (%) 43.3% 43.3% 56.7% 56.7% 56.7% Maximum Green (s) 21.7 29.7 29.3 Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0	Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Detector Phase 4 4 2 2 6 Switch Phase							
Switch Phase Inimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 24.8 24.8 23.8 25.2 Total Split (s) 26.0 34.0 34.0 34.0 Total Split (s) 43.3% 43.3% 56.7% 56.7% 56.7% Maximum Green (s) 21.7 21.7 29.7 29.3 Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0		4			2	6	
Minimum Initial (s) 10.0 10.0 10.0 10.0 Minimum Split (s) 24.8 24.8 23.8 25.2 Total Split (s) 26.0 26.0 34.0 34.0 Total Split (s) 26.0 26.0 34.0 34.0 Total Split (s) 21.7 21.7 29.7 29.3 Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Vehicle Extension (s) 3.0 3.5 13.5 12.5 13.5 12.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5				_	_		
Minimum Split (s) 24.8 24.8 23.8 23.8 25.2 Total Split (s) 26.0 26.0 34.0 34.0 34.0 Total Split (s) 43.3% 43.3% 56.7% 56.7% 56.7% Maximum Green (s) 21.7 29.7 29.3 29.3 29.7 29.3 Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0		10.0	10.0	10.0	10.0	10.0	
Total Split (s) 26.0 26.0 34.0 34.0 34.0 Total Split (%) 43.3% 43.3% 56.7% 56.7% 56.7% Maximum Green (s) 21.7 21.7 29.7 29.3 Yellow Time (s) 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Vehicle Extension (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 13.5 14.3 0.44 0.43 0.44 0.43 0.42 Reta dg/C Ratio 0.35 0.35 0.44 0.43 0.42 Reta dg/C Ratio 0.35 0.35 0.44 0.4							
Total Split (%) 43.3% 56.7% 56.7% 56.7% 56.7% Maximum Green (s) 21.7 21.7 29.7 29.3 Yellow Time (s) 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time Adjust (s) 4.3 4.3 4.3 4.3 4.7 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Vehicle Extension (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Acttated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Los C A B							
Maximum Green (s) 21.7 21.7 29.7 29.3 Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Agiust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Actuated g/C Ratio 0.35 0.34 0.44 0.43 v/c Ratio Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Yellow Time (s) 3.3 3.3 3.3 3.3 3.7 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead/Lag Lead/Lag Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 Actuated g/C Ratio 0.35 0.35 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None Min		3.3	3.3	3.3	3.3	3.7	
Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None Min Min Min Min Min Win Win Win Win Win Min	All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Total Lost Time (s) 4.3 4.3 4.3 4.3 4.3 4.3 4.7 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Wehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Wehicle Extension (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Actuated g/C Ratio 0.35 0.35 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 18.2 12.0 12.0 11.0 14.2 14.2 14.2 14.3 <t< td=""><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td></td><td></td></t<>		0.0		0.0			
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43							
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 Pedestrian Calls (#hr) 0 0 0 0 Act Effct Green (s) 16.1 16.1 20.1 20.1 19.7 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach LOS B B B B B Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Intemal Link Dist (m) 65.6							
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 13.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Actuated g/C Ratio 0.35 0.35 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 18.2 Queue Delay 0.0							
Recall Mode None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 16.1 16.1 20.1 19.7 Actuated g/C Ratio 0.35 0.35 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Queue Length Soth (m) 25.6 0.0 3.4 18.2 31.9 Queue Length Soth (m) 95.0 30.0 32.1 105.9	•	3.0	3.0	3.0	3.0	3.0	
Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 16.1 16.1 20.1 20.1 19.7 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Intermal Link Dist (m) 95.0 30.0 30.0 30.0 30.0 Base Capacity (vph) </td <td>()</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	()						
Flash Dont Walk (s) 13.5 13.5 12.5 12.5 13.5 Pedestrian Calls (#/hr) 0 0 0 0 0 Act Effct Green (s) 16.1 16.1 20.1 20.1 19.7 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Intermal Link Dist (m) 95.0 30.0 30.0 30.0 30.0 Base Capacity (vph) </td <td>Walk Time (s)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Walk Time (s)						
Act Effct Green (s) 16.1 16.1 20.1 20.1 19.7 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 1171 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 <td< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>13.5</td><td></td><td>12.5</td><td>12.5</td><td>13.5</td><td></td></td<>	· · · · · · · · · · · · · · · · · · ·	13.5		12.5	12.5	13.5	
Act Effct Green (s) 16.1 16.1 20.1 20.1 19.7 Actuated g/C Ratio 0.35 0.35 0.44 0.44 0.43 v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Aproach Delay 18.0 11.9 18.2 Approach LOS B C Approach LOS S 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 TUrn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn	()	0	0	0	0	0	
v/c Ratio 0.68 0.16 0.33 0.47 0.76 Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 1171 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 0.49 0.49		16.1	16.1	20.1	20.1	19.7	
Control Delay 20.8 4.6 13.7 11.5 18.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 1171 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary	Actuated g/C Ratio	0.35	0.35	0.44	0.44	0.43	
Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Intersection Summary State Stat	v/c Ratio	0.68	0.16	0.33	0.47	0.76	
Total Delay 20.8 4.6 13.7 11.5 18.2 LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 1171 Starvation Cap Reductn 0 0 0 0 0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 0.49 Intersection Summary	Control Delay	20.8	4.6	13.7	11.5	18.2	
LOS C A B B B Approach Delay 18.0 11.9 18.2 Approach LOS B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Intersection Summary Intersection Summary Intersection Cycle Length: 45.4 Intersection LOS: B Intersection LOS: B Intersection LOS: B Intersection LOS: B Intersec	Queue Delay	0.0	0.0	0.0	0.0	0.0	
Approach Delay 18.0 11.9 18.2 Approach LOS B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Cape is 0.16.3 Intersection LOS: B Natural Cycle: 55 Control Type: Actuated-Uncoordinated Intersection LOS: B Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 75.6% ICU Level of Service D ICU Level of Serv	Total Delay	20.8	4.6	13.7	11.5	18.2	
Approach LOS B B B Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Cape I III IIII IIIIIIIIIIIIIIIIIIIIIIIII	LOS		А	В			
Queue Length 50th (m) 25.6 0.0 3.4 18.2 31.9 Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Summary Intersection Cycle Length: 45.4 Intersection LOS: B Intersection Capacity Utilization 75.6% ICU Level of Service D	Approach Delay	18.0			11.9	18.2	
Queue Length 95th (m) 62.5 7.2 12.5 40.9 73.2 Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Area Type: Other Other Other Other Cycle Length: 60 Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection LOS: B Intersection Signal Delay: 16.3 Intersection LOS: B Intersection LOS: B	Approach LOS						
Internal Link Dist (m) 667.8 332.1 105.9 Turn Bay Length (m) 95.0 30.0 30.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Area Type: Other	Queue Length 50th (m)						
Turn Bay Length (m) 95.0 30.0 Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary			7.2	12.5			
Base Capacity (vph) 849 727 349 1220 1171 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary					332.1	105.9	
Starvation Cap Reductn00000Spillback Cap Reductn00000Storage Cap Reductn00000Reduced v/c Ratio0.470.120.210.300.49Intersection SummaryArea Type:OtherCycle Length: 6000Actuated Cycle Length: 45.400Natural Cycle: 5500Control Type: Actuated-Uncoordinated0Maximum v/c Ratio: 0.760Intersection Signal Delay: 16.31Intersection Capacity Utilization 75.6%ICU Level of Service D	Turn Bay Length (m)						
Spillback Cap Reductn00000Storage Cap Reductn00000Reduced v/c Ratio0.470.120.210.300.49Intersection SummaryArea Type:OtherCycle Length: 60	Base Capacity (vph)	849	727	349	1220	1171	
Storage Cap Reductn00000Reduced v/c Ratio0.470.120.210.300.49Intersection SummaryArea Type:OtherCycle Length: 60Control Cycle Length: 45.4Actuated Cycle Length: 45.4Control Type: Actuated-UncoordinatedMaximum v/c Ratio: 0.76Intersection LOS: BIntersection Signal Delay: 16.3Intersection LOS: BIntersection Capacity Utilization 75.6%ICU Level of Service D		0	0	0	0	0	
Reduced v/c Ratio 0.47 0.12 0.21 0.30 0.49 Intersection Summary Area Type: Other Cycle Length: 60 Actuated Cycle Length: 45.4 Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection LOS: B Intersection Capacity Utilization 75.6% ICU Level of Service D		0	0	0	0	0	
Intersection Summary Area Type: Other Cycle Length: 60 Other Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection LOS: B Intersection Capacity Utilization 75.6% ICU Level of Service D				-	-	-	
Area Type: Other Cycle Length: 60 Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection Capacity Utilization 75.6% ICU Level of Service D	Reduced v/c Ratio	0.47	0.12	0.21	0.30	0.49	
Cycle Length: 60 Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection Capacity Utilization 75.6% ICU Level of Service D	Intersection Summary						
Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection Capacity Utilization 75.6% ICU Level of Service D		Other					
Actuated Cycle Length: 45.4 Natural Cycle: 55 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection Capacity Utilization 75.6% ICU Level of Service D							
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.76 Intersection Signal Delay: 16.3 Intersection Capacity Utilization 75.6% ICU Level of Service D		5.4					
Maximum v/c Ratio: 0.76Intersection Signal Delay: 16.3Intersection LOS: BIntersection Capacity Utilization 75.6%ICU Level of Service D	Natural Cycle: 55						
Intersection Signal Delay: 16.3Intersection LOS: BIntersection Capacity Utilization 75.6%ICU Level of Service D		ncoordinated					
Intersection Capacity Utilization 75.6% ICU Level of Service D	Maximum v/c Ratio: 0.76						
Analysis Period (min) 15		zation 75.6%			10	CU Level o	of Service D
	Analysis Period (min) 15						

Splits and Phases: 3: Mer-Bleue Road & Renaud Road

Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

	٦	+	\mathbf{r}	4	+	•	•	1	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	4Î		۲.	4Î		٦	A		ሻ	≜ †⊅	
Traffic Volume (vph)	47	88	5	17	85	113	10	735	24	154	637	87
Future Volume (vph)	47	88	5	17	85	113	10	735	24	154	637	87
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0	1000	0.0	30.0	1000	0.0	30.0	1000	0.0	35.0	1000	0.0
Storage Lanes	1		0.0	1		0.0	1		0.0	1		0.0
Taper Length (m)	15.0		Ū	15.0		v	75.0		v	75.0		v
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	1.00	0.992	1.00	1.00	0.914	1.00	1.00	0.995	0.00	1.00	0.982	0.00
Flt Protected	0.950	0.002		0.950	0.014		0.950	0.000		0.950	0.002	
Satd. Flow (prot)	1658	1731	0	1658	1595	0	1658	3150	0	1658	2974	0
Flt Permitted	0.633	1751	0	0.697	1000	0	0.372	5150	0	0.354	2314	0
Satd. Flow (perm)	1105	1731	0	1216	1595	0	649	3150	0	618	2974	0
Right Turn on Red	1105	1751	Yes	1210	1555	Yes	043	5150	Yes	010	2314	Yes
Satd. Flow (RTOR)		5	165		106	165		5	165		25	165
Link Speed (k/h)		50			50			60			60	
					286.1			179.4				
Link Distance (m)		269.4									458.1	
Travel Time (s)	4.00	19.4	4 00	4.00	20.6	4 00	4.00	10.8	1.00	1.00	27.5	4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	13%	2%
Adj. Flow (vph)	47	88	5	17	85	113	10	735	24	154	637	87
Shared Lane Traffic (%)												_
Lane Group Flow (vph)	47	93	0	17	198	0	10	759	0	154	724	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	- Onn	4		, onn	8		1 0111	2		- Onn	6	
		4			0			۷			U	

VZ

Lanes, Volumes, Timings <u>5: Mer-Bleue Road & Axis Way/Decoeur Drive</u>

2275	Mer-Bleue Road	
2210		

Ising Group EBI EBI EBR WBL WBT WBL NBL NBT NBR SBL SBT SBR Permitted Phases 4 4 8 2 6 6 Switch Phase 4 4 8 8 2 6 6 Switch Phase 4 4 8 8 2 6 6 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Total Split (s) 36.1 36.		٦	-	\mathbf{r}	4	+	•	•	Ť	۲	1	Ļ	~
Detector Phase 4 4 8 8 2 2 6 6 Switch Phase	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase Vinimum Initial (s) 10.0 <t< td=""><td>Permitted Phases</td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td><td></td></t<>	Permitted Phases	4			8			2			6		
Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 Minimum Spitt (s) 36.1 36.1 35.9 35.0 33.0 30.0 <td>Detector Phase</td> <td>4</td> <td>4</td> <td></td> <td>8</td> <td>8</td> <td></td> <td>2</td> <td>2</td> <td></td> <td>6</td> <td>6</td> <td></td>	Detector Phase	4	4		8	8		2	2		6	6	
Minimum Split (s) 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 38.9	Switch Phase												
Total Split (s) 36.1 36.1 36.1 38.9 38.9 38.9 38.9 38.9 Total Split (%) 48.1% 48.1% 48.1% 51.9%	Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Total Split (%) 48.1% 48.1% 48.1% 51.9%	Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Maximum Green (s) 30.0 30.0 33.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0<	Total Split (s)	36.1	36.1		36.1	36.1		38.9	38.9		38.9	38.9	
Yellow Time (s) 3.7	Total Split (%)	48.1%	48.1%	4	48.1%	48.1%		51.9%	51.9%		51.9%	51.9%	
All-Red Time (s) 2.4 2.4 2.4 2.2 2.2 2.2 2.2 Lest Time Adjust (s) 0.0 0	Maximum Green (s)				30.0	30.0		33.0			33.0	33.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.1 6.1 6.1 6.1 5.9 5.9 5.9 Lead/Lag Optimize? Vehicle Extension (s) 3.0	Yellow Time (s)	3.7	3.7		3.7			3.7	3.7		3.7	3.7	
Total Lost Time (s) 6.1 6.1 6.1 6.1 5.9 5.9 5.9 Lead-Lag Optimize? Vehicle Extension (s) 3.0	All-Red Time (s)												
Lead/Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None None None None Min Min Min Min Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 23.0 23.0 23.0 23.0 10.5 10.5 10.5 Pedestrian Calls (#hr) 0 0 0 0 0 0 0 Actuated g/C Ratio 0.24 0.24 0.24 0.50 0.50 0.50 0.50 Vic Ratio 0.18 0.22 0.06 0.43 0.03 0.49 0.50 0.49 Control Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B A A A A A A A A A A A A A A A A A A A	Lost Time Adjust (s)												
Lead-Lag Optimize? Vehicle Extension (s) 3.0 <td>Total Lost Time (s)</td> <td>6.1</td> <td>6.1</td> <td></td> <td>6.1</td> <td>6.1</td> <td></td> <td>5.9</td> <td>5.9</td> <td></td> <td>5.9</td> <td>5.9</td> <td></td>	Total Lost Time (s)	6.1	6.1		6.1	6.1		5.9	5.9		5.9	5.9	
Vehicle Extension (s) 3.0 3.													
Recall Mode None None None Min	Lead-Lag Optimize?												
Walk Time (s) 7.0	Vehicle Extension (s)	3.0			3.0			3.0					
Flash Dont Walk (s) 23.0 23.0 23.0 10.5 10.5 10.5 10.5 Pedestrian Calls (#hr) 0 0 0 0 0 0 0 Act Effct Green (s) 10.9 10.9 10.9 22.8 22.8 22.8 22.8 Actuated g/C Ratio 0.18 0.22 0.06 0.43 0.03 0.49 0.50 0.50 Vic Ratio 0.18 0.22 0.06 0.43 0.03 0.49 0.50 0.49 Control Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B A A B A Approach Delay 17.0 12.3 8.7 9.6 Approach LOS B B B A A Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Intermal Link Dist (m) 245.4 262.1 155.4 434.1 1 1 mas Ease Capacity (vph) 738<	Recall Mode	None	None		None	None		Min	Min		Min	Min	
Pedestrian Calls (#hr) 0 <td>Walk Time (s)</td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td>	Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Act Effct Green (s) 10.9 10.9 10.9 22.8 22.8 22.8 22.8 Actuated g/C Ratio 0.24 0.24 0.24 0.24 0.050 0.50 0.50 v/c Ratio 0.18 0.22 0.06 0.43 0.03 0.49 0.50 0.49 Control Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B A A B A Approach LOS B B A A B A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 <td>Flash Dont Walk (s)</td> <td>23.0</td> <td>23.0</td> <td></td> <td>23.0</td> <td>23.0</td> <td></td> <td>10.5</td> <td>10.5</td> <td></td> <td>10.5</td> <td>10.5</td> <td></td>	Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Actuated g/C Ratio 0.24 0.24 0.24 0.50 0.50 0.50 0.50 v/c Ratio 0.18 0.22 0.06 0.43 0.03 0.49 0.50 0.49 Control Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B B A A B A Approach Delay 17.0 12.3 8.7 9.6 9.6 Approach LOS B B A A A A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 30.0 30.0 30.0 30.0 3	Pedestrian Calls (#/hr)	0	0		0			0			0	0	
v/c Ratio 0.18 0.22 0.06 0.43 0.03 0.49 0.50 0.49 Control Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B A A B A Approach Delay 17.0 12.3 8.7 9.6 Approach LOS B B B A A B A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 30.0 30.0 30.0 35.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 219	Act Effct Green (s)	10.9	10.9		10.9	10.9		22.8	22.8			22.8	
Control Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B A A B A Approach Delay 17.0 12.3 8.7 9.6 Approach LOS B B A A A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 1 Tum Bay Length (m) 30.0 30.0 30.0 35.0 36.0 35.0 Base Capacity (vph) 738 1158 812	Actuated g/C Ratio	0.24	0.24		0.24	0.24		0.50			0.50	0.50	
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td>0.18</td><td>0.22</td><td></td><td>0.06</td><td></td><td></td><td>0.03</td><td></td><td></td><td>0.50</td><td>0.49</td><td></td></th<>	v/c Ratio	0.18	0.22		0.06			0.03			0.50	0.49	
Total Delay 17.8 16.6 16.5 11.9 6.0 8.7 14.6 8.6 LOS B B B B B A A B A Approach Delay 17.0 12.3 8.7 9.6 Approach LOS B B B A A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 100 0 <t< td=""><td>Control Delay</td><td>17.8</td><td>16.6</td><td></td><td>16.5</td><td>11.9</td><td></td><td>6.0</td><td>8.7</td><td></td><td>14.6</td><td>8.6</td><td></td></t<>	Control Delay	17.8	16.6		16.5	11.9		6.0	8.7		14.6	8.6	
LOS B B B B B A A A B A Approach Delay 17.0 12.3 8.7 9.6 Approach LOS B B A A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 Turn Bay Length (m) 30.0 30.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0 <t< td=""><td>Queue Delay</td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td></td><td></td><td>0.0</td><td></td><td></td><td>0.0</td><td>0.0</td><td></td></t<>	Queue Delay	0.0	0.0		0.0			0.0			0.0	0.0	
Approach Delay 17.0 12.3 8.7 9.6 Approach LOS B B A A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 Turn Bay Length (m) 30.0 30.0 35.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0		17.8			16.5			6.0			14.6	8.6	
Approach LOS B B A A Queue Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 Turn Bay Length (m) 30.0 30.0 30.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Starvation Cap Reductn 0 <td< td=""><td>LOS</td><td>В</td><td></td><td></td><td>В</td><td></td><td></td><td>А</td><td></td><td></td><td>В</td><td></td><td></td></td<>	LOS	В			В			А			В		
Diverse Output Length 50th (m) 2.6 4.9 0.9 5.1 0.3 17.6 6.9 16.2 Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 Turn Bay Length (m) 30.0 30.0 30.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0	Approach Delay		17.0										
Queue Length 95th (m) 11.3 17.6 5.5 22.9 2.1 31.8 21.7 30.1 Internal Link Dist (m) 245.4 262.1 155.4 434.1 Turn Bay Length (m) 30.0 30.0 30.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0	Approach LOS												
Internal Link Dist (m) 245.4 262.1 155.4 434.1 Turn Bay Length (m) 30.0 30.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 1 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Turn Bay Length (m) 30.0 30.0 30.0 35.0 Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.08 0.02 0.18 0.02 0.33 0.34 0.33 Intersection Summary		11.3			5.5			2.1			21.7		
Base Capacity (vph) 738 1158 812 1101 477 2317 454 2193 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Reduced v/c Ratio 0.06 0.08 0.02 0.18 0.02 0.33 0.34 0.33 Intersection Summary	\ /		245.4			262.1			155.4			434.1	
Starvation Cap Reductn 0 <td></td>													
Spillback Cap Reductn 0								477				2193	
Storage Cap Reductn 0	•	0				0		0			0		
Reduced v/c Ratio 0.06 0.08 0.02 0.18 0.02 0.33 0.34 0.33 Intersection Summary Area Type: Other Ot			0		0	0		0	0		0		
Intersection Summary Area Type: Other Cycle Length: 75 Other Actuated Cycle Length: 46 Natural Cycle: 75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection LOS: B Intersection Capacity Utilization 71.6% ICU Level of Service C		-	-		-			-	-		-	-	
Area Type: Other Cycle Length: 75 Cycle Length: 46 Actuated Cycle Length: 46 Natural Cycle: 75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection LOS: B Intersection Capacity Utilization 71.6% ICU Level of Service C	Reduced v/c Ratio	0.06	0.08		0.02	0.18		0.02	0.33		0.34	0.33	
Cycle Length: 75 Actuated Cycle Length: 46 Natural Cycle: 75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection LOS: B Intersection Capacity Utilization 71.6% ICU Level of Service C	Intersection Summary												
Actuated Cycle Length: 46 Natural Cycle: 75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection LOS: B Intersection Capacity Utilization 71.6% ICU Level of Service C		Other											
Natural Cycle: 75 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 71.6% ICU Level of Service C	, ,												
Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 71.6% ICU Level of Service C		ô											
Maximum v/c Ratio: 0.50 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 71.6% ICU Level of Service C	,												
Intersection Signal Delay: 10.1 Intersection LOS: B Intersection Capacity Utilization 71.6% ICU Level of Service C		ncoordinated											
Intersection Capacity Utilization 71.6% ICU Level of Service C													
Analysis Period (min) 15	. ,	zation 71.6%)		10	CU Level	of Service	с					
	Analysis Period (min) 15												

Splits and Phases: 5: Mer-Bleue Road & Axis Way/Decoeur Drive

↑ _{Ø2}	
38.9 s	36.1 s
↓ Ø6	↓ Ø8
38.9 s	36.1 s

	-	\mathbf{r}	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>††</u>	1		<u>†</u> †		1
Traffic Volume (vph)	1567	103	0	1075	0	100
Future Volume (vph)	1567	103	0	1075	0	100
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		25.0	0.0		0.0	0.0
Storage Lanes		1	0		0	1
Taper Length (m)			15.0		15.0	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3316	1483	0	3316	0	1510
Flt Permitted						
Satd. Flow (perm)	3316	1483	0	3316	0	1510
Link Speed (k/h)	60			60	50	
Link Distance (m)	109.9			309.2	208.6	
Travel Time (s)	6.6			18.6	15.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	1567	103	0	1075	0	100
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1567	103	0	1075	0	100
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: 0	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 58.9%			IC	CU Level	of Service E
Analysis Period (min) 15						

Intersection

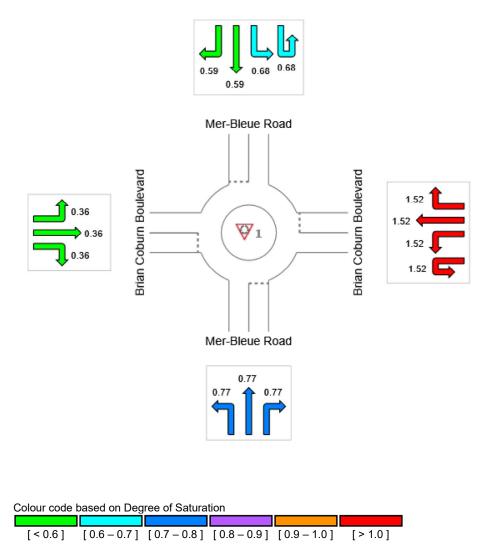
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 11	1		^		1
Traffic Vol, veh/h	1567	103	0	1075	0	100
Future Vol, veh/h	1567	103	0	1075	0	100
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1567	103	0	1075	0	100

Major/Minor	Major1	Ма	jor2	Mir	nor1	
Conflicting Flow All	0	0	-	-	-	784
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	336
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		-	-	-	-	336
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	20.2	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	336	-	-	-
HCM Lane V/C Ratio	0.298	-	-	-
HCM Control Delay (s)	20.2	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	1.2	-	-	-

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2024 FT AM - Widened]

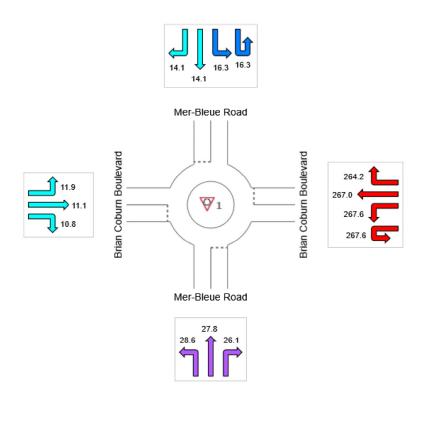
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	0.77	1.52	0.68	0.36	1.52

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:23:46 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2024 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Approa	Intersection		
	South	East	North	West	Intersection
Delay (Control)	27.3	265.8	15.3	11.3	115.4
LOS	D	F	С	В	F

Colour code	based on	Level of	Service
-------------	----------	----------	---------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2024 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection						
	South	East	North	West							
LOS	D	F	С	В	F						
	1 N	n Coburn Bo		<u>–</u> –						Brian Coburn	Boulevard
Colour co											
LOSA	λ L	OS B	LOS	S C	LOS D	LOS E	LOS F				

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

V Site: 1 [Mer-Bleue & Brian Coburn 2024 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement P	erformance	e - Veh	icles								
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	51	2.0	0.769	28.6	LOS D	6.9	48.9	0.86	1.21	2.01	39.1
2	T1	565	2.0	0.769	27.8	LOS D	7.2	51.1	0.86	1.21	2.01	39.3
3	R2	293	2.0	0.769	26.1	LOS D	7.2	51.1	0.86	1.22	2.01	32.9
Appro	ach	909	2.0	0.769	27.3	LOS D	7.2	51.1	0.86	1.21	2.01	37.6
East:	Brian Col	ourn Bouleva	ard									
4u	U	15	2.0	1.520	267.6	LOS F	85.9	612.0	1.00	4.62	13.63	4.9
4	L2	116	2.0	1.520	267.6	LOS F	85.9	612.0	1.00	4.62	13.63	7.4
5	T1	687	2.0	1.520	267.0	LOS F	97.0	690.7	1.00	4.69	13.83	8.4
6	R2	688	2.0	1.520	264.2	LOS F	97.0	690.7	1.00	5.02	14.83	8.2
Appro	ach	1506	2.0	1.520	265.8	LOS F	97.0	690.7	1.00	4.83	14.27	8.2
North	: Mer-Ble	ue Road										
7u	U	370	2.0	0.681	16.3	LOS C	6.9	49.2	0.79	1.05	1.51	44.5
7	L2	200	2.0	0.681	16.3	LOS C	6.9	49.2	0.79	1.05	1.51	39.1
8	T1	287	2.0	0.586	14.1	LOS B	4.6	32.6	0.74	0.91	1.22	46.9
9	R2	160	2.0	0.586	14.1	LOS B	4.6	32.6	0.74	0.91	1.22	46.6
Appro	ach	1017	2.0	0.681	15.3	LOS C	6.9	49.2	0.77	0.99	1.38	44.5
West:	Brian Co	burn Boulev	ard									
10	L2	155	2.0	0.363	11.9	LOS B	1.6	11.3	0.69	0.75	0.88	47.2
11	T1	208	2.0	0.363	11.1	LOS B	1.6	11.3	0.68	0.74	0.86	45.6
12	R2	65	2.0	0.363	10.8	LOS B	1.6	11.3	0.68	0.73	0.85	47.6
Appro	bach	428	2.0	0.363	11.3	LOS B	1.6	11.3	0.69	0.74	0.87	46.6
All Ve	hicles	3860	2.0	1.520	115.4	LOS F	97.0	690.7	0.87	2.51	6.50	17.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

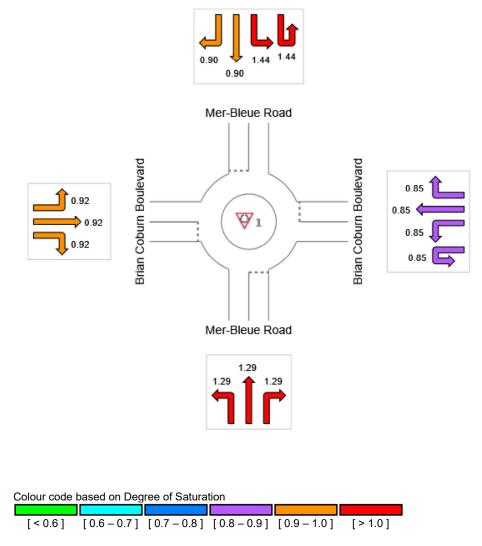
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:23:46 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2024 FT PM - Widened]

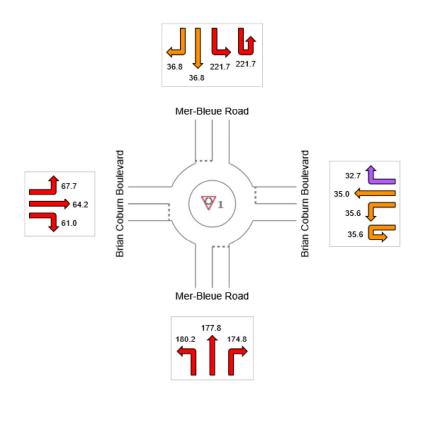
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	1.29	0.85	1.44	0.92	1.44

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:27:10 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2024 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Delay (Control)	177.3	34.1	154.6	64.1	119.2
LOS	F	D	F	F	F

Colour code b	based on Level	of Service
---------------	----------------	------------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2024 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection		
	South	East	North	West			
LOS	F	D	F	F	F		
	¶N Bria	– n Coburn Bo				Peoperative Service Real Prime Contract of the service Real Prime Read Prime	urn Boulevard
Colour co							
LOSA	λ L	OS B	LOS	S C	LOS D	OS E LOS F	

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

V Site: 1 [Mer-Bleue & Brian Coburn 2024 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	85	2.0	1.290	180.2	LOS F	42.1	299.6	1.00	3.21	9.20	14.3
2	T1	684	2.0	1.290	177.8	LOS F	47.9	341.1	1.00	3.33	9.58	14.4
3	R2	248	2.0	1.290	174.8	LOS F	47.9	341.1	1.00	3.49	10.09	10.3
Appro	ach	1017	2.0	1.290	177.3	LOS F	47.9	341.1	1.00	3.36	9.67	13.4
East:	Brian Col	ourn Bouleva	ard									
4u	U	21	2.0	0.849	35.6	LOS E	10.1	71.8	0.92	1.42	2.53	21.2
4	L2	214	2.0	0.849	35.6	LOS E	10.1	71.8	0.92	1.42	2.53	29.6
5	T1	321	2.0	0.849	35.0	LOS E	10.6	75.6	0.92	1.42	2.53	31.9
6	R2	500	2.0	0.849	32.7	LOS D	10.6	75.6	0.92	1.43	2.54	32.0
Appro	ach	1056	2.0	0.849	34.1	LOS D	10.6	75.6	0.92	1.42	2.54	31.3
North	: Mer-Ble	ue Road										
7u	U	339	2.0	1.442	221.7	LOS F	133.5	950.6	1.00	5.39	13.32	13.3
7	L2	846	2.0	1.442	221.7	LOS F	133.5	950.6	1.00	5.39	13.32	10.0
8	T1	476	2.0	0.903	36.8	LOS E	17.8	126.7	1.00	1.71	3.03	35.7
9	R2	199	2.0	0.903	36.8	LOS E	17.8	126.7	1.00	1.71	3.03	36.3
Appro	ach	1860	2.0	1.442	154.6	LOS F	133.5	950.6	1.00	4.05	9.59	15.1
West:	Brian Co	burn Boulev	ard									
10	L2	61	2.0	0.916	67.7	LOS F	8.0	57.2	0.97	1.53	3.12	28.4
11	T1	486	2.0	0.916	64.2	LOS F	8.6	61.4	0.97	1.55	3.16	23.8
12	R2	86	2.0	0.916	61.0	LOS F	8.6	61.4	0.96	1.56	3.19	27.9
Appro	ach	633	2.0	0.916	64.1	LOS F	8.6	61.4	0.97	1.55	3.16	24.9
All Ve	hicles	4566	2.0	1.442	119.2	LOS F	133.5	950.6	0.98	2.94	7.09	17.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

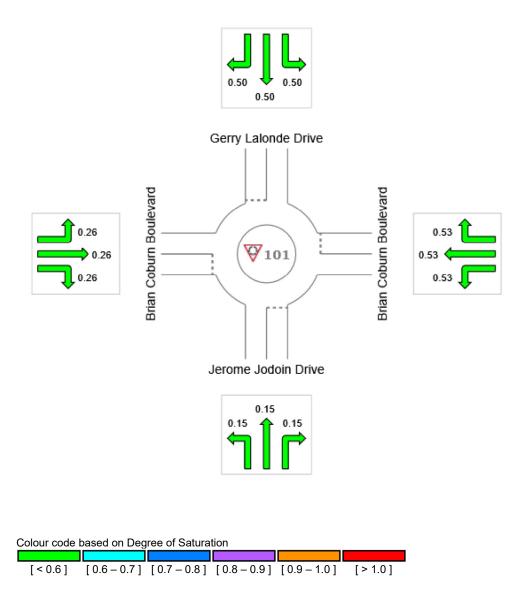
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:27:10 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT AM - Widened]

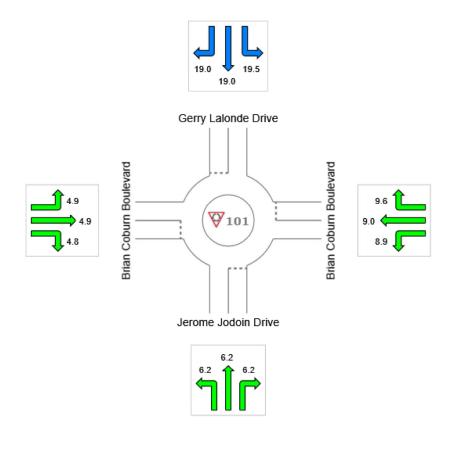
New Site Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.15	0.53	0.50	0.26	0.53

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:52:15 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT AM - Widened]

New Site Site Category: (None) Roundabout

All Movement Classes

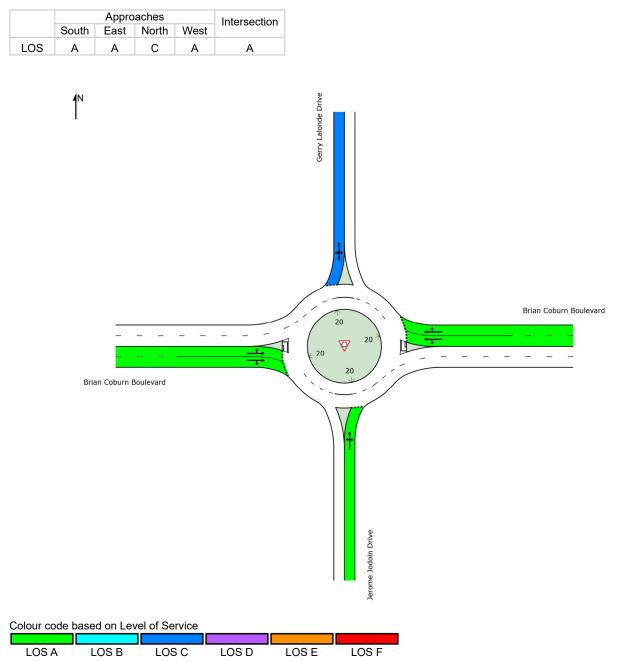
		Appro	aches		Intersection
	South	East	North	West	Intersection
Delay (Control)	6.2	9.0	19.0	4.9	8.5
LOS	А	А	С	А	А

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control


HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT AM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

V Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT AM - Widened]

New Site Site Category: (None) Roundabout

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Jerome	e Jodoin Driv		V/C	360		VCII					KI11/11
1	L2	105	2.0	0.150	6.2	LOS A	0.5	3.9	0.55	0.54	0.55	49.2
2	T1	1	2.0	0.150	6.2	LOS A	0.5	3.9	0.55	0.54	0.55	49.2
3	R2	11	2.0	0.150	6.2	LOS A	0.5	3.9	0.55	0.54	0.55	48.3
Appro	bach	117	2.0	0.150	6.2	LOS A	0.5	3.9	0.55	0.54	0.55	49.1
East:	Brian Co	burn Boulev	/ard									
4	L2	6	2.0	0.532	8.9	LOS A	3.6	25.8	0.46	0.30	0.46	49.9
5	T1	1267	2.0	0.532	9.0	LOS A	3.6	25.8	0.46	0.30	0.46	50.0
6	R2	15	46.0	0.532	9.6	LOS A	3.6	25.8	0.46	0.29	0.46	47.4
Appro	bach	1288	2.5	0.532	9.0	LOS A	3.6	25.8	0.46	0.30	0.46	50.0
North	: Gerry L	alonde Drive	Э									
7	L2	8	14.0	0.500	19.5	LOS C	2.3	16.3	0.82	0.94	1.28	43.6
8	T1	1	2.0	0.500	19.0	LOS C	2.3	16.3	0.82	0.94	1.28	43.9
9	R2	206	2.0	0.500	19.0	LOS C	2.3	16.3	0.82	0.94	1.28	43.2
Appro	bach	215	2.4	0.500	19.0	LOS C	2.3	16.3	0.82	0.94	1.28	43.2
West:	Brian Co	oburn Boule	vard									
10	L2	43	3.0	0.258	4.9	LOS A	1.3	9.3	0.09	0.02	0.09	52.3
11	T1	622	6.0	0.258	4.9	LOS A	1.3	9.3	0.09	0.02	0.09	52.6
12	R2	30	2.0	0.258	4.8	LOS A	1.3	9.3	0.09	0.02	0.09	51.4
Appro	bach	695	5.6	0.258	4.9	LOS A	1.3	9.3	0.09	0.02	0.09	52.5
All Ve	hicles	2315	3.4	0.532	8.5	LOS A	3.6	25.8	0.39	0.29	0.43	49.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

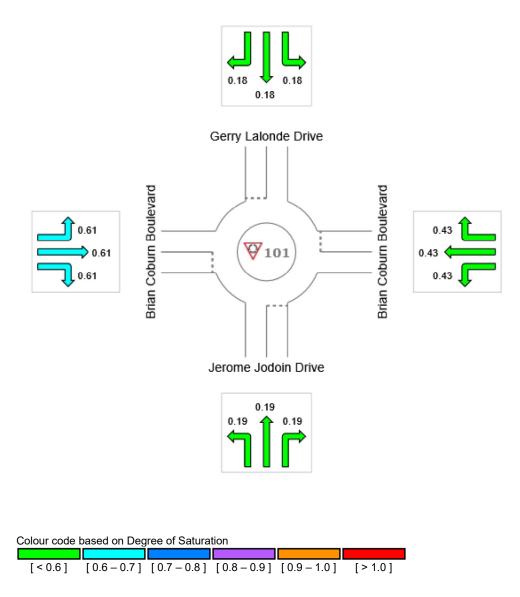
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:52:15 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT PM - Widened]

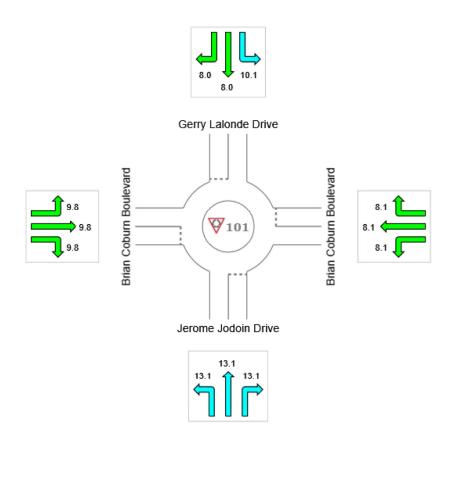
New Site Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.19	0.43	0.18	0.61	0.61

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:53:35 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT PM - Widened]

New Site Site Category: (None) Roundabout

All Movement Classes

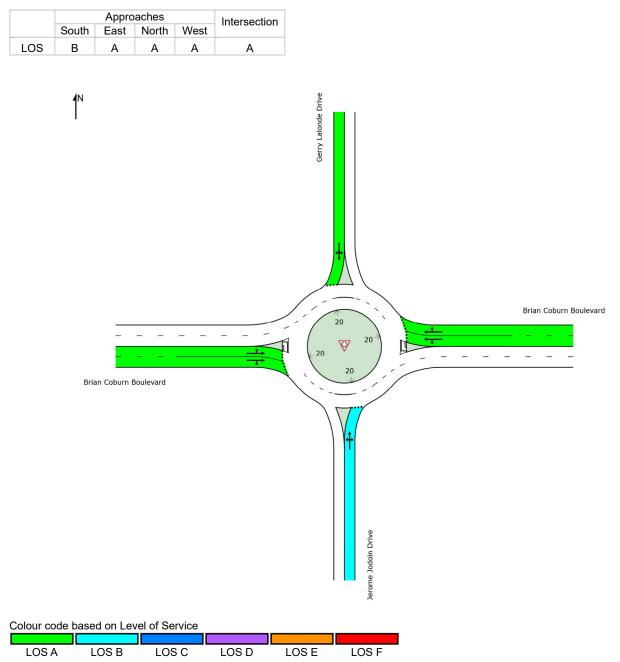
		Appro	aches		Intersection
	South	East	North	West	Intersection
Delay (Control)	13.1	8.1	8.0	9.8	9.2
LOS	В	А	А	А	А

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control


HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT PM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 101 [Brian Coburn & Gerry Lalonde 2024 FT PM - Widened]

New Site Site Category: (None) Roundabout

Move	ement P	erformanc	e - Vehi	icles								
Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	· lerome	veh/h Jodoin Driv	%	v/c	Sec	_	veh	m	_	_	_	km/h
1	L2	57	2.0	0.191	13.1	LOS B	0.6	4.4	0.78	0.78	0.78	45.4
-	T1	57	2.0		13.1	LOS B	0.6	4.4	0.78		0.78	45.4
2		•		0.191						0.78		
3	R2	12	2.0	0.191	13.1	LOS B	0.6	4.4	0.78	0.78	0.78	44.6
Appro	ach	70	2.0	0.191	13.1	LOS B	0.6	4.4	0.78	0.78	0.78	45.3
East:	Brian Co	burn Boulev	rard									
4	L2	20	2.0	0.430	8.1	LOS A	2.3	16.5	0.53	0.43	0.53	50.5
5	T1	881	2.0	0.430	8.1	LOS A	2.3	16.5	0.53	0.43	0.53	50.7
6	R2	13	2.0	0.430	8.1	LOS A	2.3	16.5	0.53	0.43	0.53	49.4
Appro	ach	914	2.0	0.430	8.1	LOS A	2.3	16.5	0.53	0.43	0.53	50.6
North	: Gerry L	alonde Drive	Э									
7	L2	4	75.0	0.176	10.1	LOS B	0.6	4.4	0.62	0.62	0.62	48.2
8	T1	1	2.0	0.176	8.0	LOS A	0.6	4.4	0.62	0.62	0.62	50.7
9	R2	102	2.0	0.176	8.0	LOS A	0.6	4.4	0.62	0.62	0.62	49.6
Appro	ach	107	4.7	0.176	8.0	LOS A	0.6	4.4	0.62	0.62	0.62	49.6
West:	Brian Co	oburn Boule	vard									
10	L2	236	2.0	0.610	9.8	LOS A	5.5	39.2	0.22	0.07	0.22	48.7
11	T1	1324	2.0	0.610	9.8	LOS A	5.5	39.2	0.22	0.07	0.22	49.2
12	R2	95	2.0	0.610	9.8	LOS A	5.5	39.2	0.22	0.07	0.22	48.3
Appro		1655	2.0	0.610	9.8	LOSA	5.5	39.2	0.22	0.07	0.22	49.1
All Ve	hicles	2746	2.1	0.610	9.2	LOS A	5.5	39.2	0.35	0.23	0.35	49.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

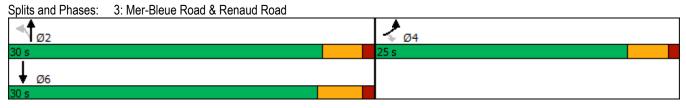
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:53:35 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

Appendix N

2029 Future Background Synchro and Sidra Worksheets

	٦	\mathbf{r}	1	1	Ļ	∢
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	<u> </u>	1	<u> </u>	ODI
Traffic Volume (vph)	211	55	125	435	229	290
Future Volume (vph)	211	55	125	435	229	290
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0	1000	1000	0.0
Storage Lanes	95.0	0.0	30.0 1			0.0
		I	•			U
Taper Length (m)	15.0	1 00	75.0	1 00	1 00	1 00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt Fit Directored	0.050	0.850	0.050		0.925	
Flt Protected	0.950	4000	0.950	4004	4500	0
Satd. Flow (prot)	1496	1293	1566	1664	1502	0
Flt Permitted	0.950	1000	0.403	1001	1500	
Satd. Flow (perm)	1496	1293	664	1664	1502	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		55			154	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	136.7	
Travel Time (s)	49.8			25.6	8.2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	17%	8%	7%	13%	7%
Adj. Flow (vph)	211	55	125	435	229	290
Shared Lane Traffic (%)			120			200
Lane Group Flow (vph)	211	55	125	435	519	0
Enter Blocked Intersection	No	No	No	No	No	No
	Left		Left	Left	Left	
Lane Alignment	Len 3.5	Right	Leit	2.5	2.5	Right
Median Width(m)						
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
()	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0			
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)		_	_	0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	

	≯	*	•	1	Ļ	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	25.0	25.0	24.0	24.0	25.2	
Total Split (s)	25.0	25.0	30.0	30.0	30.0	
Total Split (%)	45.5%	45.5%	54.5%	54.5%	54.5%	
Maximum Green (s)	20.7	20.7	25.7	25.7	25.3	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.3	4.3	4.3	4.3	4.7	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Min	Min	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	13.5	13.5	12.5	12.5	13.5	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Act Effct Green (s)	12.1	12.1	20.5	20.5	20.2	
Actuated g/C Ratio	0.33	0.33	0.55	0.55	0.55	
v/c Ratio	0.43	0.12	0.34	0.47	0.58	
Control Delay	14.4	4.9	10.9	9.7	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.4	4.9	10.9	9.7	9.2	
LOS	B	А	В	A	A	
Approach Delay	12.4			10.0	9.2	
Approach LOS	В			A	A	
Queue Length 50th (m)	8.8	0.0	4.2	15.9	13.5	
Queue Length 95th (m)	29.4	5.5	16.9	44.7	46.9	
Internal Link Dist (m)	667.8		00.0	332.1	112.7	
Turn Bay Length (m)	95.0	770	30.0	4000	4440	
Base Capacity (vph)	875	779	482	1209	1118	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0.26	0 26	0	
Reduced v/c Ratio	0.24	0.07	0.26	0.36	0.46	
Intersection Summary Area Type:	Other					
Cycle Length: 55	Other					
Actuated Cycle Length: 37	7					
Natural Cycle: 60						
Control Type: Actuated-Ur	acoordinated					
Maximum v/c Ratio: 0.58						
Intersection Signal Delay:	10.2			l.	ntersectior	
Intersection Signal Delay.						of Service B
Analysis Period (min) 15	2au011 03.2%			IL IL		
Analysis Fellou (IIIII) 13						

Lanes, Volumes, Timings <u>5: Mer-Bleue Road & Axis Way/Decoeur Drive</u>

	٠	+	\mathbf{F}	4	Ļ	•	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	el el		1	ę.		1	A		ľ	A	
Traffic Volume (vph)	86	61	10	32	64	90	2	721	13	23	450	22
Future Volume (vph)	86	61	10	32	64	90	2	721	13	23	450	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0			15.0			75.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.979			0.912			0.997			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1658	1708	0	1658	1592	0	1658	3154	0	1658	2986	0
Flt Permitted	0.659			0.711			0.482			0.373		
Satd. Flow (perm)	1150	1708	0	1241	1592	0	841	3154	0	651	2986	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		10			90			3			8	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		221.2			188.0			167.0			463.6	
Travel Time (s)		15.9			13.5			10.0			27.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	13%	2%
Adj. Flow (vph)	86	61	10	32	64	90	2	721	13	23	450	22
Shared Lane Traffic (%)												
Lane Group Flow (vph)	86	71	0	32	154	0	2	734	0	23	472	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5	Ŭ		3.5	Ŭ		3.5	Ŭ		3.5	Ŭ
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	. •////	4			8			2		. •	6	
					v			-			v	

VZ

	٦	-+	\mathbf{i}	-	-	•	•	t	-	×	Ļ	~
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	NBT	NBR	SBL	• SBT	SBF
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase	•	•		Ű	Ű		-	_		Ŭ	Ŭ	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	37.0	37.0		37.0	37.0		38.0	38.0		38.0	38.0	
Total Split (%)	49.3%	49.3%		49.3%	49.3%		50.7%	50.7%		50.7%	50.7%	
Maximum Green (s)	31.3	31.3		31.3	31.3		32.1	32.1		32.1	32.1	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	10.6	10.6		10.6	10.6		18.7	18.7		18.7	18.7	
Actuated g/C Ratio	0.29	0.29		0.29	0.29		0.52	0.52		0.52	0.52	
v/c Ratio	0.26	0.14		0.09	0.29		0.00	0.45		0.07	0.30	
Control Delay	13.4	10.4		11.5	7.5		6.5	8.9		7.6	7.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	13.4	10.4		11.5	7.5		6.5	8.9		7.6	7.8	
LOS	В	В		В	А		А	А		А	А	
Approach Delay		12.1			8.2			8.9			7.8	
Approach LOS		В			А			А			А	
Queue Length 50th (m)	3.8	2.6		1.3	2.7		0.1	16.5		0.8	9.5	
Queue Length 95th (m)	13.1	9.9		6.1	13.3		0.8	30.5		3.8	18.7	
Internal Link Dist (m)		197.2			164.0			143.0			439.6	
Turn Bay Length (m)	30.0			30.0			30.0			35.0		
Base Capacity (vph)	1045	1553		1128	1455		753	2825		583	2675	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.05		0.03	0.11		0.00	0.26		0.04	0.18	
Intersection Summary												
Area Type:	Other											
Cycle Length: 75												
Actuated Cycle Length: 36												
Natural Cycle: 75												
Control Type: Actuated-Une	coordinated											
Maximum v/c Ratio: 0.45												
Intersection Signal Delay: 8					ntersectior							
Intersection Capacity Utiliza	ation 53.6%)		10	CU Level o	of Service	θA					
Analysis Period (min) 15												

Splits and Phases: 5: Mer-Bleue Road & Axis Way/Decoeur Drive



	≯	\mathbf{r}	1	1	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	5	1	1	1	4	
Traffic Volume (vph)	457	90	76	395	489	143
Future Volume (vph)	457	90	76	395	489	143
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0	1000	1000	0.0
Storage Lanes	1	1	1			0.0
Taper Length (m)	15.0		75.0			0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	1.00	0.969	1.00
Fit Protected	0.950	0.000	0.950		0.000	
Satd. Flow (prot)	1658	1339	1610	1745	1678	0
Flt Permitted	0.950	1009	0.243	1743	1070	U
	1658	1339	0.243 412	1745	1678	0
Satd. Flow (perm)	0001	Yes	412	1/40	10/0	Yes
Right Turn on Red					24	res
Satd. Flow (RTOR)	50	90		50	34	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	129.9	
Travel Time (s)	49.8	4.00	4.00	25.6	7.8	4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	13%	5%	2%	3%	2%
Adj. Flow (vph)	457	90	76	395	489	143
Shared Lane Traffic (%)						
Lane Group Flow (vph)	457	90	76	395	632	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	Cl+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
.,	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	9.4	9.4	
Detector 2 Position(m)						
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel				~ ~ ~	0.0	
Detector 2 Extend (s)	_	_	_	0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	

	٦	*	•	1	Ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase			_	_		
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	24.8	24.8	23.8	23.8	25.2	
Total Split (s)	26.0	26.0	34.0	34.0	34.0	
Total Split (%)	43.3%	43.3%	56.7%	56.7%	56.7%	
Maximum Green (s)	21.7	21.7	29.7	29.7	29.3	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.3	4.3	4.3	4.3	4.7	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Min	Min	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	13.5	13.5	12.5	12.5	13.5	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Act Effct Green (s)	17.9	17.9	23.0	23.0	22.6	
Actuated g/C Ratio	0.36	0.36	0.46	0.46	0.45	
v/c Ratio	0.77	0.00	0.40	0.49	0.81	
Control Delay	26.5	4.5	17.1	12.1	21.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.5	4.5	17.1	12.1	21.7	
LOS	C	A	В		C	
Approach Delay	22.9	,,	_	12.9	21.7	
Approach LOS	C			B	C	
Queue Length 50th (m)	37.4	0.0	4.5	24.7	46.5	
Queue Length 95th (m)	#84.3	7.4	14.6	45.0	#92.4	
Internal Link Dist (m)	667.8	1.1		332.1	105.9	
Turn Bay Length (m)	95.0		30.0	002.1	100.0	
Base Capacity (vph)	760	663	258	1095	1052	
Starvation Cap Reductn	0	000	230	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.60	0.14	0.29	0.36	0.60	
Intersection Summary	0.00	V .17	0.20	0.00	0.00	
	Other					
Area Type:	Other					
Cycle Length: 60	0					
Actuated Cycle Length: 5	U					
Natural Cycle: 60	Incoordinated					
Control Type: Actuated-U Maximum v/c Ratio: 0.81	ncoordinated					
	10.6			1.	torocotic	
Intersection Signal Delay:						
Intersection Capacity Utili	2311011 82.5%			10	JU Level (of Service E
Analysis Period (min) 15				. h. e. 1		
# 95th percentile volum	e exceeds ca	pacity, qu	ueue may	be longe	er.	

Queue shown is maximum after two cycles.

Splits and Phases:	3: Mer-Bleue Road & Renaud Road

Lanes, Volumes, Timings2024 Fur5: Mer-Bleue Road & Axis Way/Decoeur Drive

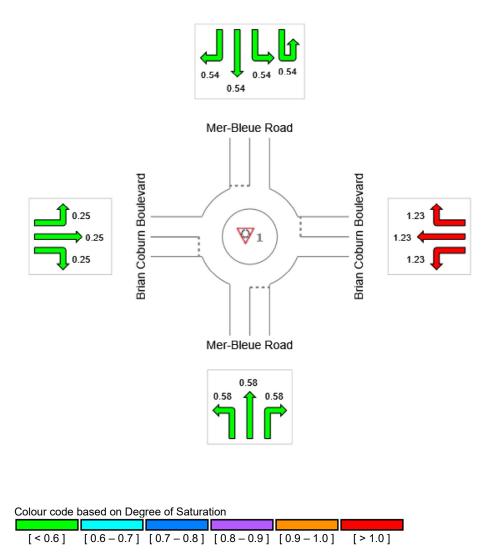
	≯	+	*	4	Ļ	•	•	t	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	eî 🗧		5	eî 👘		۲	A		ሻ	A	
Traffic Volume (vph)	47	88	5	14	85	52	10	883	21	90	703	87
Future Volume (vph)	47	88	5	14	85	52	10	883	21	90	703	87
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0		-	15.0		-	75.0		-	75.0		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.992			0.943			0.997			0.983	
Flt Protected	0.950	0.002		0.950	01010		0.950			0.950		
Satd. Flow (prot)	1658	1731	0	1658	1646	0	1658	3155	0	1658	2974	0
Flt Permitted	0.669		Ţ	0.697		•	0.351	0.00	Ţ	0.296		Ū
Satd. Flow (perm)	1167	1731	0	1216	1646	0	613	3155	0	517	2974	0
Right Turn on Red			Yes			Yes	• • •	0.00	Yes	•		Yes
Satd. Flow (RTOR)		5			49			4			23	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		269.4			286.1			179.4			458.1	
Travel Time (s)		19.4			20.6			10.8			27.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	13%	2%
Adj. Flow (vph)	47	88	5	14	85	52	10	883	21	90	703	87
Shared Lane Traffic (%)		00	Ū		00	02	10	000		00	100	01
Lane Group Flow (vph)	47	93	0	14	137	0	10	904	0	90	790	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	

01-06-2021

Lanes, Volumes, Timings2024 Fur5: Mer-Bleue Road & Axis Way/Decoeur Drive

		vu ay/L			C					2210	mor Bioa	0110000
	٦	-	\mathbf{i}	4	←	•	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	36.1	36.1		36.1	36.1		38.9	38.9		38.9	38.9	
Total Split (%)	48.1%	48.1%		48.1%	48.1%		51.9%	51.9%		51.9%	51.9%	
Maximum Green (s)	30.0	30.0		30.0	30.0		33.0	33.0		33.0	33.0	
Yellow Time (s)	3.7	3.7		3.7	3.7		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.1	6.1		6.1	6.1		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	10.6	10.6		10.6	10.6		22.7	22.7		22.7	22.7	
Actuated g/C Ratio	0.26	0.26		0.26	0.26		0.57	0.57		0.57	0.57	
v/c Ratio	0.15	0.20		0.04	0.29		0.03	0.50		0.31	0.47	
Control Delay	15.5	14.7		14.6	12.0		6.1	8.7		10.8	8.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.5	14.7		14.6	12.0		6.1	8.7		10.8	8.2	
LOS	В	В		В	В		A	А		В	А	
Approach Delay		15.0			12.3			8.7			8.5	
Approach LOS		В			В			А			А	
Queue Length 50th (m)	2.3	4.4		0.7	4.4		0.3	22.3		3.7	18.4	
Queue Length 95th (m)	10.5	16.5		4.6	18.5		2.0	37.4		12.0	31.6	
Internal Link Dist (m)		245.4			262.1			155.4			434.1	
Turn Bay Length (m)	30.0			30.0			30.0			35.0		
Base Capacity (vph)	903	1341		941	1285		513	2645		433	2496	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.05	0.07		0.01	0.11		0.02	0.34		0.21	0.32	
Intersection Summary												
Area Type:	Other											
Cycle Length: 75												
Actuated Cycle Length: 40)											
Natural Cycle: 75												
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.50												
Intersection Signal Delay:	9.3			I	ntersection	n LOS: A						
Intersection Capacity Utiliz	zation 71.5%			10	CU Level	of Service	эC					
Analysis Period (min) 15												

Splits and Phases:	5: Mer-Bleue Road & Axis Way/Decoeur Drive	
1 ø2		<u></u> 4
38.9 s		36.1 s
Ø6		€ Ø8
38.9 s		36.1 s


Ratio of Demand Volume to Capacity, v/c ratio per movement

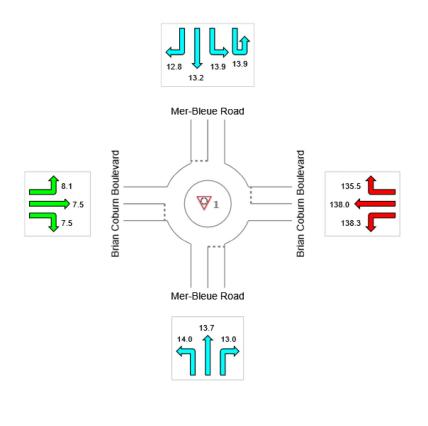
Site: 1 [Mer-Bleue & Brian Coburn 2029 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection		
	South	East	North	West	Intersection		
Degree of Saturation	0.58	1.23	0.54	0.25	1.23		

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:42:45 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2029 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Approa	Intersection		
	South	East	North	West	Intersection
Delay (Control)	13.5	136.8	13.3	7.8	66.3
LOS	В	F	В	А	F

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2029 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection	
	South	East	North	West		
LOS	В	F	В	Α	F	
	f N Bria	n Coburn Ba	– – Dulevard			Brian Coburn Boulevard
LOS	ode base	OS B			LOS D	LOS E LOS F
L03/	ר ו ר	0000	LUG		L03 D	

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 1 [Mer-Bleue & Brian Coburn 2029 FB AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	28	2.0	0.576	14.0	LOS B	4.4	31.0	0.74	0.91	1.22	47.2
2	T1	585	2.0	0.576	13.7	LOS B	4.4	31.6	0.74	0.90	1.21	47.1
3	R2	295	2.0	0.576	13.0	LOS B	4.4	31.6	0.72	0.89	1.19	41.0
Appro	ach	908	2.0	0.576	13.5	LOS B	4.4	31.6	0.73	0.90	1.20	45.5
East:	Brian Cob	ourn Bouleva	ard									
4	L2	109	2.0	1.226	138.3	LOS F	58.1	413.5	1.00	3.56	9.12	12.8
5	T1	712	2.0	1.226	138.0	LOS F	64.0	455.5	1.00	3.58	9.17	14.2
6	R2	759	2.0	1.226	135.5	LOS F	64.0	455.5	1.00	3.77	9.63	13.9
Appro	ach	1580	2.0	1.226	136.8	LOS F	64.0	455.5	1.00	3.67	9.39	14.0
North	: Mer-Bleu	ue Road										
7u	U	63	2.0	0.543	13.9	LOS B	3.6	25.4	0.73	0.88	1.17	47.0
7	L2	209	2.0	0.543	13.9	LOS B	3.6	25.4	0.73	0.88	1.17	41.8
8	T1	328	2.0	0.543	13.2	LOS B	3.6	25.8	0.72	0.87	1.15	46.7
9	R2	189	2.0	0.543	12.8	LOS B	3.6	25.8	0.72	0.86	1.14	47.3
Appro	ach	789	2.0	0.543	13.3	LOS B	3.6	25.8	0.72	0.87	1.16	45.7
West:	Brian Co	burn Boulev	ard									
10	L2	169	2.0	0.253	8.1	LOS A	1.0	7.0	0.61	0.61	0.61	48.9
11	T1	174	2.0	0.253	7.5	LOS A	1.0	7.0	0.59	0.59	0.59	49.2
12	R2	30	2.0	0.253	7.5	LOS A	1.0	7.0	0.59	0.59	0.59	50.0
Appro	ach	373	2.0	0.253	7.8	LOS A	1.0	7.0	0.60	0.60	0.60	49.1
All Ve	hicles	3650	2.0	1.226	66.3	LOS F	64.0	455.5	0.83	2.06	4.67	24.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

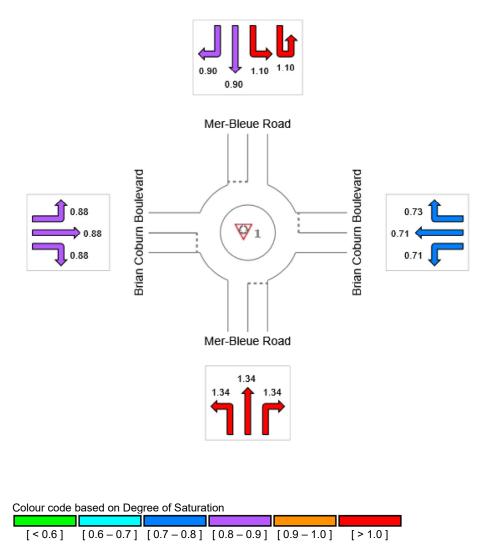
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:42:45 AM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8


Ratio of Demand Volume to Capacity, v/c ratio per movement

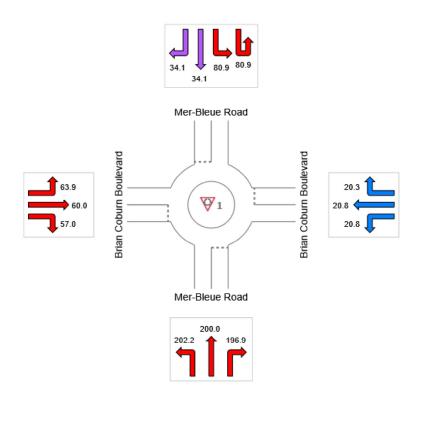
Site: 1 [Mer-Bleue & Brian Coburn 2029 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	1.34	0.73	1.10	0.88	1.34

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:48:43 AM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2029 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Approaches						
	South	East	North	West	Intersection			
Delay (Control)	199.4	20.5	60.8	60.2	84.1			
LOS	F	С	F	F	F			

Colour code	based on I	Level of	Service
-------------	------------	----------	---------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2029 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

[Appro	aches		Intersection]			
		South	East	North	West	Intersection				
	LOS	F	С	F	F	F				
		1 ^N	n Coburn B				Mer-Bieue Road	Mer-Bleue Road		Brian Coburn Boulevard
(Colour co	ode base	d on Le OS B	vel of Se LOS		LOS D	LOS E	LOS F		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 1 [Mer-Bleue & Brian Coburn 2029 FB PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South: Mer-Bleue Road												
1	L2	54	2.0	1.344	202.2	LOS F	47.3	336.6	1.00	3.41	9.96	13.1
2	T1	739	2.0	1.344	200.0	LOS F	54.0	384.5	1.00	3.54	10.39	13.1
3	R2	248	2.0	1.344	196.9	LOS F	54.0	384.5	1.00	3.72	10.97	9.3
Appro	ach	1041	2.0	1.344	199.4	LOS F	54.0	384.5	1.00	3.58	10.50	12.3
East:	Brian Col	ourn Bouleva	ard									
4	L2	208	2.0	0.714	20.8	LOS C	6.8	48.6	0.84	1.13	1.71	36.7
5	T1	282	2.0	0.714	20.8	LOS C	6.8	48.6	0.84	1.13	1.71	38.5
6	R2	557	2.0	0.734	20.3	LOS C	7.6	54.5	0.84	1.16	1.78	38.0
Appro	ach	1047	2.0	0.734	20.5	LOS C	7.6	54.5	0.84	1.15	1.75	37.9
North:	: Mer-Ble	ue Road										
7u	U	57	2.0	1.097	80.9	LOS F	55.9	397.9	1.00	2.96	6.20	25.7
7	L2	915	2.0	1.097	80.9	LOS F	55.9	397.9	1.00	2.96	6.20	20.4
8	T1	506	2.0	0.898	34.1	LOS D	19.7	140.3	1.00	1.71	2.92	36.7
9	R2	222	2.0	0.898	34.1	LOS D	19.7	140.3	1.00	1.71	2.92	37.3
Appro	ach	1700	2.0	1.097	60.8	LOS F	55.9	397.9	1.00	2.42	4.80	26.3
West:	Brian Co	burn Boulev	ard									
10	L2	68	2.0	0.884	63.9	LOS F	6.8	48.1	0.96	1.44	2.81	29.3
11	T1	460	2.0	0.884	60.0	LOS F	7.2	51.2	0.96	1.45	2.84	24.7
12	R2	52	2.0	0.884	57.0	LOS F	7.2	51.2	0.96	1.46	2.86	28.9
Appro	ach	580	2.0	0.884	60.2	LOS F	7.2	51.2	0.96	1.45	2.84	25.7
All Ve	hicles	4368	2.0	1.344	84.1	LOS F	55.9	397.9	0.96	2.26	5.17	21.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

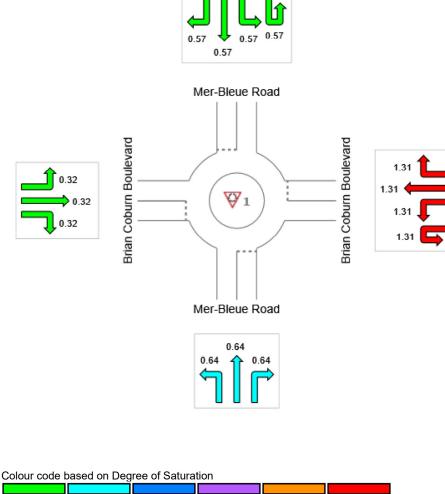
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

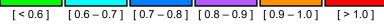
HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 11:48:43 AM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8


Ratio of Demand Volume to Capacity, v/c ratio per movement

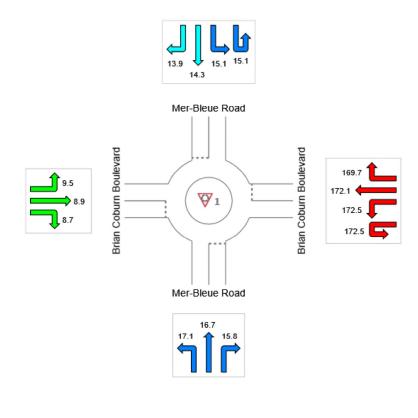

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	0.64	1.31	0.57	0.32	1.31

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:25:31 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Approa	aches	Intersection	
	South	East	North	West	Intersection
Delay (Control)	16.4	171.0	14.5	9.1	80.7
LOS	С	F	В	А	F

Colour code based on Level of Service	
---------------------------------------	--

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection	
	South	East	North	West		
LOS	С	F	В	Α	F	
Colour cc	f N Bria	n Coburn Bc				Brian Coburn Boulevard
LOSA		LOS B	LOS		LOS D	LOS E LOS F
	-			-		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

₩ Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	52	2.0	0.643	17.1	LOS C	5.3	37.9	0.79	1.01	1.45	45.1
2	T1	594	2.0	0.643	16.7	LOS C	5.5	38.9	0.79	1.01	1.44	45.1
3	R2	304	2.0	0.643	15.8	LOS C	5.5	38.9	0.78	1.00	1.42	38.9
Appro	ach	950	2.0	0.643	16.4	LOS C	5.5	38.9	0.78	1.01	1.43	43.5
East:	Brian Col	ourn Bouleva	ard									
4u	U	15	2.0	1.309	172.5	LOS F	71.0	505.3	1.00	4.03	10.74	7.2
4	L2	122	2.0	1.309	172.5	LOS F	71.0	505.3	1.00	4.03	10.74	10.7
5	T1	743	2.0	1.309	172.1	LOS F	78.5	559.2	1.00	4.07	10.84	12.0
6	R2	759	2.0	1.309	169.7	LOS F	78.5	559.2	1.00	4.30	11.42	11.7
Appro	ach	1639	2.0	1.309	171.0	LOS F	78.5	559.2	1.00	4.17	11.10	11.7
North	: Mer-Ble	ue Road										
7u	U	63	2.0	0.574	15.1	LOS C	4.0	28.2	0.75	0.92	1.26	46.3
7	L2	224	2.0	0.574	15.1	LOS C	4.0	28.2	0.75	0.92	1.26	41.0
8	T1	341	2.0	0.574	14.3	LOS B	4.0	28.7	0.74	0.91	1.24	46.0
9	R2	189	2.0	0.574	13.9	LOS B	4.0	28.7	0.74	0.91	1.24	46.6
Appro	ach	817	2.0	0.574	14.5	LOS B	4.0	28.7	0.75	0.91	1.25	45.0
West:	Brian Co	burn Boulev	ard									
10	L2	169	2.0	0.321	9.5	LOS A	1.3	9.6	0.64	0.66	0.69	48.6
11	T1	220	2.0	0.321	8.9	LOS A	1.3	9.6	0.63	0.64	0.66	47.4
12	R2	67	2.0	0.321	8.7	LOS A	1.3	9.4	0.62	0.63	0.66	49.0
Appro	ach	456	2.0	0.321	9.1	LOS A	1.3	9.6	0.63	0.65	0.67	48.2
All Ve	hicles	3862	2.0	1.309	80.7	LOS F	78.5	559.2	0.85	2.29	5.41	21.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

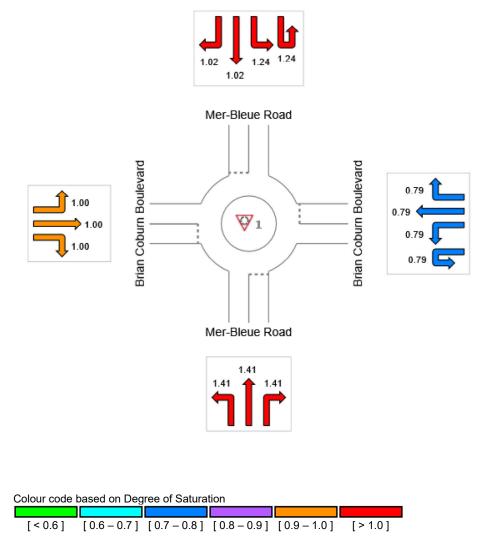
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:25:31 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8


Ratio of Demand Volume to Capacity, v/c ratio per movement

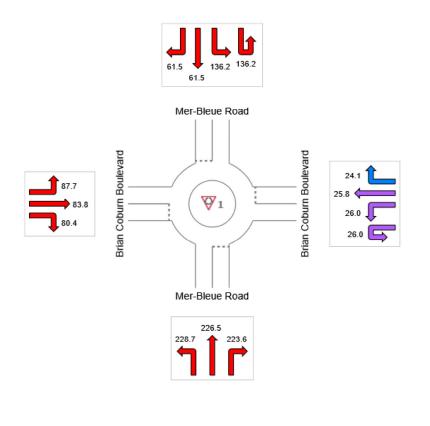
Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	1.41	0.79	1.24	1.00	1.41

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:29:51 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Delay (Control)	226.0	25.0	104.3	83.8	110.7
LOS	F	С	F	F	F

Colour code based o	n Level of Service
---------------------	--------------------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersectior	1			
	South	East	North	West	Intereester	·			
LOS	F	С	F	F	F				
	f N Bria	– n Coburn Ba	– – Joulevard						Brian Coburn Boulevard
Colour co	ode base	d on Le	vel of Se	rvice					
		00.5							
LOS	ι L	OS B	LOS	SC	LOS D	LOS E	LOS F		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

₩ Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Po	erformance	e - Vehi	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	89	2.0	1.409	228.7	LOS F	55.1	392.3	1.00	3.67	10.93	11.9
2	T1	752	2.0	1.409	226.5	LOS F	63.0	448.7	1.00	3.83	11.43	11.9
3	R2	261	2.0	1.409	223.6	LOS F	63.0	448.7	1.00	4.02	12.07	8.4
Appro	bach	1102	2.0	1.409	226.0	LOS F	63.0	448.7	1.00	3.86	11.55	11.1
East:	Brian Col	burn Bouleva	ard									
4u	U	21	2.0	0.790	26.0	LOS D	9.3	66.2	0.89	1.29	2.10	24.5
4	L2	221	2.0	0.790	26.0	LOS D	9.3	66.2	0.89	1.29	2.10	33.8
5	T1	342	2.0	0.790	25.8	LOS D	9.7	69.1	0.89	1.29	2.10	35.9
6	R2	557	2.0	0.790	24.1	LOS C	9.7	69.1	0.89	1.30	2.09	36.0
Appro	bach	1141	2.0	0.790	25.0	LOS C	9.7	69.1	0.89	1.29	2.09	35.4
North	: Mer-Ble	ue Road										
7u	U	57	2.0	1.238	136.2	LOS F	80.0	569.7	1.00	4.01	9.57	18.8
7	L2	936	2.0	1.238	136.2	LOS F	80.0	569.7	1.00	4.01	9.57	14.4
8	T1	519	2.0	1.017	61.5	LOS F	31.2	222.2	1.00	2.27	4.69	28.3
9	R2	222	2.0	1.017	61.5	LOS F	31.2	222.2	1.00	2.27	4.69	29.3
Appro	bach	1734	2.0	1.238	104.3	LOS F	80.0	569.7	1.00	3.27	7.49	19.2
West:	Brian Co	burn Boulev	ard									
10	L2	68	2.0	0.997	87.7	LOS F	11.8	84.3	0.99	1.80	4.07	24.7
11	T1	522	2.0	0.997	83.8	LOS F	13.0	92.5	0.99	1.83	4.18	20.2
12	R2	89	2.0	0.997	80.4	LOS F	13.0	92.5	0.99	1.86	4.27	24.1
Appro	bach	679	2.0	0.997	83.8	LOS F	13.0	92.5	0.99	1.83	4.18	21.2
All Ve	hicles	4656	2.0	1.409	110.7	LOS F	80.0	569.7	0.97	2.71	6.64	17.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

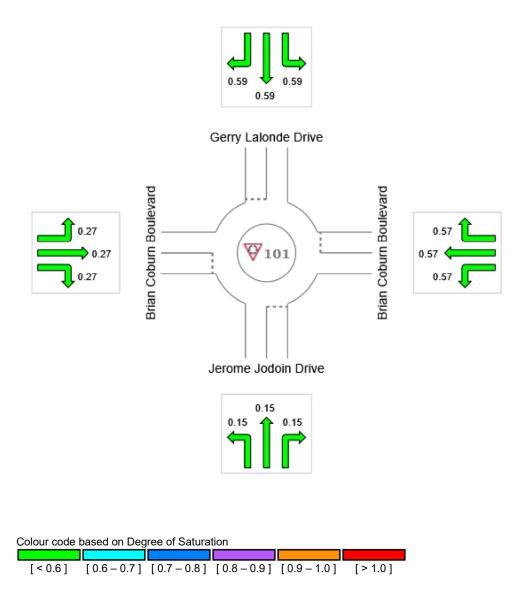
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:29:51 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8


Ratio of Demand Volume to Capacity, v/c ratio per movement

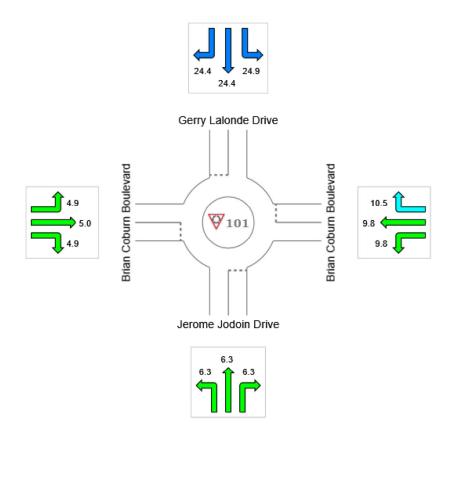
Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB AM - Widened]

New Site Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.15	0.57	0.59	0.27	0.59

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:45:49 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB AM - Widened]

New Site Site Category: (None) Roundabout

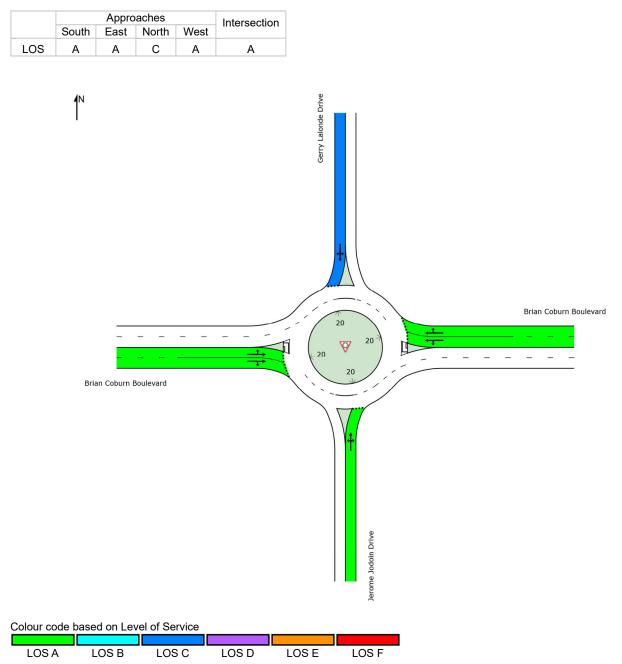
All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Delay (Control)	6.3	9.8	24.4	5.0	9.6
LOS	А	А	С	А	А

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB AM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB AM - Widened]

New Site Site Category: (None) Roundabout

Move	ement P	erformand	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Jerome	Jodoin Driv	/e									
1	L2	105	2.0	0.153	6.3	LOS A	0.6	4.0	0.56	0.55	0.56	49.1
2	T1	1	2.0	0.153	6.3	LOS A	0.6	4.0	0.56	0.55	0.56	49.1
3	R2	11	2.0	0.153	6.3	LOS A	0.6	4.0	0.56	0.55	0.56	48.2
Appro	ach	117	2.0	0.153	6.3	LOS A	0.6	4.0	0.56	0.55	0.56	49.1
East:	Brian Co	burn Boulev	/ard									
4	L2	6	2.0	0.575	9.8	LOS A	4.2	29.8	0.50	0.33	0.50	49.3
5	T1	1363	2.0	0.575	9.8	LOS A	4.2	29.8	0.50	0.33	0.50	49.4
6	R2	17	46.0	0.575	10.5	LOS B	4.1	29.7	0.49	0.32	0.49	46.9
Appro	ach	1386	2.5	0.575	9.8	LOS A	4.2	29.8	0.50	0.33	0.50	49.4
North	: Gerry L	alonde Drive	е									
7	L2	8	14.0	0.591	24.9	LOS C	2.9	20.7	0.86	1.03	1.49	41.0
8	T1	1	2.0	0.591	24.4	LOS C	2.9	20.7	0.86	1.03	1.49	41.2
9	R2	225	2.0	0.591	24.4	LOS C	2.9	20.7	0.86	1.03	1.49	40.6
Appro	ach	234	2.4	0.591	24.4	LOS C	2.9	20.7	0.86	1.03	1.49	40.6
West:	Brian Co	burn Boule	vard									
10	L2	47	3.0	0.266	4.9	LOS A	1.3	9.7	0.09	0.02	0.09	52.2
11	T1	640	6.0	0.266	5.0	LOS A	1.3	9.7	0.09	0.02	0.09	52.5
12	R2	30	2.0	0.266	4.9	LOS A	1.3	9.7	0.09	0.02	0.09	51.3
Appro	ach	717	5.6	0.266	5.0	LOS A	1.3	9.7	0.09	0.02	0.09	52.5
All Ve	hicles	2454	3.4	0.591	9.6	LOS A	4.2	29.8	0.41	0.31	0.48	49.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

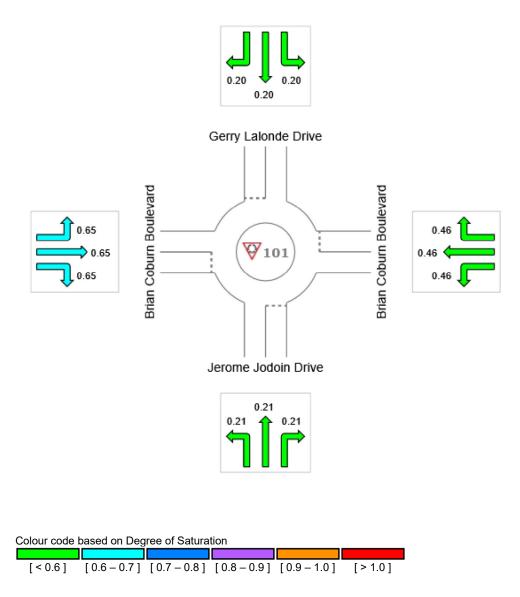
Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:45:49 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8


Ratio of Demand Volume to Capacity, v/c ratio per movement

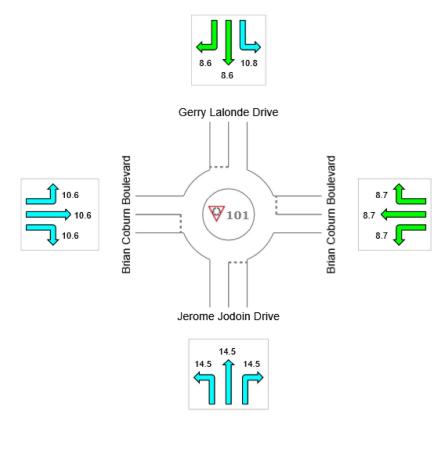
Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB PM - Widened]

New Site Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.21	0.46	0.20	0.65	0.65

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:47:45 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB PM - Widened]

New Site Site Category: (None) Roundabout

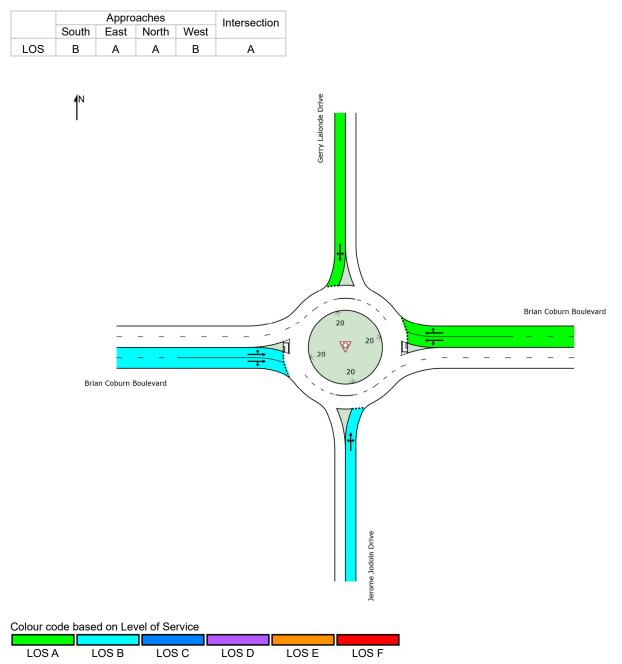
All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Delay (Control)	14.5	8.7	8.7	10.6	10.0
LOS	В	А	А	В	А

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).


Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB PM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

V Site: 101 [Brian Coburn & Gerry Lalonde 2029 FB PM - Widened]

New Site Site Category: (None) Roundabout

Move	ement P	erformanc	e - Vehi	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	
South	: Jerome	e Jodoin Driv	е									
1	L2	57	2.0	0.208	14.5	LOS B	0.7	4.7	0.80	0.80	0.80	44.6
2	T1	1	2.0	0.208	14.5	LOS B	0.7	4.7	0.80	0.80	0.80	44.7
3	R2	12	2.0	0.208	14.5	LOS B	0.7	4.7	0.80	0.80	0.80	43.8
Appro	ach	70	2.0	0.208	14.5	LOS B	0.7	4.7	0.80	0.80	0.80	44.5
East:	Brian Co	burn Boulev	ard									
4	L2	20	2.0	0.461	8.7	LOS A	2.5	18.1	0.56	0.47	0.56	50.1
5	T1	927	2.0	0.461	8.7	LOS A	2.5	18.1	0.56	0.47	0.56	50.2
6	R2	14	2.0	0.461	8.7	LOS A	2.5	18.1	0.56	0.47	0.56	49.0
Appro	ach	961	2.0	0.461	8.7	LOS A	2.5	18.1	0.56	0.47	0.56	50.2
North:	Gerry L	alonde Drive	;									
7	L2	5	75.0	0.200	10.8	LOS B	0.7	5.1	0.63	0.63	0.63	47.8
8	T1	1	2.0	0.200	8.6	LOS A	0.7	5.1	0.63	0.63	0.63	50.3
9	R2	111	2.0	0.200	8.6	LOS A	0.7	5.1	0.63	0.63	0.63	49.2
Appro	ach	117	5.1	0.200	8.7	LOS A	0.7	5.1	0.63	0.63	0.63	49.1
West:	Brian Co	burn Boulev	/ard									
10	L2	258	2.0	0.647	10.6	LOS B	6.4	45.3	0.25	0.08	0.25	48.1
11	T1	1401	2.0	0.647	10.6	LOS B	6.4	45.3	0.25	0.08	0.25	48.6
12	R2	95	2.0	0.647	10.6	LOS B	6.4	45.3	0.25	0.08	0.25	47.8
Appro	ach	1754	2.0	0.647	10.6	LOS B	6.4	45.3	0.25	0.08	0.25	48.5
All Ve	hicles	2902	2.1	0.647	10.0	LOS A	6.4	45.3	0.38	0.25	0.38	49.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

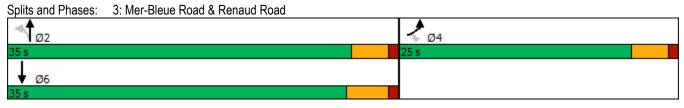
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 12:47:45 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

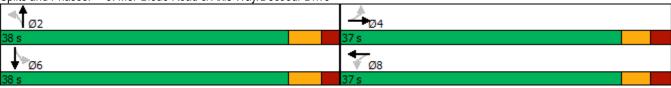
2029 Future Total Synchro Worksheets

	≯	\rightarrow	1	Ť	Ŧ	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	1	<u> </u>	1	<u> </u>	
Traffic Volume (vph)	214	55	125	435	229	292
Future Volume (vph)	214	55	125	435	229	292
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0	1000	1000	0.0
	95.0	0.0	30.0			0.0
Storage Lanes		I				U
Taper Length (m)	15.0	4 00	75.0	4 00	4.00	4 00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.050	0.850	0.050		0.924	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1496	1293	1566	1664	1500	0
Flt Permitted	0.950		0.403			
Satd. Flow (perm)	1496	1293	664	1664	1500	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		55			155	
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	136.7	
Travel Time (s)	49.8			25.6	8.2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	13%	17%	8%	7%	13%	7%
Adj. Flow (vph)	214	55	125	435	229	292
	214	55	125	455	229	292
Shared Lane Traffic (%)	044		405	405	504	0
Lane Group Flow (vph)	214	55	125	435	521	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5			3.5	3.5	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	15	25			15
Number of Detectors	1	1	1	2	2	
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
()	2.0	2.0	2.0	0.0	0.0	
Detector 1 Size(m)						
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel			0.0		0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)				9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				Cl+Ex	CI+Ex	
Detector 2 Channel						
Detector 2 Extend (s)				0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
101001001110303	+			2	U	

	٦	\mathbf{F}	1	1	Ļ	~
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	25.0	25.0	24.0	24.0	25.2	
Total Split (s)	25.0	25.0	35.0	35.0	35.0	
Total Split (%)	41.7%	41.7%	58.3%	58.3%	58.3%	
Maximum Green (s)	20.7	20.7	30.7	30.7	30.3	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.3	4.3	4.3	4.3	4.7	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Min	Min	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	13.5	13.5	12.5	12.5	13.5	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Act Effct Green (s)	12.4	12.4	21.7	21.7	21.4	
Actuated g/C Ratio	0.32	0.32	0.56	0.56	0.56	
v/c Ratio	0.44	0.12	0.33	0.46	0.58	
Control Delay	15.5	5.4	10.6	9.5	9.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.5	5.4	10.6	9.5	9.0	
LOS	B	A	B	A	A	
Approach Delay	13.4			9.7	9.0	
Approach LOS	B			A	A	
Queue Length 50th (m)	9.2	0.0	4.2	16.0	13.6	
Queue Length 95th (m)	33.8	6.1	17.2	45.9	48.2	
Internal Link Dist (m)	667.8	0.1		332.1	112.7	
Turn Bay Length (m)	95.0		30.0	002.1		
Base Capacity (vph)	856	763	556	1394	1274	
Starvation Cap Reductn	0	0	000	0	0	
Spillback Cap Reductn	0	0	0	0	Ũ	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.07	0.22	0.31	0.41	
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 38	.5					
Natural Cycle: 60						
Control Type: Actuated-Un	ncoordinated					
Maximum v/c Ratio: 0.58						
Intersection Signal Delay:	10.2			Ir	ntersectior	LOS: B
Intersection Capacity Utiliz						of Service B
Analysis Period (min) 15						

Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

	≯	+	\rightarrow	4	Ļ	*	≺	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ef 👘		٦	ef 👘		٦	A⊅		۲ ۲	A⊅	
Traffic Volume (vph)	86	61	10	34	64	132	2	721	16	87	450	22
Future Volume (vph)	86	61	10	34	64	132	2	721	16	87	450	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	30.0		0.0	30.0		0.0	35.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	15.0			15.0			75.0			75.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.979			0.899			0.997			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1658	1708	0	1658	1569	0	1658	3154	0	1658	2986	0
Flt Permitted	0.634			0.711			0.482			0.367		
Satd. Flow (perm)	1106	1708	0	1241	1569	0	841	3154	0	640	2986	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		10			117			4			8	
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		221.2			188.0			167.0			463.6	
Travel Time (s)		15.9			13.5			10.0			27.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	13%	2%
Adj. Flow (vph)	86	61	10	34	64	132	2	721	16	87	450	22
Shared Lane Traffic (%)												
Lane Group Flow (vph)	86	71	0	34	196	0	2	737	0	87	472	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	


VZ

Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

2275	Mer-Bleue	Road
2210	mor bloud	i touu

	٦	-	\mathbf{F}	∢	←	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1		36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	37.0	37.0		37.0	37.0		38.0	38.0		38.0	38.0	
Total Split (%)	49.3%	49.3%	4	9.3%	49.3%		50.7%	50.7%		50.7%	50.7%	
Maximum Green (s)	31.3	31.3		31.3	31.3		32.1	32.1		32.1	32.1	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.7	5.7		5.7	5.7		5.9	5.9		5.9	5.9	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)	10.7	10.7		10.7	10.7		16.8	16.8		16.8	16.8	
Actuated g/C Ratio	0.27	0.27		0.27	0.27		0.43	0.43		0.43	0.43	
v/c Ratio	0.29	0.15		0.10	0.38		0.01	0.55		0.32	0.37	
Control Delay	14.0	10.5		11.6	7.9		7.0	10.3		11.7	8.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	_
Total Delay	14.0	10.5		11.6	7.9		7.0	10.3		11.7	8.6	
LOS Annrageh Delay	В	B		В	A		А	B		В	A	
Approach Delay		12.5			8.5			10.3			9.1	
Approach LOS	3.8	B 2.6		1.4	A 3.4		0.1	B 16.5		3.3	A 9.5	
Queue Length 50th (m)	3.0 13.2	2.0 9.9		1.4 6.4	5.4 15.7		0.1	31.2		3.3 11.7	9.5 19.1	
Queue Length 95th (m) Internal Link Dist (m)	1 3 .Z	9.9 197.2		0.4	164.0		0.9	143.0		11.7	439.6	
Turn Bay Length (m)	30.0	197.2		30.0	104.0		30.0	143.0		35.0	439.0	
Base Capacity (vph)	30.0 895	1384		1004	1292		698	2619		531	2481	
Starvation Cap Reductn	095	0		0	0		090	2019		0	2401	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.10	0.05		0.03	0.15		0.00	0.28		0.16	0.19	
	0.10	0.00		0.00	0.10		0.00	0.20		0.10	0.15	
Intersection Summary												
Area Type:	Other											
Cycle Length: 75												
Actuated Cycle Length: 3	9.3											
Natural Cycle: 75												
Control Type: Actuated-U	ncoordinated											
Maximum v/c Ratio: 0.55	0.0				· · · · · ·							
Intersection Signal Delay:					tersection		0					
Intersection Capacity Utili	zation 69.7%			IC	CU Level of	of Service	e C					
Analysis Period (min) 15												

Splits and Phases: 5: Mer-Bleue Road & Axis Way/Decoeur Drive

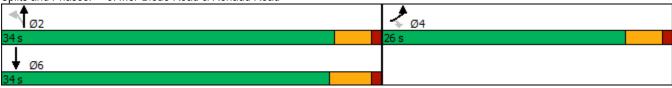
	-	\mathbf{r}	-	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	††	1		<u>†</u> †		1
Traffic Volume (vph)	726	76	0	1752	0	51
Future Volume (vph)	726	76	0	1752	0	51
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		25.0	0.0		0.0	0.0
Storage Lanes		1	0		0	1
Taper Length (m)			15.0		15.0	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3316	1483	0	3316	0	1510
Flt Permitted						
Satd. Flow (perm)	3316	1483	0	3316	0	1510
Link Speed (k/h)	60			60	50	
Link Distance (m)	110.9			308.2	141.0	
Travel Time (s)	6.7			18.5	10.2	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	726	76	0	1752	0	51
Shared Lane Traffic (%)						
Lane Group Flow (vph)	726	76	0	1752	0	51
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	ion 54.5%			IC	CU Level	of Service A
Analysis Period (min) 15						

Intersection

Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	- 11	1		- 11		1
Traffic Vol, veh/h	726	76	0	1752	0	51
Future Vol, veh/h	726	76	0	1752	0	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	250	-	-	-	0
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	726	76	0	1752	0	51

Major/Minor	Major1	Ма	ajor2	Mi	nor1	
Conflicting Flow All	0	0	-	-	-	363
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	634
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	r -	-	-	-	-	634
Mov Cap-2 Maneuver	r –	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
			0		44.0	_

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	634	-	-	-
HCM Lane V/C Ratio	0.08	-	-	-
HCM Control Delay (s)	11.2	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.3	-	-	-


	٨	~	•	+	L	7
	-	•)	I	•	-
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- ሽ	1	- ሽ	↑	ef 👘	
Traffic Volume (vph)	460	90	76	395	489	146
Future Volume (vph)	460	90	76	395	489	146
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	95.0	0.0	30.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	15.0		75.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.969	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1658	1339	1610	1745	1678	0
Flt Permitted	0.950	1000	0.240	1140	1010	0
Satd. Flow (perm)	1658	1339	407	1745	1678	0
Right Turn on Red	1000	Yes	+07	1743	1070	Yes
		90			35	res
Satd. Flow (RTOR)	50	90		50		
Link Speed (k/h)	50			50	60	
Link Distance (m)	691.8			356.1	129.9	
Travel Time (s)	49.8			25.6	7.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	13%	5%	2%	3%	2%
Adj. Flow (vph)	460	90	76	395	489	146
Shared Lane Traffic (%)						
Lane Group Flow (vph)	460	90	76	395	635	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.5	Ŭ		3.5	3.5	Ŭ
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane	0.0			0.0	0.0	
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25	1.03	25	1.03	1.03	1.03
Number of Detectors	25	15	25 1	2	2	10
			•			
Detector Template	Left	Right	Left	Thru	Thru	
Leading Detector (m)	2.0	2.0	2.0	10.0	10.0	
Trailing Detector (m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Position(m)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Size(m)	2.0	2.0	2.0	0.6	0.6	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(m)	0.0	0.0	0.0	9.4	9.4	
Detector 2 Size(m)				0.6	0.6	
Detector 2 Type				CI+Ex	CI+Ex	
Detector 2 Channel						
				0.0	0.0	
Detector 2 Extend (s)	Dural	Derm	Dama	0.0	0.0	
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	

	٦	\mathbf{F}	1	1	Ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	24.8	24.8	23.8	23.8	25.2	
Total Split (s)	26.0	26.0	34.0	34.0	34.0	
Total Split (%)	43.3%	43.3%	56.7%	56.7%	56.7%	
Maximum Green (s)	21.7	21.7	29.7	29.7	29.3	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.7	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.3	4.3	4.3	4.3	4.7	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Min	Min	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	13.5	13.5	12.5	12.5	13.5	
Pedestrian Calls (#/hr)	0	0	0	0	0	
Act Effct Green (s)	18.0	18.0	23.1	23.1	22.7	
Actuated g/C Ratio	0.36	0.36	0.46	0.46	0.45	
v/c Ratio	0.78	0.17	0.41	0.49	0.82	
Control Delay	26.7	4.5	17.4	12.2	21.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.7	4.5	17.4	12.2	21.9	
LOS	С	А	В	В	С	
Approach Delay	23.1			13.0	21.9	
Approach LOS	С			В	С	
Queue Length 50th (m)	37.9	0.0	4.6	25.0	47.2	
Queue Length 95th (m)	#85.2	7.4	14.7	45.0	#93.5	
Internal Link Dist (m)	667.8			332.1	105.9	
Turn Bay Length (m)	95.0		30.0			
Base Capacity (vph)	757	660	254	1090	1048	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.61	0.14	0.30	0.36	0.61	
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 5	0.2					
Natural Cycle: 60						
Control Type: Actuated-U	ncoordinated					
Maximum v/c Ratio: 0.82						
Intersection Signal Delay:					ntersectior	
Intersection Capacity Utili	zation 82.9%			10	CU Level o	of Service E
Analysis Period (min) 15						
# 95th percentile volume	e exceeds ca	ipacity, qi	ueue may	be longe	er.	

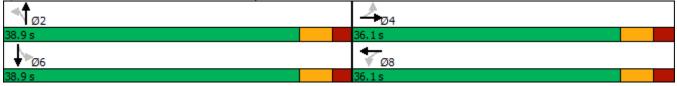
01-06-2021 VZ

Queue shown is maximum after two cycles.

Splits and Phases: 3: Mer-Bleue Road & Renaud Road

Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

	٦	+	\mathbf{r}	4	+	•	•	1	1	1	ţ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	4Î		۲.	4Î		٦	A		ሻ	A	
Traffic Volume (vph)	47	88	5	17	85	113	10	883	24	154	703	87
Future Volume (vph)	47	88	5	17	85	113	10	883	24	154	703	87
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0	1000	0.0	30.0	1000	0.0	30.0	1000	0.0	35.0	1000	0.0
Storage Lanes	1		0.0	1		0.0	1		0.0	1		0.0
Taper Length (m)	15.0		Ū	15.0		v	75.0		Ū	75.0		v
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	1.00	0.992	1.00	1.00	0.914	1.00	1.00	0.996	0.00	1.00	0.983	0.00
Flt Protected	0.950	0.002		0.950	0.014		0.950	0.000		0.950	0.000	
Satd. Flow (prot)	1658	1731	0	1658	1595	0	1658	3152	0	1658	2974	0
Flt Permitted	0.633	1751	U	0.697	1000	U	0.341	0102	U	0.290	2514	U
Satd. Flow (perm)	1105	1731	0	1216	1595	0	595	3152	0	506	2974	0
Right Turn on Red	1105	1751	Yes	1210	1555	Yes	595	5152	Yes	500	2314	Yes
Satd. Flow (RTOR)		5	165		75	165		5	165		23	163
,		50			50			60			60	
Link Speed (k/h) Link Distance (m)		269.4			286.1			179.4			458.1	
· · · ·		209.4			200.1			10.8			450.1	
Travel Time (s)	1 00		1 00	1.00		1 00	1 00		1 00	1.00		1.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	7%	2%	2%	13%	2%
Adj. Flow (vph)	47	88	5	17	85	113	10	883	24	154	703	87
Shared Lane Traffic (%)	47		_	47	400	•	40	007	•	4 = 4		_
Lane Group Flow (vph)	47	93	0	17	198	0	10	907	0	154	790	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.5			3.5			3.5			3.5	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		3.0			3.0			3.0			3.0	
Two way Left Turn Lane												
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
					Ŭ			<u> </u>			v	


Lanes, Volumes, Timings 5: Mer-Bleue Road & Axis Way/Decoeur Drive

2275	Mer-Bleue Road	
2210		

	٦	-	→ <i>ϵ</i>	←	•	1	Ť	1	1	¥	~
Lane Group	EBL	EBT	EBR WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4		8			2			6		
Detector Phase	4	4	8	8		2	2		6	6	
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	36.1	36.1	36.1	36.1		35.9	35.9		35.9	35.9	
Total Split (s)	36.1	36.1	36.1	36.1		38.9	38.9		38.9	38.9	
Total Split (%)	48.1%	48.1%	48.1%	48.1%		51.9%	51.9%		51.9%	51.9%	
Maximum Green (s)	30.0	30.0	30.0	30.0		33.0	33.0		33.0	33.0	
Yellow Time (s)	3.7	3.7	3.7	3.7		3.7	3.7		3.7	3.7	
All-Red Time (s)	2.4	2.4	2.4	2.4		2.2	2.2		2.2	2.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.1	6.1	6.1	6.1		5.9	5.9		5.9	5.9	
Lead/Lag											
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None		Min	Min		Min	Min	
Walk Time (s)	7.0	7.0	7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	23.0	23.0	23.0	23.0		10.5	10.5		10.5	10.5	
Pedestrian Calls (#/hr)	0	0	0	0		0	0		0	0	
Act Effct Green (s)	11.2	11.2	11.2	11.2		32.2	32.2		32.2	32.2	
Actuated g/C Ratio	0.20	0.20	0.20	0.20		0.58	0.58		0.58	0.58	
v/c Ratio	0.21	0.26	0.07	0.52		0.03	0.50		0.53	0.46	
Control Delay	21.0	19.9	18.6	17.8		5.9	8.2		15.8	7.7	
Queue Delay	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	21.0	19.9	18.6	17.8		5.9	8.2		15.8	7.7	
LOS	С	В	В	В		А	А		В	А	
Approach Delay		20.3		17.9			8.2			9.0	
Approach LOS		С		В			А			А	
Queue Length 50th (m)	4.1	7.6	1.4	11.0		0.3	22.5		7.5	18.4	
Queue Length 95th (m)	11.3	17.5	5.5	26.6		2.1	42.1		#28.4	35.4	
Internal Link Dist (m)		245.4		262.1			155.4			434.1	
Turn Bay Length (m)	30.0		30.0			30.0			35.0		
Base Capacity (vph)	599	941	659	899		355	1885		302	1786	
Starvation Cap Reductn	0	0	0	0		0	0		0	0	
Spillback Cap Reductn	0	0	0	0		0	0		0	0	
Storage Cap Reductn	0	0	0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.10	0.03	0.22		0.03	0.48		0.51	0.44	
Intersection Summary											
Area Type:	Other										
Cycle Length: 75											
Actuated Cycle Length: 5	5.4										
Natural Cycle: 80											
Control Type: Actuated-U	ncoordinated										
Maximum v/c Ratio: 0.53											
Intersection Signal Delay:											
Intersection Capacity Utili				ICU Level	of Service	e D					
Analysis Period (min) 15											
# 95th percentile volume	e exceeds ca	pacity, qu	eue may be long	er.							

Queue shown is maximum after two cycles.

Splits and Phases: 5: Mer-Bleue Road & Axis Way/Decoeur Drive

	-	\mathbf{r}	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† †	1		† †		1
Traffic Volume (vph)	1766	103	0	1190	0	100
Future Volume (vph)	1766	103	0	1190	0	100
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		25.0	0.0		0.0	0.0
Storage Lanes		1	0		0	1
Taper Length (m)			15.0		15.0	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	1.00
Frt		0.850				0.865
Flt Protected						
Satd. Flow (prot)	3316	1483	0	3316	0	1510
Flt Permitted						
Satd. Flow (perm)	3316	1483	0	3316	0	1510
Link Speed (k/h)	60			60	50	
Link Distance (m)	109.9			309.2	208.6	
Travel Time (s)	6.6			18.6	15.0	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	1766	103	0	1190	0	100
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1766	103	0	1190	0	100
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	0.0			0.0	0.0	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	3.0			3.0	3.0	
Two way Left Turn Lane						
Headway Factor	1.09	1.09	1.09	1.09	1.09	1.09
Turning Speed (k/h)		15	25		25	15
Sign Control	Free			Free	Stop	
Intersection Summary						
	Other					
Control Type: Unsignalized						
Intersection Capacity Utilizat	tion 64.7%			IC	CU Level of	of Service (
Analysis Period (min) 15						

Intersection

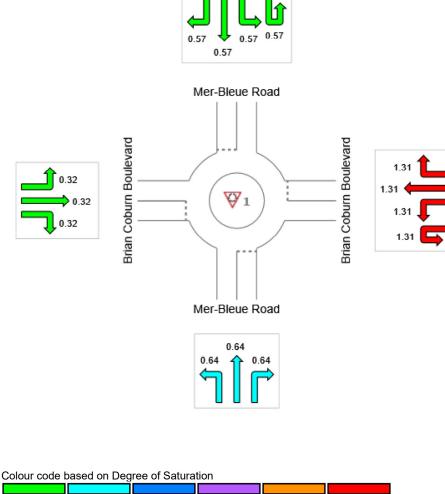
Int Delay, s/veh	0.8						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	- 11	1		^		1	
Traffic Vol, veh/h	1766	103	0	1190	0	100)
Future Vol, veh/h	1766	103	0	1190	0	100	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	ł
Storage Length	-	250	-	-	-	0	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	1766	103	0	1190	0	100	

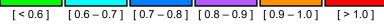
Major/Minor	Major1	Ma	ajor2	Mir	nor1	
Conflicting Flow All	0	0	-	-	-	883
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	289
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		-	-	-	-	289
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	WB	NB	
HCM Control Delay, s	0	0	23.9	
HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	289	-	-	-
HCM Lane V/C Ratio	0.346	-	-	-
HCM Control Delay (s)	23.9	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	1.5	-	-	-

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement


Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

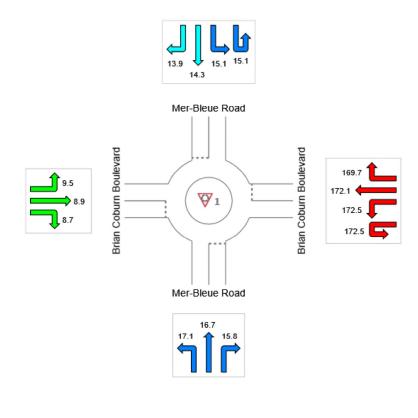
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Appro	Intersection		
	South	East	North	West	Intersection
Degree of Saturation	0.64	1.31	0.57	0.32	1.31

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:25:31 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Approa	Intersection		
	South	East	North	West	Intersection
Delay (Control)	16.4	171.0	14.5	9.1	80.7
LOS	С	F	В	А	F

Colour code based on Level of Service	
---------------------------------------	--

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersection	
	South	East	North	West		
LOS	С	F	В	Α	F	
Colour cc	f N Bria	n Coburn Bc				Brian Coburn Boulevard
LOSA		LOS B	LOS		LOS D	LOS E LOS F
	-			-		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

₩ Site: 1 [Mer-Bleue & Brian Coburn 2029 FT AM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	52	2.0	0.643	17.1	LOS C	5.3	37.9	0.79	1.01	1.45	45.1
2	T1	594	2.0	0.643	16.7	LOS C	5.5	38.9	0.79	1.01	1.44	45.1
3	R2	304	2.0	0.643	15.8	LOS C	5.5	38.9	0.78	1.00	1.42	38.9
Appro	ach	950	2.0	0.643	16.4	LOS C	5.5	38.9	0.78	1.01	1.43	43.5
East:	Brian Col	ourn Bouleva	ard									
4u	U	15	2.0	1.309	172.5	LOS F	71.0	505.3	1.00	4.03	10.74	7.2
4	L2	122	2.0	1.309	172.5	LOS F	71.0	505.3	1.00	4.03	10.74	10.7
5	T1	743	2.0	1.309	172.1	LOS F	78.5	559.2	1.00	4.07	10.84	12.0
6	R2	759	2.0	1.309	169.7	LOS F	78.5	559.2	1.00	4.30	11.42	11.7
Appro	ach	1639	2.0	1.309	171.0	LOS F	78.5	559.2	1.00	4.17	11.10	11.7
North	: Mer-Ble	ue Road										
7u	U	63	2.0	0.574	15.1	LOS C	4.0	28.2	0.75	0.92	1.26	46.3
7	L2	224	2.0	0.574	15.1	LOS C	4.0	28.2	0.75	0.92	1.26	41.0
8	T1	341	2.0	0.574	14.3	LOS B	4.0	28.7	0.74	0.91	1.24	46.0
9	R2	189	2.0	0.574	13.9	LOS B	4.0	28.7	0.74	0.91	1.24	46.6
Appro	ach	817	2.0	0.574	14.5	LOS B	4.0	28.7	0.75	0.91	1.25	45.0
West:	Brian Co	burn Boulev	ard									
10	L2	169	2.0	0.321	9.5	LOS A	1.3	9.6	0.64	0.66	0.69	48.6
11	T1	220	2.0	0.321	8.9	LOS A	1.3	9.6	0.63	0.64	0.66	47.4
12	R2	67	2.0	0.321	8.7	LOS A	1.3	9.4	0.62	0.63	0.66	49.0
Appro	ach	456	2.0	0.321	9.1	LOS A	1.3	9.6	0.63	0.65	0.67	48.2
All Ve	hicles	3862	2.0	1.309	80.7	LOS F	78.5	559.2	0.85	2.29	5.41	21.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

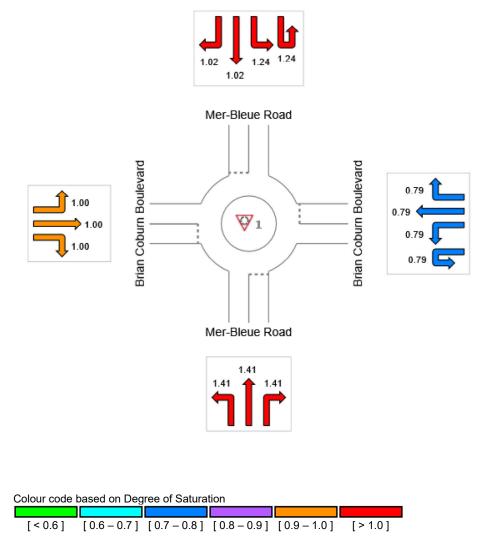
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:25:31 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

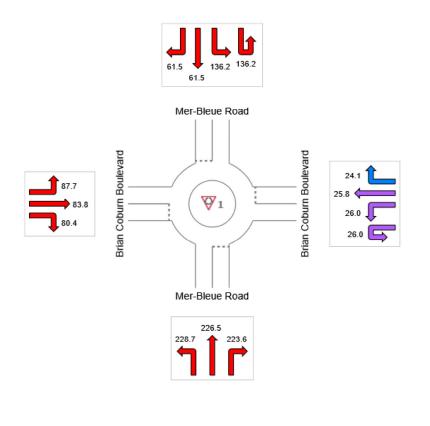
Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Degree of Saturation	1.41	0.79	1.24	1.00	1.41

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:29:51 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Delay (Control)	226.0	25.0	104.3	83.8	110.7
LOS	F	С	F	F	F

Colour code based o	n Level of Service
---------------------	--------------------

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

		Appro	aches		Intersectior	1			
	South	East	North	West	Intereester	·			
LOS	F	С	F	F	F				
	f N Bria	– n Coburn Ba	– – Joulevard						Brian Coburn Boulevard
Colour co	ode base	d on Le	vel of Se	rvice					
		00.5							
LOS	ι L	OS B	LOS	SC	LOS D	LOS E	LOS F		

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

₩ Site: 1 [Mer-Bleue & Brian Coburn 2029 FT PM - Widened]

Roundabout with 1 & 2-lane approaches and circulating road MUTCD (FHWA 2009) example number: 3C-4 Roundabout Guide (TRB 2010) example number: A-3 Site Category: (None) Roundabout

Move	ement Po	erformance	e - Vehi	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Mer-Ble	ue Road										
1	L2	89	2.0	1.409	228.7	LOS F	55.1	392.3	1.00	3.67	10.93	11.9
2	T1	752	2.0	1.409	226.5	LOS F	63.0	448.7	1.00	3.83	11.43	11.9
3	R2	261	2.0	1.409	223.6	LOS F	63.0	448.7	1.00	4.02	12.07	8.4
Appro	bach	1102	2.0	1.409	226.0	LOS F	63.0	448.7	1.00	3.86	11.55	11.1
East:	Brian Col	burn Bouleva	ard									
4u	U	21	2.0	0.790	26.0	LOS D	9.3	66.2	0.89	1.29	2.10	24.5
4	L2	221	2.0	0.790	26.0	LOS D	9.3	66.2	0.89	1.29	2.10	33.8
5	T1	342	2.0	0.790	25.8	LOS D	9.7	69.1	0.89	1.29	2.10	35.9
6	R2	557	2.0	0.790	24.1	LOS C	9.7	69.1	0.89	1.30	2.09	36.0
Appro	bach	1141	2.0	0.790	25.0	LOS C	9.7	69.1	0.89	1.29	2.09	35.4
North	: Mer-Ble	ue Road										
7u	U	57	2.0	1.238	136.2	LOS F	80.0	569.7	1.00	4.01	9.57	18.8
7	L2	936	2.0	1.238	136.2	LOS F	80.0	569.7	1.00	4.01	9.57	14.4
8	T1	519	2.0	1.017	61.5	LOS F	31.2	222.2	1.00	2.27	4.69	28.3
9	R2	222	2.0	1.017	61.5	LOS F	31.2	222.2	1.00	2.27	4.69	29.3
Appro	bach	1734	2.0	1.238	104.3	LOS F	80.0	569.7	1.00	3.27	7.49	19.2
West:	Brian Co	burn Boulev	ard									
10	L2	68	2.0	0.997	87.7	LOS F	11.8	84.3	0.99	1.80	4.07	24.7
11	T1	522	2.0	0.997	83.8	LOS F	13.0	92.5	0.99	1.83	4.18	20.2
12	R2	89	2.0	0.997	80.4	LOS F	13.0	92.5	0.99	1.86	4.27	24.1
Appro	bach	679	2.0	0.997	83.8	LOS F	13.0	92.5	0.99	1.83	4.18	21.2
All Ve	hicles	4656	2.0	1.409	110.7	LOS F	80.0	569.7	0.97	2.71	6.64	17.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 6.

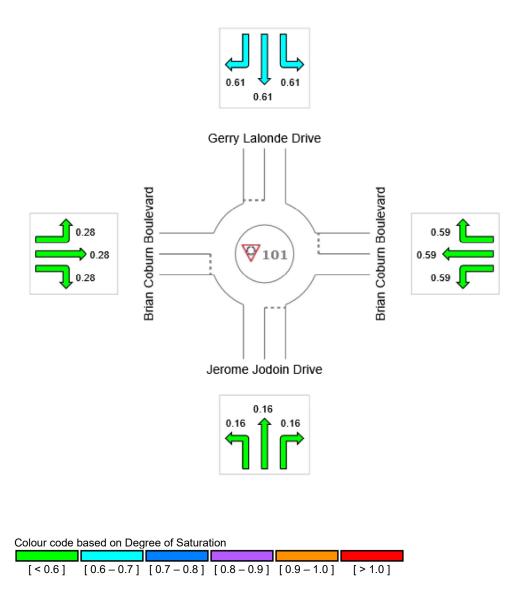
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 4:29:51 PM

Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT AM - Widened]

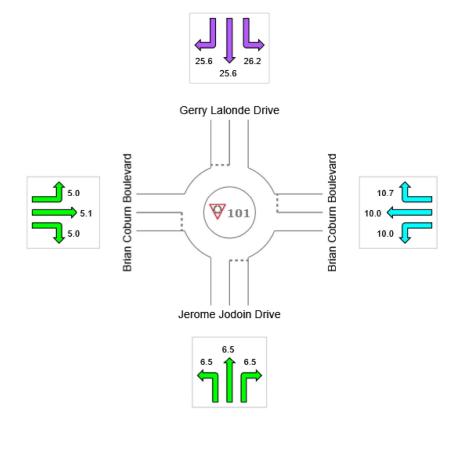
New Site Site Category: (None) Roundabout

All Movement Classes

		Intersection			
	South	East	North	West	Intersection
Degree of Saturation	0.16	0.59	0.61	0.28	0.61

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:23:29 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT AM - Widened]

New Site Site Category: (None) Roundabout

All Movement Classes

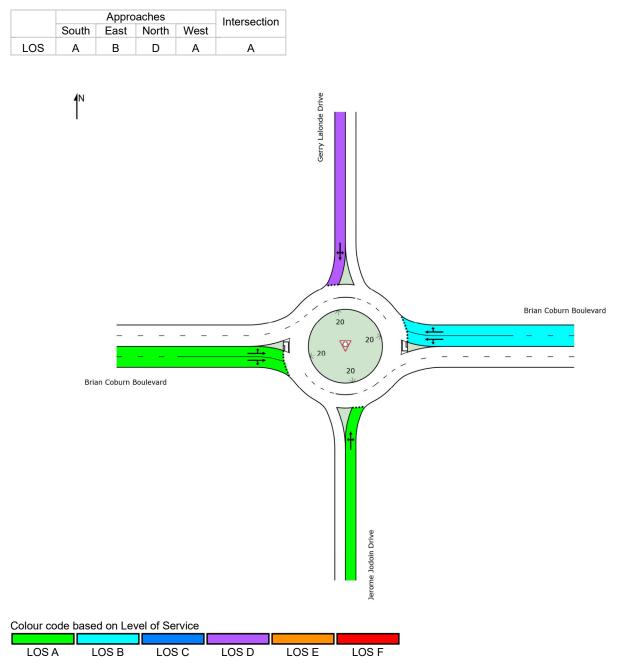
		Appro		Intersection		
	South	East	North	West	Intersection	
Delay (Control)	6.5	10.1	25.6	5.1	9.9	
LOS	А	В	D	А	А	

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control


HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT AM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT AM - Widened]

New Site Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	
South	South: Jerome Jodoin Drive											
1	L2	105	2.0	0.157	6.5	LOS A	0.6	4.1	0.57	0.57	0.57	49.0
2	T1	1	2.0	0.157	6.5	LOS A	0.6	4.1	0.57	0.57	0.57	49.0
3	R2	11	2.0	0.157	6.5	LOS A	0.6	4.1	0.57	0.57	0.57	48.1
Appro	ach	117	2.0	0.157	6.5	LOS A	0.6	4.1	0.57	0.57	0.57	48.9
East:	Brian Co	burn Boulev	/ard									
4	L2	6	2.0	0.586	10.0	LOS B	4.3	31.0	0.51	0.33	0.51	49.1
5	T1	1391	2.0	0.586	10.0	LOS B	4.3	31.0	0.51	0.33	0.51	49.3
6	R2	17	46.0	0.586	10.7	LOS B	4.3	30.9	0.50	0.33	0.50	46.8
Appro	ach	1414	2.5	0.586	10.1	LOS B	4.3	31.0	0.51	0.33	0.51	49.2
North:	: Gerry L	alonde Drive	Э									
7	L2	8	14.0	0.606	26.2	LOS D	3.0	21.3	0.87	1.05	1.53	40.4
8	T1	1	2.0	0.606	25.6	LOS D	3.0	21.3	0.87	1.05	1.53	40.7
9	R2	225	2.0	0.606	25.6	LOS D	3.0	21.3	0.87	1.05	1.53	40.0
Appro	ach	234	2.4	0.606	25.6	LOS D	3.0	21.3	0.87	1.05	1.53	40.0
West:	Brian Co	oburn Boule	vard									
10	L2	47	3.0	0.277	5.0	LOS A	1.4	10.2	0.09	0.02	0.09	52.2
11	T1	669	6.0	0.277	5.1	LOS A	1.4	10.2	0.09	0.02	0.09	52.5
12	R2	30	2.0	0.277	5.0	LOS A	1.4	10.2	0.09	0.02	0.09	51.3
Approach		746	5.7	0.277	5.1	LOS A	1.4	10.2	0.09	0.02	0.09	52.4
All Ve	hicles	2511	3.4	0.606	9.9	LOS A	4.3	31.0	0.42	0.32	0.48	49.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

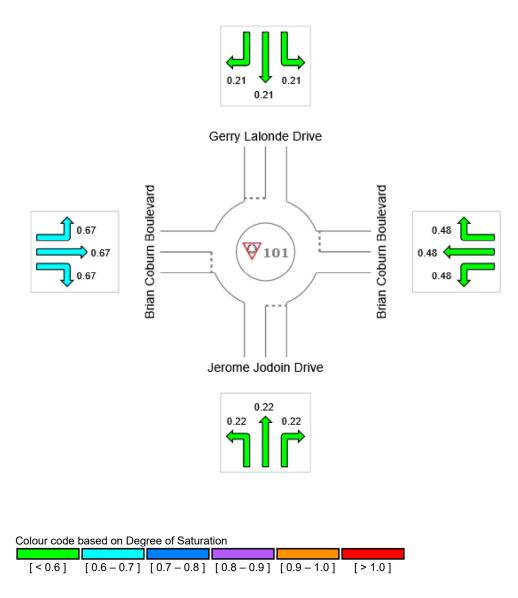
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:23:29 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8

DEGREE OF SATURATION


Ratio of Demand Volume to Capacity, v/c ratio per movement

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT PM - Widened]

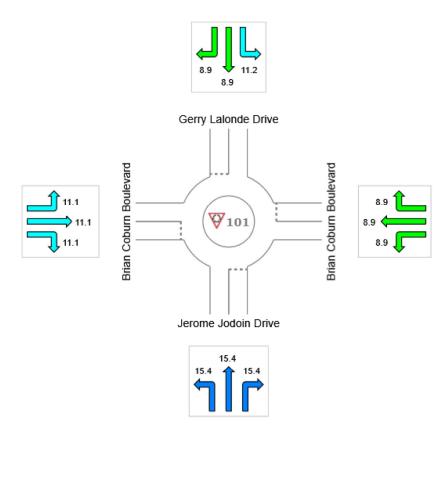
New Site Site Category: (None) Roundabout

All Movement Classes

		Appro	aches		Intersection
	South	East	North	West	Intersection
Degree of Saturation	0.22	0.48	0.21	0.67	0.67

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:26:36 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra

DELAY (CONTROL)


Average control delay per vehicle, or average pedestrian delay (seconds)

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT PM - Widened]

New Site Site Category: (None) Roundabout

All Movement Classes

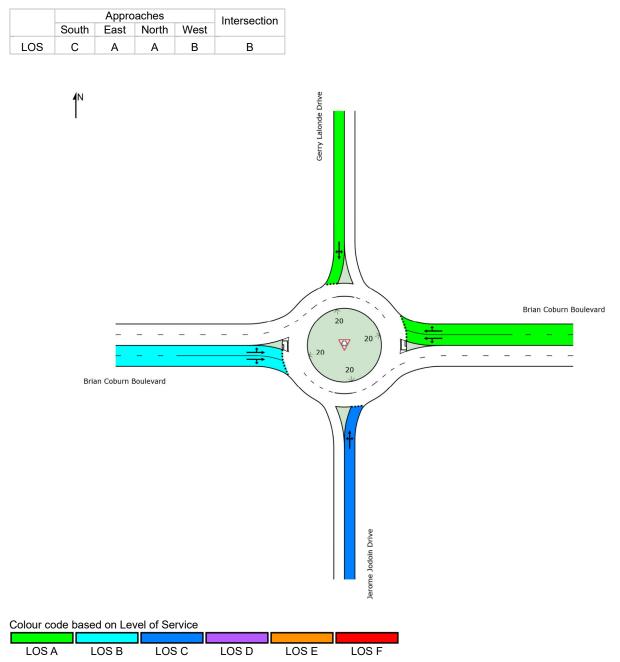
		Appro	Intersection		
	South	East	North	West	Intersection
Delay (Control)	15.4	8.9	9.0	11.1	10.4
LOS	С	А	А	В	В

Colour code based on Level of Service

LOS A	LOS B	LOS C	LOS D	LOS E	LOS F

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control


HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

LANE LEVEL OF SERVICE

Lane Level of Service

Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT PM - Widened]

New Site Site Category: (None) Roundabout

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Roundabout Level of Service Method: Same as Sign Control

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

MOVEMENT SUMMARY

V Site: 101 [Brian Coburn & Gerry Lalonde 2029 FT PM - Widened]

New Site Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued		Aver. No. Cycles	
South	South: Jerome Jodoin Drive											
1	L2	57	2.0	0.218	15.4	LOS C	0.7	4.9	0.81	0.81	0.82	44.2
2	T1	1	2.0	0.218	15.4	LOS C	0.7	4.9	0.81	0.81	0.82	44.2
3	R2	12	2.0	0.218	15.4	LOS C	0.7	4.9	0.81	0.81	0.82	43.4
Appro	ach	70	2.0	0.218	15.4	LOS C	0.7	4.9	0.81	0.81	0.82	44.1
East:	Brian Co	burn Boulev	ard									
4	L2	20	2.0	0.477	8.9	LOS A	2.8	19.7	0.57	0.49	0.59	49.9
5	T1	961	2.0	0.477	8.9	LOS A	2.8	19.7	0.57	0.49	0.59	50.1
6	R2	14	2.0	0.477	8.9	LOS A	2.8	19.7	0.57	0.49	0.59	48.8
Appro	ach	995	2.0	0.477	8.9	LOS A	2.8	19.7	0.57	0.49	0.59	50.0
North:	: Gerry L	alonde Drive	;									
7	L2	5	75.0	0.206	11.2	LOS B	0.7	5.2	0.64	0.64	0.64	47.6
8	T1	1	2.0	0.206	8.9	LOS A	0.7	5.2	0.64	0.64	0.64	50.1
9	R2	111	2.0	0.206	8.9	LOS A	0.7	5.2	0.64	0.64	0.64	49.0
Appro	ach	117	5.1	0.206	9.0	LOS A	0.7	5.2	0.64	0.64	0.64	48.9
West:	Brian Co	burn Boule	/ard									
10	L2	258	2.0	0.667	11.1	LOS B	6.9	49.1	0.26	0.09	0.26	47.8
11	T1	1454	2.0	0.667	11.1	LOS B	6.9	49.1	0.26	0.09	0.26	48.3
12	R2	95	2.0	0.667	11.1	LOS B	6.9	49.1	0.26	0.09	0.26	47.4
Appro	ach	1807	2.0	0.667	11.1	LOS B	6.9	49.1	0.26	0.09	0.26	48.2
All Ve	hicles	2989	2.1	0.667	10.4	LOS B	6.9	49.1	0.39	0.26	0.40	48.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: January 6, 2021 1:26:36 PM Project: C:\Users\RobinMarinac\CGH TRANSPORTATION\CGH Working - Documents\Projects\2020-82 Caivan 2275 Mer Bleue\DATA\Sidra \2020-82 Brian Coburn and Mer Bleue.sip8