6295, 6363, 6409 Perth Street, 6305 Ottawa Street West Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Forecasting Report
Step 4 Strategy Report (Revision 2)

Prepared for:

Caivan Communities 2934 Baseline Road, Suite 302 Ottawa, Ontario, K2H 1B2

Prepared by:

February 2021

PN: 2019-64

Table of Contents

1		Screening	2
2		Existing and Planned Conditions	
	2.1	Proposed Development	
	2.2	Existing Conditions	
	2.2		
	2.2		
	2.2	•	
	2.2	,	
	2.2	,	
	2.2	2.6 Existing Area Traffic Management Measures	7
	2.2		
	2.2	2.8 Collision Analysis	9
	2.3	Planned Conditions	. 1:
	2.3	3.1 Changes to the Area Transportation Network	. 1:
	2.3	3.2 Other Study Area Developments	. 13
3		Study Area and Time Periods	. 12
	3.1	Study Area	. 12
	3.2	Time Periods	. 12
	3.3	Horizon Years	. 13
4		Exemption Review	. 13
5		Development-Generated Travel Demand	. 13
	5.1	Trip Generation and Mode Shares	. 13
	5.2	Trip Distribution	. 15
	5.3	Trip Assignment	. 15
6		Background Network Travel Demand	. 16
	6.1	Transportation Network Plans	
	6.2	Background Growth	. 17
	6.3	Other Developments	
7		Demand Rationalization	
	7.1	2025 Future Background Conditions	
	7.2	2030 Future Background Conditions	
	7.3	Modal Share Sensitivity	
8		Development Design	
	8.1	Design for Sustainable Modes	
	8.2	New Street Networks	
9	_	Boundary Street Design	
10		Access Intersections Design	
	10.1	Location and Design of Access	
	10.2	Intersection Control	
	10.3	Access Intersection Design	
11		Transportation Demand Management	
	11.1	Context for TDM	. 27

11.2	Need and Opportunity	27
11.3	TDM Program	27
12	Neighbourhood Traffic Management	27
13	Transit	28
13.1	Route Capacity	28
13.2	Transit Priority	29
14	Network Concept	29
15	Network Intersection Design	29
15.1		
15.2	Network Intersection Design	29
15	5.2.1 2025 Future Total Network Intersection Operations	29
15	5.2.2 2030 Future Total Network Intersection Operations	
15	5.2.3 Network Intersection MMLOS	31
15	5.2.4 Recommended Design Elements	
16	Next Steps	32
list s	of Ciguros	
	of Figures	_
-	1: Area Context Plan	
-	2: Green and Laffin Lands Draft Plan	
-	3: Study Area Pedestrian Facilities	
-	4: Study Area Cycling Facilities	
-	5: Existing Study Area Transit Service	
•	6: Existing Study Area Transit Stops	
_	7: Existing Intersection Volumes	
_	8: Study Area Collision Records – Representation of 2014-2016	
_	9: City of Ottawa Network Concept – Richmond Context	
-	10: New Site Generation Auto Volumes – 6363-6409 Perth Street	
•	11: New Site Generation Auto Volumes – 6295 Perth Street	
-	12: New Site Generation Auto Volumes – 6305 Ottawa Street	
	13: 2025 Background Development Total Volumes	
-	14: 2030 Background Development Total Volumes	
-	15: 2025 Future Background Traffic Volumes	
-	16: 2030 Future Background Traffic Volumes	
-	17: Concept Pedestrian and Cycling Network – 6295, 6363, 6409 Perth Street	
_	18: Concept Pedestrian and Cycling Network – 6305 Ottawa Street West	
-	19: Concept Traffic Calming Plan – 6295, 6363, 6409 Perth Street	
_	20: Concept Traffic Calming Plan – 6305 Ottawa Street West	
_	21: 2025 Future Total Volumes	
Figure ?	22: 2030 Future Total Volumes	26
Table	e of Tables	
Table 1	: Intersection Count Date	8

Table 2: Existing Intersection Operations	8
Table 3: Study Area Collision Summary, 2014-2018	9
Table 4: Summary of Collision Locations, 2014-2018	10
Table 5: Exemption Review	13
Table 6: Trip Generation Person Trip Rates	13
Table 7: Total Person Trip Generation	14
Table 8: Rural Southwest Mode Share	14
Table 9: Trip Generation by Mode	14
Table 10: OD Survey Existing Distribution – Rural Southwest	15
Table 11: 2025 Future Background Intersection Operations	19
Table 12: 2030 Future Background Intersection Operations	20
Table 13: Boundary Street MMLOS Analysis	24
Table 14: Trip Generation by Transit Mode	28
Table 15: 2025 Future Total Network Intersection Operations	29
Table 16: 2030 Future Total Network Intersection Operations	30
Table 17: 2030 Future Total Network Intersection Operations – PM Peak Diverted Volumes	31
Table 18: Study Area Intersection MMLOS Analysis	31

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Synchro Intersection Worksheets – Existing Conditions

Appendix D - Collision Data

Appendix E - TRANS Background Projection Plots

Appendix F - Synchro/Sidra Intersection Worksheets - 2025 Future Background Conditions

Appendix G – Synchro/Sidra Intersection Worksheets – 2030 Future Background Conditions

Appendix H - MMLOS Analysis

Appendix I – Synchro/Sidra Intersection Worksheets – 2025 Future Total Conditions

Appendix J – Synchro/Sidra Intersection Worksheets – 2030 Future Total Conditions

Appendix K – TDM Checklist

Appendix L – Signal Warrants – Justification 7

Appendix M – Synchro/Sidra Intersection Worksheets – 2030 Future Total Conditions PM Diverted Volumes

Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required through the trip generation and safety triggers. This TIA has been provided to support the zoning bylaw amendment and draft plan of subdivision and the Design Review will be provided for high level context only.

Existing and Planned Conditions

2.1 Proposed Development

The proposed development, located at 6295, 6363 and 6409 Perth Street and 6305 Ottawa Street, is currently greenfield property designated as Development Reserve (DR1) and is included within the Richmond CDP. The proposed development would include a maximum of 577 residential units, with 119 detached homes and 205 townhomes at 6363-6409 Perth Street, 42 detached homes at 6295 Perth Street, and 42 detached homes and 169 townhomes at 6305 Ottawa Street. Access will be provided through Oldenburg Street, a local road connection to Perth Street (west of roundabout) and local connections to Cedarstone Street, Burke Street, with future connections to future development lands on the north side of Ottawa Street. This study will support the zoning bylaw amendment and draft plan of subdivision applications. Figure 1 illustrates the Study Area Context, and Figure 2 illustrates the proposed draft plan for the north and south development lands.

Figure 1: Area Context Plan

Source: http://maps.ottawa.ca/geoOttawabeta/ Accessed: May 28, 2020

2.2 Existing Conditions

2.2.1 Area Road Network

Perth Street: Perth Street is a City of Ottawa arterial road with a divided four-lane urban cross-section east of Rochelle Drive/Queen Charlotte Street and transitions to a two-lane rural cross-section to the west. Sidewalks are provided on both sides of the road and the posted speed limit is 50 km/h within the Village Boundary and 80 km/h to the west. The Ottawa Official Plan reserves a 30.0 metre right of way within the Village Boundary. Perth Street is a truck route.

Ottawa Street: Ottawa Street is a City of Ottawa collector road between Joys Road and Fortune Street with a two-lane rural cross-section with gravel shoulders. The posted speed limit changes between 50 km/h and 70 km/h approximately 400 metres west of Queen Charlotte Street. The existing right-of-way is 20.0 metres.

Fortune Street: Fortune Street is a City of Ottawa collector road with a semi-urban cross-section with no curbs on the west side and a sidewalk on the east side. The posted speed limit is 50 km/h, and a school zone is located from north of Royal York Street to south of Burke Street. The existing right-of-way is 20.0 metres.

Meynell Road: Meynell Road, while currently classified as a local road, is to be a City of Ottawa collector road with a two-lane urban cross-section. Sidewalks are provided on both sides of the road and on-street parking is permitted. The unposted speed limit is 50 km/h and the existing right-of-way is 22.0 metres.

Rochelle Drive: Rochelle Drive is a City of Ottawa local road with a two-lane urban cross-section including a sidewalk on the east side. The unposted speed limit is 50 km/h and the existing right-of-way is 20 metres.

Queen Charlotte Street: Queen Charlotte Street is a City of Ottawa local road with a cross-section that is urbanized on the west side on the section north of Christopher Hamilton Street, and fully rural south of Burke Street. The unposted speed limit is 50 km/h, no sidewalks are provided, and the existing right-of-way is 20.0 metres.

Nixon Farm Drive: Nixon Farm Drive is a City of Ottawa local road with a two-lane urban cross-section. The unposted speed limit is 50 km/h, no sidewalks are provided, and the existing right-of-way is 20.0 metres.

Fowler Street: Fowler Avenue is a City of Ottawa local road with a two-lane rural cross-section. The unposted speed limit is 50 km/h, no sidewalks are provided, and the existing right-of-way is 20.0 metres.

Mira Court: Mira Court is a City of Ottawa local road with a two-lane urban cross-section. The unposted speed limit is 50 km/h, no sidewalks are provided, and the existing right-of-way is 20.0 metres.

Cedarstone Street: Cedarstone Street is a City of Ottawa local road with a two-lane urban cross-section. The unposted speed limit is 50 km/h, a sidewalk is provided on the south side of the roadway, and the existing right-of-way is 20.0 metres.

Burke Street: Burke Street is a City of Ottawa local road with a two-lane rural cross-section. The unposted speed limit is 50 km/h, no sidewalks are provided, and the existing right-of-way is 16.0 metres.

2.2.2 Existing Intersections

The existing signalized area intersections within one kilometre of the site have been summarized below:

Perth Street & Meynell Street

The intersection of Perth Street and Meynell Street is an unsignalized intersection with stop-control located on the minor approach of Meynell Street. All approaches currently consist of single lane shared movements. No turn restrictions are noted.

Perth Street & Rochelle Drive/Queen Charlotte Street

The intersection of Perth Street and Rochelle Drive/Queen Charlotte Street is an unsignalized intersection with stop-control located on the minor approaches. The north and south bound approaches consist of a shared all movement lane, the westbound approach consists of a left-turn lane and shared through/right-turn lane, and the eastbound approach consists of a shared left-turn/though lane and shared through/right-turn lane. No turn restrictions are noted.

Perth Street & Fortune Street

The intersection of Perth Street and Fortune Street is an unsignalized intersection with stop-control located on the minor approaches of Fortune Street. The northbound approach consists of a shared all movement lane, the eastbound approach consists of a through lane and a shared through/right-turn lane, and the westbound approach consists of a shared left-turn/though lane and a through lane. No turn restrictions are noted.

Perth Street & Nixon Farm Drive/Fowler Street The intersection of Perth Street and Nixon Farm Drive/Fowler Street is a signalized intersection. The northbound approach consists of a shared all movement lane, and the southbound approach consists of a left-turn lane and shared through/right-turn lane. The westbound and eastbound approaches each consist of a shared left-turn/though lane and shared through/right-turn lane. No turn restrictions are noted.

Cedarstone Street & Rochelle Drive

The intersection of Cedarstone Street and Rochelle Drive is an unsignalized intersection with stop-control located on the minor approaches of Cedarstone Street. All approaches currently consist of single lane shared movements. No turn restrictions are noted.

Mira Court & Rochelle Drive

The intersection of Mira Court and Rochelle Drive is an unsignalized intersection with stop-control located on the minor approach of Mira Court. All approaches currently consist of single lane shared movements. No turn restrictions are noted.

Burke Street & Fortune Street

The intersection of Burke Street and Fortune Street is an unsignalized intersection with stop-control located on the minor approaches of Burke Street. All approaches currently consist of single lane shared movements. No turn restrictions are noted.

Ottawa Street & Queen Charlotte Street The intersection of Ottawa Street and Queen Charlotte Street is an unsignalized intersection with all-way stop-control. All approaches currently consist of single lane shared movements. No turn restrictions are noted.

2.2.3 Existing Driveways

Private residential driveways exist within 200 metres of proposed local road extensions. Adjacent to the Burke Street extension, there are approximately 30 private residential driveways on both sides of Queen Charlotte Street and Burke Street. Adjacent to the Mira Court extension, there are approximately 32 private residential driveways on both sides of Mira Court and Rochelle Drive. Adjacent to the Cedarstone Street extension, there are approximately 40 private residential driveways on both sides of Cedarstone Street and Bald Eagle Crescent. The extension of Trammel Road and Oldenburg Avenue is estimated to include approximately 96 private residential driveways, excluding rear-lane units, based on the Fox Run Phase 2 approved plans.

2.2.4 Cycling and Pedestrian Facilities

Figure 3 illustrates the pedestrian facilities in the study area and Figure 4 illustrates the cycling facilities.

Sidewalks are provided along both sides of Perth Street to the east of Rochelle Drive/Queen Charlotte Drive and a sidewalk is provided on Fortune Street. While not illustrated below, Queen Charlotte Drive also has a sidewalk on the west side between Perth Street and Christopher Hamilton Street, and Cedarstone Street has a sidewalk west of Rochelle Drive. No dedicated cycling facilities are provided in the study area. Perth Street is designated as a cycling spine route to the east of Rochelle Drive/Queen Charlotte Street, and Ottawa Street, Queen Charlotte Street (between Ottawa Street and Burke Street), Burke Street (between Queen Charlotte Street and Fortune Street), Fortune Street (between Burke Street to Christopher Hamilton Street), and Christopher Hamilton Street (east of Fortune Street) are designated as local routes.

Figure 3: Study Area Pedestrian Facilities

Source: http://maps.ottawa.ca/geoOttawabeta/ Accessed: May 28, 2020

Figure 4: Study Area Cycling Facilities

Source: http://maps.ottawa.ca/geoOttawabeta/ Accessed: May 28, 2020

2.2.5 Existing Transit

Within the study area, the routes #283 and 301 provide service to Richmond Village. In the vicinity of the proposed site, stops are located on Fortune Street at Royal York Street, Martin Street, and Christopher Hamilton Street and at Perth Street at Joys Road. The frequency of these routes within proximity of the proposed site currently are (prior to pandemic reduced service changes):

- Route #283 30-minute service during the peak hours, with a total of four trips during each peak, and three AM trips traveling from Munster and two PM trips ending in Munster
- Route #301 Monday only service, with a single AM trip departing at 8:50 AM, and a single trip returning at 3:40 PM

Figure 5 illustrates the transit system map in the study area and Figure 6 illustrates nearby transit stops.

Figure 5: Existing Study Area Transit Service

Source: http://www.octranspo.com/ Accessed: May 28, 2020

Figure 6: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: May 28, 2020

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the study area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from adjacent development studies for the existing study area intersections. Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date

Intersection	Count Date	Source			
Perth Street & Meynell Road	-	Trip Generation of Phase 1			
Perth Street & Rochelle Drive/Queen Charlotte Street	May 18, 2016	Transportation Brief, Richmond Oaks Health Centre (6265 Pert Street), June 2016, D.J. Halpenny & Associates Ltd.			
Perth Street & Nixon Farm Drive/Fowler Street	August 12, 2015	.2, 2015 Transportation Brief, Samara Square (6143 Perth Street), June 2017, D.J. Halpenny & Associates Lt.			

Figure 7 illustrates the existing traffic volumes and Table 2 summarizes the existing intersection operations. The level of service for signalized intersections is based on the TIA Guidelines for the lane movements and HCM average delay for the overall intersection. Detailed turning movement count data is included in Appendix B and the synchro worksheets are provided in Appendix C.

Figure 7: Existing Intersection Volumes

Table 2: Existing Intersection Operations

1			AM Peak Hour			PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Double Charles O	EBT/R	-	-	-	-	-	-	-	-
Perth Street &	WBL/T	Α	0.03	8.4	0.8	Α	0.10	8.5	2.3
Meynell Road Unsignalized	NB	В	0.25	14.5	7.5	С	0.19	15.2	5.3
	Overall	Α	-	2.3	-	Α	-	2.0	-
	EBL/T	Α	0.00	7.9	0.0	Α	0.01	8.9	0.0
Perth Street &	EBT/R	-	-	-	-	-	-	-	-
Rochelle	WBL	Α	0.01	8.6	0.0	Α	0.00	8.2	0.0
Drive/Queen	WBT/R	-	-	-	-	-	-	-	-
Charlotte Street	NB	В	0.02	11.0	0.8	В	0.01	13.0	0.0
Unsignalized	SB	В	0.07	14.9	1.5	С	0.08	18.8	2.3
	Overall	Α	_	0.7	-	Α	-	0.5	-

lusta una asti a u			AM Peak Hour			PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
D 11 C1 1 O	EB	Α	0.24	4.5	22.5	Α	0.23	4.1	17.6
Perth Street &	WB	Α	0.14	3.7	12.1	Α	0.37	4.6	33.0
Nixon Farm	NB	Α	0.08	6.6	3.8	Α	0.09	14.2	6.0
Drive/Fowler Street	SBL	Α	0.44	34.0	23.7	Α	0.34	31.9	18.6
Signalized	SBT/R	Α	0.05	0.2	0.0	Α	0.12	0.7	0.0
Signunzeu	Overall	Α	0.30	6.7	-	Α	0.39	5.7	-

Notes:

Saturation flow rate of 1800 veh/h/lane

PHF = 0.90

During both the AM and PM peak hours, the study area intersections operate well. No capacity issues are noted.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study are road network. Table 3 summarizes the collisions types and conditions in the study area, Figure 8 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

Table 3: Study Area Collision Summary, 2014-2018

		Number	%
Total (16	100%	
	Fatality	0	0%
Classification	Non-Fatal Injury	4	25%
	Property Damage Only	12	75%
	Angle	1	6%
	Rear end	2	13%
Initial Impact Type	Sideswipe	1	6%
	Turning Movement	3	19%
	SMV Other	9	56%
	Dry	11	69%
Road Surface Condition	Wet	2	13%
	Ice	3	19%
Pedestrian Involved	2	13%	
Cyclists Involved		0	0%

Figure 8: Study Area Collision Records – Representation of 2014-2016

Source: https://maps.bikeottawa.ca/collisions/ Accessed: May 28, 2020

Table 4: Summary of Collision Locations, 2014-2018

	Number	%
Intersections / Segments	16	100%
Perth St @ Queen Charlotte St/Rochelle Dr	4	25%
Fowler St/Nixon Farm Dr @ Perth St	1	6%
Fortune St @ Martin St	1	6%
Franktown Rd btwn Joy's Rd & Perth St	2	13%
Perth St btwn Franktown Rd & Rochelle Dr	4	25%
Perth St btwn Fortune St & Tarryn Ter	1	6%
Perth St btwn Tarryn Ter & Nixon Farm Dr	1	6%
Perth St btwn Nixon Farm Dr & Lennox St	1	6%
Fortune St btwn Perth St & Hamilton St	1	6%

Within the study area, no specific localities are noted to have collisions frequencies of concern. Generally, the trend of the study area is having high representation of single motor vehicle (other) collisions, which are typical of rural roads with higher speed limits than their urban counterparts. Specifically, this collision type is the highest represented at both locations with four collisions.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The subject development is within the Richmond Village Secondary Plan/Community Design Plan. No improvements are included within the 2031 Affordable Network of the Ottawa TMP. The following projects are currently identified beyond the 2031 horizon in the Network Concept and are illustrated in Figure 9:

- Richmond Village By-Pass: Construct a new two-lane road between Huntley Road and Eagleson Road
- Perth Street Widening: Widen Perth Street to four lanes between Village Boundary and Rochelle Drive/Queen Charlotte Street
- Perth Street Widening: Widen Perth Street to four lanes between Shea Road and Eagleson Road

Figure 9: City of Ottawa Network Concept – Richmond Context

The RMA and detailed design for the new intersection at Perth Street and Meynell Road and the urbanization of Perth Street between Meynell Road and Rochelle Drive/Queen Charlotte Street are included within DC funded project list and are expected to be constructed by 2024/25. The new intersection's ultimate condition will include a roundabout and cycle track that continues to the intersection of Perth Street and Rochelle Drive/Queen Charlotte Street, and the intersection's interim condition will be stop-controlled on the minor approaches.

While not identified in planning documents, a sidewalk will be constructed (by others) on the west side of Nixon Farm Drive from Perth Street to 235 m north of Perth Street in 2020.

2.3.2 Other Study Area Developments

Fox Run Phase 1 - Caivan

The first Phase of the Fox Run development is currently under construction. In total, the subdivision will include a total of 214 single family homes. A new intersection on Perth Street will be provided at Meynell Road.

Fox Run Phase 2/3 - Caivan

The second Phases of Fox Run have been termed Phase 2 North and South and include 386 residential units split on the north side of Perth Street and on the west side of the Phase 1 lands. Servicing is underway and it is expected that this phase will be completed by 2024.

Fox Run Phase 4/5 - Caivan

The final two phases of the Fox Run development are currently planned to begin in 2025. It is envisioned that a total of 205 single family homes is planned to be constructed during 2025-2026.

6240-6431 Ottawa Street - Mattamy Richmond Subdivision

A plan of subdivision application has been submitted for a new residential subdivision along Ottawa Street with 848 single family homes and 252 townhomes estimated to be built-out by 2029 with approximately 100-150 units per year. The proposed site will extend Meynell Road, connect to Ottawa Street, and include additional future connections to Royal York Street and Burke Street.

6265 Perth street - Richmond Oaks Health Centre

The proposed medical centre will be developed in two phases, with Phase 1 completed including a medical clinic and pharmacy, and Phase 2 will include 31 senior apartment units and 10,182 sq. ft. of commercial/retail space. Phase 2 is anticipated to be completed by 2022.

Samara Square

Phase 2 of the Hyde Park Senior Development will include two buildings with 35 rental apartments, 124 senior retirement apartments, and supporting commercial/retail. While not currently included in the development planning, Phase 3 will include an additional 122 apartment units in eight buildings.

471 Sangeet Place

An extension of the existing Jock River Estates development includes an additional 10 homes.

3 Study Area and Time Periods

3.1 Study Area

The TIA guidelines recommend a study area that includes all signalized and roundabout intersections within 1.0 km of the subject lands. Due to the current pandemic conditions, and past construction/closures along Eagleson Road and McBean Street in the last three years, limited data is available and verifiable in the area. It is therefore recommended that the following intersections be included in this study, based on available counts and adjacent area studies:

- Perth Street at Meynell Road/Oldenburg Street
- Perth Street at Rochelle Drive/Queen Charlotte Street
- Perth Street at Nixon Farm Drive/Fowler Street

The many local road intersections will not be able to have data collection completed at this time, as the rate at which to scale these volumes is unknown. A review of the generated volumes can be completed with the inclusion of the Neighbourhood Traffic Management module to the scope of work to gauge the relative impact the specific developments would have on the area road thresholds.

No TRANS screenlines are present in the area, therefore no screenlines will be reviewed as part of this study.

3.2 Time Periods

As the proposed development is composed entirely of residential units the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year of 2025 is assumed for the subject site. As a result, the full build-out plus five years horizon year is 2030.

4 Exemption Review

Table 5 summarizes the exemptions for this TIA.

Table 5: Exemption Review

Module	Element	Explanation	Exempt/Required
Design Review Compo	nent	· ·	
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Exempt
Design	4.2.3 New Street Networks	Only required for plans of subdivision	Required
	4.2.1 Parking Supply	Only required for site plans	Exempt
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt
Network Impact Comp	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Required
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt (Currently Development Reserve, therefore zoning changes are "worst case")

5 Development-Generated Travel Demand

5.1 Trip Generation and Mode Shares

This TIA has been prepared using the vehicle and person trip rates for the residential components using the TRANS Trip Generation Study Report (2009) for rural areas. Table 6 summarizes the person trip rates for the proposed land uses.

Table 6: Trip Generation Person Trip Rates

Dwelling Type	Land Use Code	Peak Hour	Vehicle Trip Rate	Person Trip Rates
Single-Detached Dwelling	221	AM	0.62	1.03
88		PM	0.92	1.23
Townhamas/Powhouses	222	AM	0.62	0.85
Townhomes/Rowhouses	223	PM	0.67	0.91

Using the above Person Trip rates, the total person trip generation has been estimated. Table 7 summarizes the total person trip generation by phase and dwelling type. The unit totals are considered a maximum unit count for

the subdivision and it is recognized that the ultimate unit count may be reduced through layout changes to address technical comments from other disciplines.

Table 7: Total Person Trip Generation

Cito	Land Use	Linita	AM Peak Hour			PM Peak Hour		
Site		Units	In	Out	Total	In	Out	Total
6363-6409 Perth St.	Single-Detached	119	36	87	123	89	57	146
0505-0409 Pertii St.	Townhomes	205	64	110	174	99	88	187
6295 Perth St.	Single-Detached	42	12	31	43	32	20	52
6305 Ottawa St.	Single-Detached	42	12	31	43	32	20	52
osus Ottawa St.	Townhomes	169	53	91	144	82	72	154
Total Person Trips			177	350	527	334	257	591

Using the most recent National Capital Region Origin-Destination survey (OD Survey), the existing mode shares for Rural Southwest have been determined and compared to various modes share breakdowns identified by City Staff as potential interpretations of the data. Table 8 summarizes these modal shares.

Table 8: Rural Southwest Mode Share

Travel Mode	Rural Southwest	AM From/Within	PM To/Within
Auto Driver	75%	85%	75%
Auto Passenger	15%	10%	15%
Transit	5%	5%	5%
Bicycle	1%	0%	0%
Walk	4%	0%	5%
Total	100%	100%	100%

Per City of Ottawa staff, the AM and PM mode shares and person trip rates have been projected and summarized in Table 9.

Table 9: Trip Generation by Mode

Phase	Travel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	85%	75	148	223	75%	141	109	250
6262 6400	Auto Passenger	10%	15	30	44	15%	28	22	50
6363-6409	Transit	5%	5	10	15	5%	9	7	16
Perth	Bicycle	0%	1	2	3	0%	0	0	0
Street	Walk	0%	4	7	12	5%	9	7	16
	Total	100%	100	197	297	100%	188	145	333
	Auto Driver	85%	9	23	32	75%	24	15	39
6205	Auto Passenger	10%	2	5	6	15%	5	3	8
6295	Transit	5%	1	2	3	5%	2	1	3
Perth	Bicycle	0%	0	0	0	0%	0	0	0
Street	Walk	0%	0	1	2	5%	2	1	3
	Total	100%	12	31	43	100%	32	20	52
	Auto Driver	85%	55	103	159	75%	86	69	155
5205	Auto Passenger	10%	6	12	18	15%	17	14	31
6305	Transit	5%	4	7	11	5%	6	5	11
Ottawa	Bicycle	0%	0	0	0	0%	0	0	0
Street	Walk	0%	0	0	0	5%	6	5	11
	Total	100%	65	122	187	100%	114	92	206

As shown above, 527 AM and 591 PM peak hour two-way vehicle trips are projected as a result of the proposed development.

No trip reductions factors (i.e., synergy, pass-by, etc.) have been applied as the subject development is residential.

Trip Distribution 5.2

To understand the travel patterns of the subject development the OD Survey has been reviewed to determine the existing travel patterns. Table 10 below summarizes the distribution.

l able .	10: OD Survey Existing D	istribution – Rural Southwest
To/From	Percent of Trips	Via
North	55%	Perth St - 45% east, 10% west
South	5%	Perth St/Martin St - 5% east
East	25%	Perth St east
West	15%	Perth St west
Total	100%	

5.3 Trip Assignment

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the Study Area road network. The new site volumes for 6363-6409 Perth Street, 6295 Perth Street, and 6305 Ottawa Street are illustrated in Figure 10, Figure 11, and Figure 12. Of note for 6305 Ottawa Street, left turns onto Perth Street will be avoided due to the difficulty of making these movements, especially during the peak hours. In a general sense, it is easier to exit Perth Street than it is to enter during the peak hours at non-signalized locations.

Figure 10: New Site Generation Auto Volumes - 6363-6409 Perth Street

Figure 11: New Site Generation Auto Volumes – 6295 Perth Street

Figure 12: New Site Generation Auto Volumes – 6305 Ottawa Street

6 Background Network Travel Demand

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.

6.2 Background Growth

The background growth identified in adjacent developments ranges from 1.5% to 2.0% along Perth Street. A significant amount of the development within the Village of Richmond has been explicitly accounted for in Section 6.3. Therefore, a background growth rate along Perth Street has been assumed as 1.5% in the peak direction for development beyond the Village of Richmond. The TRANS background projection plots are provided in Appendix E.

6.3 Other Developments

The background developments explicitly considered in the background conditions (Section 2.3) include:

- Fox Run Phase 1 Caivan
- Fox Run Phase 2/3 Caivan
- Fox Run Phase 4/5 Caivan
- 6240-6431 Ottawa Street Mattamy Richmond Subdivision
- 6265 Perth street Richmond Oaks Health Centre
- Samara Square
- 471 Sangeet Place

Based on the assumed build-out rates of the adjacent developments, the total background development volumes for the 2025 and 2030 horizons are illustrated in Figure 13 and Figure 14.

Figure 13: 2025 Background Development Total Volumes

Figure 14: 2030 Background Development Total Volumes

7 Demand Rationalization

7.1 2025 Future Background Conditions

Figure 15 illustrates the 2025 future background volumes and Table 11 summarizes the intersection operations. The level of service for signalized intersections is based on the TIA Guidelines for volume to capacity ratio of the lane movements and HCM average delay for the overall intersection, and HCM average delay for unsignalized intersections. The synchro and sidra worksheets are provided in Appendix F.

Figure 15: 2025 Future Background Traffic Volumes

Table 11: 2025 Future Background Intersection Operations

Intersection	Lana		AM Pea	ak Hour			PM Pea	ak Hour	
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay 6.9 5.8 7.5 13.4 7.1 17.4 - 8.8 - 17.4 27.1 0.5 4.4 5.1 14.9 31.6 1.5 5.8	Q (95 th)
	EB	Α	0.45	5.8	22.9	Α	0.42	6.9	20.0
Perth Street &	WB	Α	0.32	5.9	16.0	Α	0.59	5.8	41.5
Meynell Road	NB	Α	0.38	8.7	18.5	Α	0.24	7.5	10.7
Roundabout	SB	Α	0.14	9.2	5.3	Α	0.28	13.4	13.0
	Overall	Α	0.45	6.8	-	Α	0.59	7.1	-
	EBL/T	Α	0.00	8.2	0.0	С	0.02	17.4	0.8
Perth Street &	EBT/R	-	-	-	-	-	-	-	-
Rochelle	WBL	Α	0.01	9.5	0.0	Α	0.00	8.8	0.0
Drive/Queen	WBT/R	-	-	-	-	-	-	-	-
Charlotte Street	NB	В	0.02	12.6	0.8	С	0.02	17.4	0.8
Unsignalized	SB	С	0.09	19.3	2.3	D	0.11	27.1	3.0
	Overall	Α	-	0.6	-	Α	-	0.5	-
Double Charles O	EB	Α	0.34	4.8	30.7	Α	0.31	4.4	23.0
Perth Street &	WB	Α	0.18	3.9	15.0	Α	0.44	5.1	40.1
Nixon Farm	NB	Α	0.07	5.7	3.0	Α	0.09	14.9	5.6
Drive/Fowler Street	SBL	Α	0.41	33.4	20.2	Α	0.31	31.6	16.0
Signalized	SBT/R	Α	0.06	0.2	0.0	Α	0.13	1.5	1.2
Signanzeu	Overall	Α	0.38	6.1	-	Α	0.45	5.8	-

Notes: Saturation flow rate of 1800 veh/h/lane

Overall, the study area intersections will operate like the existing conditions during the 2025 future background horizon. No improvements or mitigation is required.

2030 Future Background Conditions 7.2

Figure 16 illustrates the 2030 future background volumes and Table 12 summarizes the intersection operations. The level of service for signalized intersections is based on the TIA Guidelines for volume to capacity ratio of the lane movements and HCM average delay for the overall intersection, and HCM average delay for unsignalized intersections. The synchro and sidra worksheets are provided in Appendix G.

Figure 16: 2030 Future Background Traffic Volumes Nixon Farm Oldenburg 5(20) 51(99) 42(103) 534(1166) 260(592) 496(1253) 10(3) 227(484) Perth Perth 1(5) 18(35) 23(43) 1090(813) 517(339) 1047(798) 15(16) 0(2) 3(2) 10(4) 48(32) (0) 456(341) 0(0) 20(54) 1(1) Queen Charlotte

Table 12: 2030 Future Background Intersection Operations

Intersection	Lana		AM Pea	ak Hour			PM Pe	ak Hour	
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	Α	0.56	7.6	33.0	Α	0.59	12.1	40.2
Perth Street &	WB	Α	0.40	6.5	22.9	D	0.83	7.1	109.3
Meynell Road	NB	С	0.72	16.2	64.1	Α	0.47	8.4	25.7
Roundabout	SB	Α	0.22	10.4	9.1	Α	0.58	29.8	40.5
	Overall	С	0.72	10.0	-	D	0.83	10.5	-
	EBL/T	Α	0.00	8.5	0.0	В	0.01	11.2	0.0
Perth Street &	EBT/R	-	-	-	-	-	-	-	-
Rochelle	WBL	В	0.02	10.7	0.0	Α	0.00	9.4	0.0
Drive/Queen	WBT/R	-	-	-	-	-	-	-	-
Charlotte Street	NB	С	0.03	15.5	0.8	D	0.03	30.2	0.8
Unsignalized	SB	D	0.14	27.6	3.8	F	0.22	54.0	6.0
	Overall	Α	-	0.6	-	Α	-	0.7	-
Dt. C4 4. 0	EB	Α	0.46	5.7	46.6	Α	0.41	5.1	32.8
Perth Street &	WB	Α	0.23	4.1	19.2	Α	0.59	6.6	63.7
Nixon Farm	NB	Α	0.07	5.7	3.0	Α	0.09	14.9	5.6
Drive/Fowler Street	SBL	Α	0.41	33.4	20.2	Α	0.31	31.6	16.0
Signalized	SBT/R	Α	0.07	0.3	0.0	Α	0.16	12.2	7.5
Signalizea	Overall	Α	0.48	6.4	-	Α	0.58	6.9	-

Notes: Saturation flow rate of 1800 veh/h/lane

PHF = 1.00

Overall, the study area intersections at the 2030 future background horizon will operate similarly to the existing and 2025 future background conditions. The southbound left-turn at the Perth Street and Rochelle Drive/Queen Charlotte Street intersection will experience delays approaching one minute during the PM peak. It is anticipated that the 13 turning vehicles will shift to the Nixon Farm Drive/Fowler Street intersection. No improvements or mitigation is required.

7.3 Modal Share Sensitivity

Capacity constraints have been noted at the Rochelle Drive/Queen Charlotte Street intersection for the northbound and southbound movements. As this is a function of the left-turns, the left-turns will likely move to the Nixon Farm Drive/Fowler Street signalized intersection. This will be modified in the future total conditions.

No additional capacity constraints are noted in the background horizons.

The transit service is at an achievable level and any improvement may also increase service within the Richmond Village as a whole and considered a net benefit for the City.

8 Development Design

8.1 Design for Sustainable Modes

The proposed development is a residential subdivision where each dwelling will include a driveway and garage. Bicycle parking is assumed to be within the individual units. Figure 17 and Figure 18 illustrates the pedestrian concept network with connections to adjacent pedestrian facilities and both collector and arterial roadways. These are conceptual only and meant as guidance once the subdivision proceeds to future approvals beyond the rezoning.

Figure 17: Concept Pedestrian and Cycling Network – 6295, 6363, 6409 Perth Street

Figure 18: Concept Pedestrian and Cycling Network – 6305 Ottawa Street West

8.2 New Street Networks

The planned street network will include a mix of 16.5 and 18.0 metre local roadways, and 20.0 metre local road connections to adjacent local roadways. The local roads will provide the opportunity for parking on one side of the roadway. The subdivision is considered to be designed for 30 km/h roadways.

Traffic calming elements are recommended at the internal intersections, including bulb-outs to narrow each approach to the intersection (e.g., reduced crossing distance). On-street parking is undefined within these concepts. Once the road network pattern and lotting concepts are confirmed, the on-street parking can be outlined in the geometric roadway design. Figure 19 illustrates the proposed locations. These are conceptual only and meant as guidance once the subdivision proceeds to future approvals beyond the rezoning.

Figure 19: Concept Traffic Calming Plan – 6295, 6363, 6409 Perth Street

Figure 20: Concept Traffic Calming Plan – 6305 Ottawa Street West

9 Boundary Street Design

Table 13 summarizes the MMLOS analysis for the boundary street network. Perth Street and Ottawa Street are noted for future improvement and thus the existing and future conditions have been assessed in separate rows where the remaining roadways' existing and future conditions are considered in the same row. The analysis is based on the policy area of Village. The MMLOS worksheets has been provided in Appendix H.

Table 13: Boundary Street MMLOS Analysis

Cogmont	Pedesti	rian LOS	Bicyc	le LOS	Trans	it LOS	Truck LOS	
Segment	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target
Perth (existing)	F	С	F	С	D	N/A	С	D
Perth (interim)	С	С	A/C	В	D	N/A	С	D
Perth (interim)	С	С	Α	В	D	N/A	С	D
Ottawa (existing)	F	С	F	В	D	N/A	N/A	N/A
Ottawa (future)	E	С	D	В	D	N/A	N/A	N/A
Meynell	С	С	Α	D	D	N/A	N/A	N/A
Oldenburg	С	С	Α	D	N/A	N/A	N/A	N/A
Mira	-	С	Α	D	N/A	N/A	N/A	N/A
Cedarstone	E	С	Α	D	N/A	N/A	N/A	N/A
Burke	-	С	Α	В	N/A	N/A	N/A	N/A

Cedarstone Street, Perth Street and Ottawa Street do not meet the pedestrian LOS targets for Richmond Village. The existing Perth Street and Ottawa Street do not have any pedestrian facilities. Cedarstone Street would require a wider sidewalk (1.8 metres) or a boulevard of 0.5 metres or greater to meet the area targets. In the future, Ottawa Street is assumed to include a sidewalk and is limited by the traffic volumes and speeds anticipated along the roadway. No mitigation is recommended for: Perth Street as it is a rural arterial roadway and connections can be provided through the subdivision; for Ottawa Street as the road design is subject to the subdivision work included in 6240-6431 Ottawa Street or, on Cedarstone Street due to limited space for shifting the existing sidewalks.

Similar to the pedestrian conditions, existing Perth Street and Ottawa Street do not have any dedicated cycling facilities and fail to meet the bicycle LOS. The interim south side of Perth Street will have a shoulder facility but still not meet the BLOS target. The future Ottawa Street remains undefined, but the assumption of mixed traffic will not meet the area targets. Along Ottawa Street, it is recommended that the City investigate the ability to place separated facilities for cyclists during the approvals of 6240-6431 Ottawa Street. This is the direction the MMLOS analysis dictates for the roadway, even if it is not ultimately required given the location at the limits of the Village.

10 Access Intersections Design

10.1 Location and Design of Access

The residential accesses will connect to the adjacent road network via local roads and adjacent collector roads of Oldenburg Avenue, Fortune Street and Ottawa Street, and a local road connection to Perth Street. Within the subdivision, no turn lanes are proposed for the internal intersections which will be controlled by minor stop control.

10.2 Intersection Control

The intersection of Street O at Perth Street is considered as a minor stop control and no turn lanes are proposed.

10.3 Access Intersection Design

10.3.1 2025 Future Total Access Intersection Operations

The 2025 future total access intersection volumes are illustrated above in Figure 21 and intersection operations are summarized below in Table 14. The level of service for signalized intersections is based on the TIA Guidelines for volume to capacity ratio of the lane movements and HCM average delay for the overall intersection, and HCM average delay for unsignalized intersections. The synchro and sidra worksheets have been provided in Appendix I.

		Table 14: 2	2025 Future 1	Total Access	Intersection (Operations					
1		AM Peak Hour					PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)		
5 11 61 1 6	EB	Α	0.02	8.1	0.8	Α	0.06	9.2	1.5		
Perth Street &	WB	-	-	-	-	-	-	-	-		
Street O	SB	С	0.26	17.2	7.5	С	0.29	23.7	9.0		
Unsignalized	Overall	Α	-	2.0	-	Α	_	1.9	_		

Overall, the access intersection will operate well during the 2025 future total horizon. No improvements or mitigation are required.

10.3.2 2030 Future Total Access Intersection Operations

The 2030 future total access intersection volumes are illustrated above in Figure 22 and intersection operations are summarized below in Table 15. The level of service for signalized intersections is based on the TIA Guidelines for volume to capacity ratio of the lane movements and HCM average delay for the overall intersection, and HCM average delay for unsignalized intersections. The synchro and sidra worksheets have been provided in Appendix J.

Oldenburg Street 0 80(84) 0(0) 236(225) 32(39) 0(0) 104(74) 12(11) 1(1) 20(13) 53(39) 42(103) 116(221) 14(44) 278(616) 625(1336) 626(1498) 18(33) 243(513) 10(3) 2(17) 377(738) Perth 23(43) ገ ሰ ሰ 27(50) _ Ţ, Perth 28(54) 4(13) 563(447) -550(369) 487(364) 0(0) 1269(945) 1280(971) 15(16) 0(2) 3(2) 10(4) 1(0) 0(1) 1(1) 23(60) 0(0) Queen Charlotte

Figure 22: 2030 Future Total Volumes

Table 15: 2030 Future Total Access Intersection Operations

Intersection	Lana	AM Peak Hour PM Peak H						ak Hour	
intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Perth Street & Street O	EB	Α	0.02	8.2	0.8	Α	0.06	9.5	1.5
	WB	-	-	-	-	-	-	-	-
	SB	С	0.29	18.5	9.0	D	0.34	28.0	10.5
Unsignalized	Overall	Α	-	2.0	-	Α	-	2.0	-

Overall, the access intersection will operate well during the 2030 future total horizon. No improvements or mitigation are required.

11 Transportation Demand Management

11.1 Context for TDM

The mode shares used within the TIA are representative of the area and no major improvements are anticipated to shift these modes.

The subject site is not within a design priority area.

Total bedrooms within the development are subject to the final unit count and layout selections by purchasers. No age restrictions are noted.

11.2 Need and Opportunity

The subject site has been assumed to rely predominantly on auto travel. The study area intersections are anticipated to have residual capacity and if transit service is increased in the area, there may be a shift from auto that is possible.

11.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the residential land uses. The checklist is provided in Appendix K. The key TDM measures recommended include:

- Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)
- Provide the option to include a 1-month Presto card for first time new home purchase, with a set time frame for this offer (e.g., 6-months) from the initial offering of units for each phase/registration
- Provide a multimodal travel option information package to new residents
- Offer personalized trip planning to new residents

The OC Transpo early service and Presto card recommendations will not be required if the City will not consider changing the transit service in Richmond Village.

12 Neighbourhood Traffic Management

The proposed development will connect to the arterial road network through the adjacent local and collector road network which requires a review of the traffic thresholds for the roadways, as stipulated within the TIA guidelines. In general, the TIA thresholds are too low for local and collector roadways when considered as two-way volumes. The thresholds may be more applicable as one-way volumes, although they will still be too low for application when considering areas with limited collector road connectivity to arterial roads or where a single collector is accessed by multiple local roadways.

Given the two-way volume definitions, Oldenburg Avenue will be approaching capacity in 2025 background conditions and is forecasted to exceed the TIA threshold prior to 2030 background conditions. Once 6363-6409 Perth Street is built-out, Oldenburg Avenue will increase to over double the threshold by 2030. Operationally, see Section 15.2, the roundabout may experience some constraints on the Oldenburg Avenue leg given the increase of volumes along Perth Street. This is quirk of the roundabout capacity and Perth Street volumes more than an indication that Oldenburg Avenue is suffering due to exceeding the TIA thresholds for a collector road.

For 6295 Perth Street, Rochelle Drive will be under the local road thresholds. Nixon Farm Drive is currently over the local road thresholds and operates more closely as a collector roadway for all the residential area north of Perth Street west of Huntley Road. Nixon Farm Drive is below the collector road thresholds.

For 6305 Ottawa Street, the forecasted trips would theoretically exceed a single local road threshold. Given the access configuration (Street B, Street E to Burke Street and Street F) these impacts are distributed across multiple roads. Due to the recent pandemic, data collection was limited, and the City has not been able to provide Streetlight data to approximate the area volumes and validate the impact of 6305 Ottawa Street on Burke Street, Fortune Street and Ottawa Street.

Stepping back from the specific roadway thresholds and volumes, the rural nature within Richmond Village limits the ability to feasibly provide solutions beyond the proposed subdivision and boundary roads. Additionally, the under classification of roadways (e.g., Nixon Farm Street) or convoluted routing of the available collector (e.g., Fortune-Royal York-Fowler) will increase the perceived impacts of the volumes on adjacent roadways and contribute to the thresholds being met, currently or in the future. The roadways likely to be impacts are the aforementioned Fortune to Royal York to Fowler route to Perth Street, and two routes to McBean Street via Fortune to Martin or Royal York to Fowler to Strachan. Overall, the development of the Richmond Village West Development Lands is going to have a relative impact on the local and collector road volumes. The increase in traffic from the subject lands at 6295, 6363, 6409 Perth Street and 6305 Ottawa Street West, while exceeding the TIA Guidelines two-way volume thresholds, is not anticipated to have undue impacts on the roads and can be supported.

13 Transit

13.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 16 summarizes the transit trip generation.

Table 16: Trip Generation by Transit Mode

Travel Mode N	Mode Share	AM Peak Period PM Peal				1 Peak Peri	ak Period		
Travel Mode	Widde Share	In	Out	Total	In	Out	Total		
Transit	5%	10	19	29	17	13	30		

The proposed development is anticipated to generate an additional 29 AM peak hour transit trips and 30 PM peak hour transit trips. Of these trips, 19 outbound AM trips and 17 inbound PM trips are anticipated. Given the routes along Perth Street, it is likely majority of these trips will be to the east. It is unlikely any trips will be west to Munster.

Overall, the forecasted new transit trips would result in the need for approximately half of a single bus (55-person capacity) during the AM and PM peak hours for local service.

13.2 Transit Priority

No transit priority is required explicitly for this study.

14 Network Concept

The background and forecasted site trips do not exceed the anticipated lane capacities on the boundary road network. The development aligns with the development concepts contemplated in the Richmond CDP and planned infrastructure noted therein.

15 Network Intersection Design

15.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

15.2 Network Intersection Design

15.2.1 2025 Future Total Network Intersection Operations

The 2025 future total intersection operations are summarized below in Table 17. The level of service for signalized intersections is based on the TIA Guidelines for volume to capacity ratio of the lane movements and HCM average delay for the overall intersection, and HCM average delay for unsignalized intersections. The synchro and sidra worksheets have been provided in Appendix I.

Table 17: 2025 Future Total Network Intersection Operations

Interception	Long		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	9.0 6.2 8.8 18.3 8.8 10.6 - 9.2 - 24.6 37.9 0.7 5.2 6.5 14.4 32.7 8.7	Q (95 th)
	EB	Α	0.57	7.7	35.3	Α	0.53	9.0	31.6
Perth Street &	WB	Α	0.40	5.9	22.1	С	0.73	6.2	68.5
Meynell Road	NB	Α	0.52	12.7	32.5	Α	0.32	8.8	15.2
Roundabout	SB	Α	0.30	10.6	13.2	Α	0.51	18.3	31.8
	Overall	Α	0.57	8.6	-	С	0.73	8.8	-
	EBL/T	Α	0.00	8.5	0.0	В	0.02	10.6	0.8
Perth Street & Rochelle	EBT/R	-	-	-	-	-	-	-	-
	WBL	В	0.01	10.2	0.0	Α	0.00	9.2	0.0
Drive/Queen	WBT/R	-	-	-	-	-	-	-	-
Charlotte Street	NB	В	0.03	14.5	0.8	С	0.03	24.6	0.8
Unsignalized	SB	С	0.14	22.5	3.8	E	0.19	37.9	5.3
	Overall	Α	-	0.6	-	Α	-	0.7	-
5 11 61 1.0	EB	Α	0.44	6.0	47.8	Α	0.40	5.2	33.7
Perth Street &	WB	Α	0.24	4.6	22.0	Α	0.55	6.5	60.2
Nixon Farm	NB	Α	0.07	5.5	2.9	Α	0.08	14.4	5.4
Drive/Fowler	SBL	Α	0.49	35.0	25.0	Α	0.38	32.7	18.9
Street Signalized	SBT/R	Α	0.07	0.3	0.0	Α	0.15	8.7	6.1
Signulized	Overall	Α	0.49	7.2	-	Α	0.56	8.8 18.3 8.8 10.6 - 9.2 - 24.6 37.9 0.7 5.2 6.5 14.4 32.7 8.7	-

Notes: Saturation flow rate of 1800 veh/h/lane

PHF = 1.00

\$: Delay exceeds 300s

The network intersection operations for the 2025 future total horizon operate similar to the 2025 future background conditions. No improvements or mitigation is required.

15.2.2 2030 Future Total Network Intersection Operations

The 2030 future total intersection operations are summarized below in Table 18. The level of service for signalized intersections is based on the TIA Guidelines for volume to capacity ratio of the lane movements and HCM average delay for the overall intersection, and HCM average delay for unsignalized intersections. The synchro and sidra worksheets have been provided in Appendix J.

Table 18: 2030 Future Total Network Intersection Operations

ludana atian	1		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay 20.2 12.7 11.2 280.1 46.5 12.5 - 10.0 - 51.1 86.0 1.2 6.2 8.7 14.4 32.7 12.6 8.5	Q (95 th)
	EB	В	0.70	12.1	59.1	С	0.77	20.2	75.3
Perth Street &	WB	Α	0.48	6.4	29.8	E	0.99	12.7	330.9
Meynell Road	NB	E	0.96	57.4	190.9	Α	0.57	11.2	37.4
Roundabout	SB	Α	0.40	11.7	19.1	F	1.23	280.1	386.6
	Overall	E	0.96	22.0	-	F	1.23	46.5	-
	EBL/T	Α	0.00	8.8	0.0	В	0.03	12.5	0.8
Perth Street & Rochelle	EBT/R	-	-	-	-	-	-	-	-
	WBL	В	0.02	11.7	0.8	Α	0.00	10.0	0.0
Drive/Queen	WBT/R	-	-	-	-	-	-	-	-
Charlotte Street	NB	С	0.04	18.5	0.8	F	0.06	51.1	1.5
Unsignalized	SB	D	0.21	33.3	5.3	F	0.37	86.0	10.5
	Overall	Α	-	0.8	-	Α	-	1.2	-
- · · · · · · ·	EB	Α	0.57	7.4	70.5	Α	0.50	6.2	46.8
Perth Street &	WB	Α	0.29	4.9	27.2	В	0.70	8.7	95.7
Nixon Farm	NB	Α	0.07	5.5	2.9	Α	0.08	14.4	5.4
Drive/Fowler	SBL	Α	0.49	35.0	25.0	Α	0.38	32.7	18.9
Street	SBT/R	Α	0.08	0.4	0.0	Α	0.16	12.6	7.6
Signalized	Overall	Α	0.59	7.4	-	В	0.69	8.5	-

Notes:

Saturation flow rate of 1800 veh/h/lane

PHF = 1.00

The network intersection operations for the 2030 future total horizon will see a degradation of the southbound approaches along Perth Street at Oldenburg Avenue and at Rochelle Drive. Perth Street at Rochelle Drive/Queen Charlotte Street does not meet signal warrants and the warrant is provided in Appendix L.

The decrease in the PM peak operations on Oldenburg Avenue to a v/c of 0.99 is due to the increase in traffic along Perth Street to the westbound left-turn movement. The continued build-out of 6240-6431 Ottawa Street is the primary reason for the increase in westbound left-turn volumes which reduce potential gaps for the southbound traffic to access the roundabout. The traffic projections assumed within this TIA did not alter the 2019 TIA (Stantec) for 6240-6431 Ottawa Street which applied over 75% of all development traffic to Meynell Road. A greater utilization of Ottawa Street is anticipated and will need to be reassessed by those development lands once they proceed. As an example, if the westbound through and left-turn volumes were decreased by 100 vehicles, the v/c ratio for the southbound approach would improve to 1.00, and at 125 vehicles would improve to 0.92. Therefore, the development traffic associated with 6295, 6363, 6409 Perth Street and 6305 Ottawa Street West can be accommodated by the road network in the 2030 horizon and no mitigation is recommended as part of this study.

The southbound approach at the Perth Street and Rochelle Drive/Queen Charlotte Street intersection is also subject to the increased volumes along Perth Street, limiting the ability for southbound left-turns to be completed. The Nixon Farm Drive/Fowler Street signalized intersection has residual capacity and can accommodate these additional left-turns. The City may investigate the need to implement signage limiting

southbound left-turns during the PM peak hours to encourage the use of Nixon Farm Drive and act as an enforcement tool to avoid this constrained movement. As the northbound left-turn movement is a single vehicle, it is anticipated that there will be a vehicle that will attempt to make this movement but does not require any mitigation.

As a sensitivity, Table 19 summarizes the intersection operations if 125 westbound left-turns and 12 southbound left-turns are shifted to the Perth Street and Nixon Farm Drive/Fowler Street intersection to illustrate that the road network has residual capacity to accommodate all the development lands in west Richmond Village. The westbound queuing is not anticipated to reach the previous intersection at Lennox Street. The synchro and sidra worksheets are provided in Appendix M.

Table 19: 2030 Future Total Network Intersection Operations – PM Peak Diverted Volumes

Intersection	Lane	PM Peak Hour						
intersection	Lane	LOS	V/C	Delay	Q (95 th)			
	EB	В	0.67	14.0	53.5			
Double Church & Mountail Bood	WB	D	0.90	7.4	147.9			
Perth Street & Meynell Road Roundabout	NB	Α	0.58	12.2	39.5			
Kounaabout	SB	Е	0.92	72.3	121.1			
	Overall	E	0.92	17.8	-			
	EBL/T	В	0.02	11.7	0.8			
	EBT/R	-	-	-	-			
Perth Street & Rochelle	WBL	В	0.00	10.0	0.0			
Drive/Queen Charlotte Street	WBT/R	-	-	-	-			
Unsignalized	NB	Е	0.05	42.1	1.5			
	SB	D	0.09	33.1	2.3			
	Overall	Α	-	0.5				
	EB	Α	0.50	6.4	48.5			
Doubh Chuach & Nivon Found	WB	В	0.70	9.2	101.1			
Perth Street & Nixon Farm	NB	Α	0.08	14.2	5.4			
Drive/Fowler Street Signalized	SBL	Α	0.43	33.6	21.4			
Signanzea	SBT/R	Α	0.15	12.2	7.6			
	Overall	В	0.70	9.0	-			

Notes:

Saturation flow rate of 1800 veh/h/lane

PHF = 1.00

15.2.3 Network Intersection MMLOS

Table 20 summarizes the MMLOS analysis for the network intersections of Perth Street at Nixon Farm Drive/Fowler Street. The existing and future conditions will be the same and are considered in one row. The intersection analysis is based on the policy area of village arterial. The MMLOS worksheets has been provided in Appendix H.

Table 20: Study Area Intersection MMLOS Analysis

Intersection	Pedesti	rian LOS	Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
intersection	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Perth Street & Nixon Farm Drive/Fowler Street	D	С	D	С	N/A	N/A	F	D	В	D

The MMLOS targets will not be met for the pedestrian, bicycle, and truck LOS. The pedestrian level of service would require a maximum of three lanes at a crossing to meet a LOS C. The mixed traffic approaches for cyclists

govern the bicycle LOS and require improvements on the approach geometry to meet the target LOS. The truck LOS is not met due to turning radii off of Perth Street and the single receiving lanes to the north and south.

No mitigation is recommended as part of this study. The City may investigate the complete reconstruction of the intersection to improve BLOS and TrLOS and the feasibility of lane reductions along Perth Street to improve the PLOS.

While no target is designated for transit in the Village setting, a transit route does travel along Perth Street and would receive a TLOS B.

15.2.4 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

16 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes 119 detached homes and 205 townhomes at 6363-6409 Perth Street, 42 detached homes at 6295 Perth Street, and 42 detached homes and 169 townhomes at 6305 Ottawa Street
- Accesses will be provided through the extension of existing local roads of Burke Street, Mira Court, Cedarstone Street and Oldenburg Avenue/Trammel Road
- The development is proposed to be completed as separate phases
- The trip generation and safety triggers were met for the TIA Screening, and the Design Review modules will be provided for high level context only

Existing Conditions

- Perth Street is an arterial road, and Ottawa Street, Fortune Street and Meynell Road are collector roads in the study area
- Future roadways include local roads and the extensions of the existing local roads
- Sidewalks are provided on Rochelle Drive, Cedarstone Street, Fortune Street and both sides of Perth Street
- A low number of collisions were noted on the road network and no patterns were noted
- The existing network intersections operate well during both peaks

Development Generated Travel Demand

- The proposed development is forecasted produce 297 two-way people trips during the AM peak hour and 333 two-way people trips during the PM peak hour from 6363-6409 Perth Street, 43 two-way people trips during the AM peak hour and 52 two-way people trips during the PM peak hour from 6295 Perth Street, and 187 two-way people trips during the AM peak hour and 206 two-way people trips during the PM peak hour from 6305 Ottawa Street
- Of the forecasted people trips, 414 two-way trips will be vehicle trips during the AM peak hour and 444 two-way trips will be vehicle trips during the PM peak hour based on an 85% modal share target
- Of the forecasted trips, 55% are anticipated to travel north, 25% to the east, 15% to the west, and 5% to the south

Background Conditions

- The background developments were explicitly included in the background conditions, along with a total background growth of 1.5% per annum along the peak direction mainline volumes
- The study area intersections will operate similar to the existing conditions

Development Design

- The bike and auto parking areas are to be located at each dwelling unit
- Pedestrian connections will be made to Oldenburg Avenue, Perth Street and Cedarstone Street, with future connections to the adjacent Mattamy development along Ottawa Street
- The conceptual traffic calming elements are recommended at the future internal road intersections including bulb-outs to narrow each approach to the intersection and reduce pedestrian crossing distances and on-street parking ultimately alternative sides to the north of the existing phases

Boundary Street Design

- The boundary streets of Perth Street (existing), Ottawa Street and Cedarstone Street will not meet pedestrian MMLOS targets, due to boulevard spacing and auto volumes and/or posted speed limits
- The bicycle LOS targets will not be met on Perth Street (existing and south side interim) and Ottawa Street due to lack of facilities and require the implementation of separated facilities
- No improvements are recommended as part of the proposed subdivisions

Access Intersections Design

- The accesses are proposed as extensions of adjacent local roads and a local road connection to Perth Street
- No specific recommendations or design elements are required outside of typical plan of subdivision requirements and City standards

TDM

- Supportive TDM measures to be included within the proposed development should include:
 - Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)
 - o Provide the option to include a 1-month Presto card for first time new home purchase, with a set time frame for this offer (e.g., 6-months) from the initial offering of units for each phase/registration
 - o Provide a multimodal travel option information package to new residents
 - Offer personalized trip planning to new residents
- The early service and Presto card TDM measures are contingent on the City providing improved transit service to Richmond Village

Neighbourhood Traffic Management

- In general, the TIA thresholds are too low for local and collector roadways when considered as two-way
 volumes and may be more applicable as one-way volumes, although they will still be too low for
 applications when considering areas with limited collector road connectivity to arterial roads or where a
 single collector is accessed by multiple local roadways
- While forecasted volumes will exceed the TIA Guidelines two-way volume thresholds, is not anticipated to have undue impacts on the roads and can be supported.

Transit

- Transit service is currently provided along Perth Street in the peak direction
- To meet forecasted transit use, half a single bus, or equivalent capacity, would be required for peak hour service on local routes
- No specific transit priority measures were considered as part of this development

Network Concept

- The background and forecasted site trips do not exceed the anticipated lane capacities on the boundary road network
- The development aligns with the development concepts contemplated in the Richmond CDP and planned infrastructure noted therein

Network Intersection Design

- Generally, the network intersections will operate well during the 2025 future total conditions and the Perth Street at Meynell Road roundabout will reach capacity by 2030
- This capacity analysis assumes a significant percentage of the future Mattamy lands utilizing the roundabout to access Meynell Road, while it is likely this volume will divert to Ottawa Street
- A sensitivity of 75 trips diverting to Ottawa Street would result in the roundabout operating within capacity thresholds
- It is also noted that the southbound left0turn from Rochelle Drive will ultimately divert to Nixon Farm Drive and the signal has residual capacity to facilitate an additional 12 southbound left-turn movements
- The MMLOS targets will not be met for the pedestrian, bicycle, and truck LOS at Perth Street & Nixon Farm Drive/Fowler Street
- No mitigation is recommended as part of this study, as the City would be required to reduce Perth Street
 to a maximum of a three-lane cross section to meet the PLOS, require separated bike facilities for the
 BLOS larger radii for any truck movements

17 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

A. J. HARTE 100149314
February 26, 2021

Andrew Harte, P.Eng. Senior Transportation Engineer Reviewed By:

Christopher Gordon, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: 04-Jun-20
Project Number: 2019-64
Project Reference: Green & Laffin Lands

1.1 Description of Proposed Development	
Municipal Address	6409, 6363, 6295 Perth Street, 6305 Ottawa Street West
Description of Location	Existing farm land within the Village of Richmond
Land Use Classification	Development Reserve (DR1)
	6406 & 6363 Perth St: 116 singles, 204 towns
Approximate Development Size	6295 Perth St: 41 singles
	6305 Ottawa St W: 200 singles
	6406 & 6363 Perth St: Connectivity through Fox Run North
A	6295 Perth St: New connection to Mira Court
Accesses	6305 Ottawa St W: New connection to Queen Charlotte Street at
	Burke Street
	6406 & 6363 Perth St: One or two phases
Phase of Development	6295 Perth St: Single phase
	6305 Ottawa St W: Single phase
Buildout Year	2027
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger		
Land Use Type	Single-family homes	
Development Size	577	Units
Trip Generation Trigger	Yes	(Approx. 204 townhomes, 357 singles)

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that		
is designated as part of the City's Transit Priority, Rapid Transit or Spine	No	
Bicycle Networks?		
Is the development in a Design Priority Area (DPA) or Transit-oriented	No	
Development (TOD) zone?	No	
Location Trigger	No	

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	Yes
Are there any horizontal/vertical curvatures on a boundary street limits	No
sight lines at a proposed driveway?	No
Is the proposed driveway within the area of influence of an adjacent traffic	
signal or roundabout (i.e. within 300 m of intersection in rural conditions,	Yes
or within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	No
serves an existing site?	
Is there is a documented history of traffic operations or safety concerns on	No
the boundary streets within 500 m of the development?	IVU
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte (Places Print)	
Professional Title:	(Please Print) Professional Engineer	
Signatura	of Individed Market that she shows four criteria	
Signature	of Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)
Address: 13 Markham Avenue
City / Postal Code: Ottawa / K2G 3Z1
Telephone / Extension: (613) 697-3797
E-Mail Address: Andrew.Harte@CGHTransportation.com

Appendix B

Turning Movement Counts

FIGURE 2.1
EXISTING 2016 WEEKDAY PEAK AM AND PM HOUR TRAFFIC COUNTS

NOT TO SCALE

FIGURE 2.1
YEAR 2015 WEEKDAY PEAK AM AND PM HOUR TRAFFIC COUNTS

NOT TO SCALE

PM Peak Hour

Site Traffic

Richmond Village Development Corporation Richmond Village - Phase 1 Figure 7

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Lanes, Volumes, Timings 1: Queen Charlotte/Rochelle & Perth

1: Queen Charlotte	: Queen Charlotte/Rochelle & Perth											
	•	→	*	•	—	4	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4î>		ሻ	1₃			4			44	
Traffic Volume (vph)	1	516	0	10	287	5	0	1	10	20	1	4
Future Volume (vph)	1	516	0	10	287	5	0	1	10	20	1	4
Satd. Flow (prot)	0	3316	0	1658	1740	0	0	1529	0	0	1643	0
Flt Permitted				0.950							0.961	
Satd. Flow (perm)	0	3316	0	1658	1740	0	0	1529	0	0	1643	0
Lane Group Flow (vph)	0	574	0	11	325	0	0	12	0	0	27	0
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilizat	tion 31.1%			IC	U Level	of Service	Α					
Analysis Period (min) 15												

Synchro 10 Light Report Page 1 6295, 6363, 6409 Perth St %dplanid% Existing 6295, 6363, 6409 Perth St %dplanid% Existing

HCM 2010 TWSC

1: Queen Charlotte/Rochelle & Perth

0.5				

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			ß			4			4	
Traffic Vol, veh/h	1	516	0	10	287	5	0	1	10	20	1	4
Future Vol, veh/h	1	516	0	10	287	5	0	1	10	20	1	4
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	573	0	11	319	6	0	1	11	22	1	4
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	325	0	0	573	0	0	922	922	287	633	919	322
Stage 1	-	-	-	-	-	-	575	575	201	344	344	-
Stage 2				_			347	347		289	575	
Critical Hdwy	4.13			4.13		_	7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1	-1.10						6.53	5.53	0.00	6.13	5.53	0.20
Critical Hdwy Stg 2	-			-			6.13	5.53		6.53	5.53	
Follow-up Hdwy	2.219			2.219			3.519	4.019	3.319	3.519	4.019	3.319
Pot Cap-1 Maneuver	1233			998			238	269	710	378	270	718
Stage 1	1200			-			471	502	7 10	671	636	7 10
Stage 2	-	-	_	_		-	668	634	_	695	502	_
Platoon blocked. %							-000	001		-000	002	
Mov Cap-1 Maneuver	1233	_	_	998	_	-	234	266	710	367	267	718
Mov Cap-2 Maneuver	-	-	-	-	-		234	266	- 10	367	267	
Stage 1	-	-	-	-	-	-	471	501	-	670	629	-
Stage 2							655	627		682	501	
	ED			1A/P			NE			0.5		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.3			11			14.9		
HCM LOS							В			В		
Minor Lane/Major Mvn	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		616	1233	-		998	-	-	392			
HCM Lane V/C Ratio		0.02				0.011			0.071			
HCM Control Delay (s)	1	11	7.9	0		8.6			14.9			
HCM Lane LOS		В	Α.5	A		Α.			В			
HCM 95th %tile Q(veh)	0.1	0			0			0.2			
HOW SOUL YOUR Q(VEH	1	0.1	U	-		U			0.2			

05-30-2020

	-	*	1	←	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f >			ની	N/F	
Traffic Volume (vph)	425	8	31	260	23	92
Future Volume (vph)	425	8	31	260	23	92
Satd. Flow (prot)	1740	0	0	1736	1541	0
Flt Permitted				0.995	0.990	
Satd. Flow (perm)	1740	0	0	1736	1541	0
Lane Group Flow (vph)	481	0	0	323	128	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalized	d					
Intersection Capacity Utiliz	ation 55.8%			IC	CU Level o	of Service E
Analysis Period (min) 15						

HCM 2010 TWSC 2: Meynell & Perth

Intersection						
Int Delay, s/veh	2.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>			4	W	
Traffic Vol, veh/h	425	8	31	260	23	92
Future Vol. veh/h	425	8	31	260	23	92
Conflicting Peds, #/hr	423	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length		None -	- 1	None -	0	None -
				0	0	
Veh in Median Storage		-	-	_		-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	472	9	34	289	26	102
Major/Minor I	Major1		Major2		Minor1	
Conflicting Flow All	0	0	481	0	834	477
Stage 1	-	-	401	-	477	411
Stage 2	-	-	- 4.40	-	357	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-		
Pot Cap-1 Maneuver	-	-	1082	-	338	588
Stage 1	-	-	-	-	624	-
Stage 2	-	-	-	-	708	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	_		1082	_	325	588
Mov Cap-2 Maneuver		-	-	-	325	-
Stage 1	_	_	_	_	624	_
Stage 2					682	
Staye 2					002	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		14.5	
HCM LOS					В	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		506	-	-	1082	-
HCM Lane V/C Ratio		0.253	-	-	0.032	-
HCM Control Delay (s)		14.5	-	-	8.4	0
HCM Lane LOS		В			Α	A
HCM 95th %tile Q(veh)		1			0.1	-
110111 30tt 70ttle Q(VEII)		1			0.1	

05-30-2020

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

05-30-2020 Lane Group EBT WBT NBT Lane Configurations **476** Traffic Volume (vph) 23 Future Volume (vph) 23 476 2 249 42 3 15 81 0 32 Satd. Flow (prot) 3309 3243 1534 1483 1658 Flt Permitted 0.930 0.953 0.955 0.744 Satd. Flow (perm) 3084 3090 1475 1298 1483 Satd. Flow (RTOR) 29 33 530 Lane Group Flow (vph) 20 36 Turn Type Perm NA Perm NA Perm NA Perm NA Protected Phases 6 2 Permitted Phases 4 8 6 Detector Phase Switch Phase 10.0 10.0 Minimum Initial (s) 10.0 10.0 10.0 10.0 10.0 50.8 Minimum Split (s) 50.8 50.8 50.8 25.6 25.6 25.6 25.6 Total Split (s) 50.8 50.8 50.8 50.8 40.6 40.6 40.6 40.6 55.6% 55.6% 55.6% 55.6% 44.4% 44.4% 44.4% 44.4% Total Split (%) Yellow Time (s) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 All-Red Time (s) 2.5 2.5 2.5 2.5 2.3 2.3 2.3 2.3 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.8 5.8 5.6 5.6 5.6 Lead/Lag Lead-Lag Optimize? Max Max Recall Mode None None None Act Effct Green (s) 53.2 53.2 11.2 11.2 11.2 Actuated g/C Ratio 0.75 0.75 0.16 0.16 0.16 v/c Ratio 0.24 0.08 0.44 0.14 0.05 Control Delay 4.5 3.7 6.6 34.0 0.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 Total Delay 4.5 34.0 3.7 6.6 0.2 LOS Α Α C Α Α 4.5 3.7 Approach Delay 24.4 Approach LOS Α Α С Α Queue Length 50th (m) 12.3 5.9 0.0 0.0 Queue Length 95th (m) 22.5 12.1 23.7 3.8 0.0 Internal Link Dist (m) 414.4 185.4 258.4 148.6 Turn Bay Length (m) 15.0 2302 2314 745 641 Base Capacity (vph) 1000 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn Storage Cap Reductn 0 0 0 0 0 0.24 Reduced v/c Ratio 0.14 0.03 0.14 0.04 Intersection Summary Cycle Length: 91.4 Actuated Cycle Length: 71.2

Natural Cycle: 80 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.44

6295, 6363, 6409 Perth St %dplanid% Existing Synchro 10 Light Report Page 5

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

05-30-2020

Intersection Signal Delay: 6.7 Intersection LOS: A ICU Level of Service A Intersection Capacity Utilization 49.1% Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

Synchro 10 Light Report 6295, 6363, 6409 Perth St %dplanid% Existing Page 6

Lanes, Volumes, Timings 1: Queen Charlotte/Rochelle & Perth

05-30-2020

	•	-	\rightarrow	•	-	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्सी के		ሻ	f)			4			4	
Traffic Volume (vph)	5	393	0	3	581	20	1	0	4	13	1	6
Future Volume (vph)	5	393	0	3	581	20	1	0	4	13	1	6
Satd. Flow (prot)	0	3312	0	1658	1736	0	0	1541	0	0	1618	0
Flt Permitted		0.999		0.950				0.990			0.969	
Satd. Flow (perm)	0	3312	0	1658	1736	0	0	1541	0	0	1618	0
Lane Group Flow (vph)	0	443	0	3	668	0	0	5	0	0	22	0
Sign Control		Free			Free			Stop			Stop	
Intersection Summary												
Control Type: Unsignalized												
Intersection Capacity Utilizat	ion 43.6%			IC	CU Level	of Service	A					
Analysis Period (min) 15												

6295, 6363, 6409 Perth St PM Peak Hour Existing

Synchro 10 Light Report Page 1

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414		7	ĵ.			44			44	
Traffic Vol, veh/h	5	393	0	3	581	20	1	0	4	13	1	6
Future Vol, veh/h	5	393	0	3	581	20	1	0	4	13	1	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	437	0	3	646	22	1	0	4	14	1	7

Major/Minor	Major1		١	//ajor2		1	/linor1			Minor2			
Conflicting Flow All	668	0	0	437	0	0	1116	1123	219	894	1112	657	
Stage 1	-	-	-	-	-	-	449	449	-	663	663	-	
Stage 2	-	-	-	-	-	-	667	674	-	231	449	-	
Critical Hdwy	4.13	-	-	4.13	-	-	7.33	6.53	6.93	7.33	6.53	6.23	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.53	5.53	-	6.13	5.53	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-	
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	920	-	-	1121	-	-	173	205	786	249	208	464	
Stage 1	-	-	-	-	-	-	560	571	-	450	458	-	
Stage 2	-	-	-	-	-	-	447	453	-	752	571	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	920	-	-	1121	-	-	168	203	786	246	206	464	
Mov Cap-2 Maneuver	-	-	-	-	-	-	168	203	-	246	206	-	
Stage 1	-	-	-	-	-	-	555	566	-	446	457	-	
Stage 2	-	-	-	-	-	-	438	452	-	741	566	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0			13			18.8			
HCM LOS							В			С			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	
Capacity (veh/h)	453	920	-	-	1121	-	-	283	
HCM Lane V/C Ratio	0.012	0.006	-	-	0.003	-	-	0.079	
HCM Control Delay (s)	13	8.9	0	-	8.2	-	-	18.8	
HCM Lane LOS	В	Α	Α	-	Α	-	-	С	
HCM 95th %tile Q(veh)	0	0	-	-	0	-	-	0.3	

	-	\rightarrow	•	←		1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĥ			ની	¥	
Traffic Volume (vph)	339	25	101	487	15	59
Future Volume (vph)	339	25	101	487	15	59
Satd. Flow (prot)	1729	0	0	1729	1543	0
Flt Permitted				0.991	0.990	
Satd. Flow (perm)	1729	0	0	1729	1543	0
Lane Group Flow (vph)	405	0	0	653	83	0
Sign Control	Free			Free	Stop	
Intersection Summary						
Control Type: Unsignalize	ed					
Intersection Capacity Utili	zation 68.1%			IC	CU Level of	of Service (
Analysis Period (min) 15						

05-30-2020

05-30-2020

Intersection						
Int Delay, s/veh	2					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			4	W	
Traffic Vol, veh/h	339	25	101	487	15	59
Future Vol, veh/h	339	25	101	487	15	59
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	377	28	112	541	17	66
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	405	0	1156	391
Stage 1	-	-	-	-	391	-
Stage 2	-	-	-	-	765	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-		-		
Pot Cap-1 Maneuver	-	-	1154	-	217	658
Stage 1	-	-	-	-	683	-
Stage 2	-	-	-	-	459	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1154	-	187	658
Mov Cap-2 Maneuver	-	-	-	-	187	-
Stage 1	-	-	-	-	683	-
Stage 2	-	-	-	-	395	-
			14/5			
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.5		15.2	
HCM LOS					С	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		436	-	-	1154	-
HCM Lane V/C Ratio		0.189			0.097	
HCM Control Delay (s)		15.2			8.5	0
HCM Lane LOS		13.2 C	- :		0.5 A	A
HCM 95th %tile Q(veh)		0.7	-	-	0.3	Α -

	•	-	*	1	←	*	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		414			413-			4		ች	1>	
Traffic Volume (vph)	43	378	1	17	645	103	2	2	16	59	0	39
Future Volume (vph)	43	378	1	17	645	103	2	2	16	59	0	39
Satd. Flow (prot)	0	3299	0	0	3246	0	0	1545	0	1658	1483	0
Flt Permitted		0.820			0.941			0.970		0.743		
Satd. Flow (perm)	0	2719	0	0	3058	0	0	1507	0	1297	1483	0
Satd. Flow (RTOR)					27			18			161	
Lane Group Flow (vph)	0	469	0	0	850	0	0	22	0	66	43	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	24.8	24.8		24.8	24.8		40.6	40.6		40.6	40.6	
Total Split (s)	50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
Total Split (%)	55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		2.0	0.0		0.0	0.0	
Total Lost Time (s)		5.8			5.8			5.6		5.6	5.6	
Lead/Lag		0.0			0.0			0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	max	53.5		max	53.5		110110	10.5		10.5	10.5	
Actuated g/C Ratio		0.75			0.75			0.15		0.15	0.15	
v/c Ratio		0.23			0.37			0.09		0.34	0.12	
Control Delay		4.1			4.6			14.2		31.9	0.7	
Queue Delay		0.0			0.0			0.0		0.0	0.0	
Total Delay		4.1			4.6			14.2		31.9	0.7	
LOS		A			A			В		C	A	
Approach Delay		4.1			4.6			14.2			19.6	
Approach LOS		A			A			В			В	
Queue Length 50th (m)		10.2			20.2			0.5		8.7	0.0	
Queue Length 95th (m)		17.6			33.0			6.0		18.6	0.0	
Internal Link Dist (m)		414.4			185.4			258.4		10.0	148.6	
Turn Bay Length (m)		414.4			100.4			200.4		15.0	140.0	
Base Capacity (vph)		2053			2316			757		644	817	
Starvation Cap Reductn		0			0			0		0	0.17	
Spillback Cap Reductn		0			0			0		0	0	
Storage Cap Reductn		0			0			0		0	0	
Reduced v/c Ratio		0.23			0.37			0.03		0.10	0.05	
		0.20			0.01			0.00		0.10	0.00	
Intersection Summary Cycle Length: 91.4												
Actuated Cycle Length: 70.	0											
	J											
Natural Cycle: 70	ooord											
Control Type: Semi Act-Un Maximum v/c Ratio: 0.37	coora											
iviaximum v/c Ratio: 0.3/												

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

05-30-2020

Intersection Signal Delay: 5.7	Intersection LOS: A
Intersection Capacity Utilization 59.6%	ICU Level of Service B
Analysis Period (min) 15	

Splits and Phases: 3: Fowler/Nixon Farm & Perth

Appendix D

Collision Data

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition
2018-03-04	2018	11:49	FORTUNE ST @ MARTIN ST (0000443)	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	02 - Angle	01 - Dry
2018-04-06	2018	9:15	FORTUNE ST btwn PERTH ST & HAMILTON ST (3ZBNC5)	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	07 - SMV other	01 - Dry
2015-06-30	2015	12:28	FOWLER ST/NIXON FARM DR @ PERTH ST	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	07 - SMV other	01 - Dry
2014-09-18	2014	7:59	FRANKTOWN RD btwn JOY'S RD & PERTH ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
2016-09-28	2016	3:00	FRANKTOWN RD btwn JOY'S RD & PERTH ST	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2017-12-11	2017	8:49	PERTH ST @ QUEEN CHARLOTTE ST/ROCHELLE DR	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	04 - Sideswipe	01 - Dry
2015-02-07	2015	4:38	PERTH ST @ QUEEN CHARLOTTE ST/ROCHELLE DR	01 - Clear	07 - Dark	02 - Stop sign		03 - P.D. only	07 - SMV other	02 - Wet
2017-02-20	2017	1:58	PERTH ST @ QUEEN CHARLOTTE ST/ROCHELLE DR	01 - Clear	07 - Dark	02 - Stop sign		02 - Non-fatal injury	07 - SMV other	06 - Ice
2018-10-09	2018	17:20	PERTH ST @ QUEEN CHARLOTTE ST/ROCHELLE DR (0009772)	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	05 - Turning movement	01 - Dry
2015-08-23	2015	5:05	PERTH ST btwn FORTUNE ST & TARRYN TER	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2014-10-13	2014	19:27	PERTH ST btwn FRANKTOWN RD & ROCHELLE DR	02 - Rain	07 - Dark	10 - No control		03 - P.D. only	05 - Turning movement	02 - Wet
2015-03-02	2015	19:05	PERTH ST btwn FRANKTOWN RD & ROCHELLE DR	03 - Snow	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	06 - Ice
2015-12-20	2015	5:41	PERTH ST btwn FRANKTOWN RD & ROCHELLE DR	03 - Snow	07 - Dark	10 - No control		02 - Non-fatal injury	07 - SMV other	06 - Ice
2017-06-17	2017	4:28	PERTH ST btwn FRANKTOWN RD & ROCHELLE DR	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2018-03-31	2018	13:31	PERTH ST btwn NIXONFARM DR & LENNOX ST (3ZA42Z)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	01 - Dry
2018-04-19	2018	16:01	PERTH ST btwn TARRYN TER & NIXONFARM DR (3ZA42Y)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry

Appendix E

TRANS Background Projection Plots

Appendix F

Synchro Intersection Worksheets – 2025 Future Background Conditions

HCM 95th %tile Q(veh)

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414		ķ	1₃			€}-			4	
Traffic Vol, veh/h	5	621	0	3	840	20	1	0	4	13	1	6
Future Vol, veh/h	5	621	0	3	840	20	1	0	4	13	1	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	621	0	3	840	20	1	0	4	13	1	6
Major/Minor N	/lajor1			Major2			Minor1			Minor2		
Conflicting Flow All	860	0	0	621	0	0	1491	1497	311	1177	1487	850
Stage 1	-	-		-			631	631	-	856	856	-
Stage 2	-	-	-	-		-	860	866	-	321	631	-
Critical Hdwy	4 13	-	_	4 13	-	_	7.33	6.53	6.93	7 33	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.53	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519	4.019	3.319	3.519	4.019	3.319
Pot Cap-1 Maneuver	779	-	-	958	-	-	93	122	686	157	124	359
Stage 1	-	-	-	-	-	-	436	473	-	352	373	-
Stage 2	-	-	-	-	-	-	350	369	-	666	473	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	779	-	-	958	-	-	90	120	686	154	122	359
Mov Cap-2 Maneuver	-	-	-	-	-	-	90	120	-	154	122	-
Stage 1	-	-	-	-	-	-	432	468	-	348	372	-
Slage 2	-	-	-	-	-	-	342	368	-	655	468	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0			17.4			27.1		
HCM LOS							С			D		
Minor Lane/Major Mvmt	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		295	779	-	-	958			183			
HCM Lane V/C Ratio			0.006			0.003			0.109			
HCM Control Delay (s)		17.4	9.7	0	_	8.8	-	_	27.1			
HCM Lane LOS		С	A	Ā		A			D			
			- ' '			- ' '						

2025 Future Background 02-26-2021

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4T>			414			4		ሻ	7	
Traffic Volume (vph)	43	606	1	17	918	103	2	2	16	59	0	39
Future Volume (vph)	43	606	1	17	918	103	2	2	16	59	0	39
Satd. Flow (prot)	0	3306	0	0	3263	0	0	1549	0	1658	1483	0
Flt Permitted		0.838			0.941			0.967		0.744		
Satd. Flow (perm)	0	2779	0	0	3073	0	0	1505	0	1298	1483	0
Satd. Flow (RTOR)					18			16			92	
Lane Group Flow (vph)	0	650	0	0	1038	0	0	20	0	59	39	0
Turn Type	Perm	NA										
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	24.8	24.8		24.8	24.8		40.6	40.6		40.6	40.6	
Total Split (s)	50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
Total Split (%)	55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)		0.0			0.0			0.0		0.0	0.0	
Total Lost Time (s)		5.8			5.8			5.6		5.6	5.6	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Act Effct Green (s)		54.1			54.1			10.4		10.4	10.4	
Actuated g/C Ratio		0.76			0.76			0.15		0.15	0.15	
v/c Ratio		0.31			0.44			0.09		0.31	0.13	
Control Delay		4.4			5.1			14.9		31.6	1.5	
Queue Delay		0.0			0.0			0.0		0.0	0.0	
Total Delay		4.4			5.1			14.9		31.6	1.5	
LOS		Α			Α			В		С	Α	
Approach Delay		4.4			5.1			14.9			19.6	
Approach LOS		Α			Α			В			В	
Queue Length 50th (m)		14.3			25.9			0.5		7.5	0.0	
Queue Length 95th (m)		23.0			40.1			5.6		16.0	1.2	
Internal Link Dist (m)		414.4			185.4			258.4			148.6	
Turn Bay Length (m)										15.0		
Base Capacity (vph)		2108			2336			751		641	778	
Starvation Cap Reductn		0			0			0		0	0	
Spillback Cap Reductn		0			0			0		0	0	
Storage Cap Reductn		0			0			0		0	0	
Reduced v/c Ratio		0.31			0.44			0.03		0.09	0.05	
Intersection Summary												
Cycle Length: 91.4												
Actuated Cycle Length: 71.	3											
Natural Cycle: 75	•											
Control Type: Semi Act-Uni	coord											
Maximum v/c Ratio: 0.44	Joona											
maximum vio riado. 0.44												

0.1 0 - - 0 - - 0.4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

2025 Future Background 02-26-2021

Intersection Signal Delay: 5.8 Intersection LOS: A
Intersection Capacity Utilization 71.7% ICU Level of Service C
Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St PM Peak Hour Synchro 10 Light Report

HCM 2010 TWSC 1: Queen Charlotte/Rochelle & Perth

2025 Future Background 02-26-2021

Intersection												
Int Delay, s/veh	0.6											
**												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414		ሻ	Þ			4			4	
Traffic Vol, veh/h	1	808	0	10	425	5	0	1	10	20	1	4
Future Vol, veh/h	1	808	0	10	425	5	0	1	10	20	1	4
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	808	0	10	425	5	0	1	10	20	1	4
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	430	0	0	808	0	0	1260	1260	404	855	1258	428
Stage 1	430	-	-	-	-	-	810	810	-	448	448	420
Stage 2	-	-			-		450	450		407	810	-
Critical Hdwy	4 13	-		4 13	_	_	7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1	4 1.7		- :	4 13		- 1	6.53	5.53	0 33	6.13	5.53	073
Critical Hdwy Stg 2	_						6.13	5.53	_	6.53	5.53	_
Follow-up Hdwy	2 219			2 219	-	_	3 519	4 019		3 519		3 319
Pot Cap-1 Maneuver	1128			815			137	170	597	265	170	626
Stage 1	1120	- :		013			341	392	331	589	572	020
Stage 1							588	571		593	392	
Platoon blocked. %	_	-			-		300	011	_	000	332	_
Mov Cap-1 Maneuver	1128			815		-	134	168	597	257	168	626
Mov Cap-1 Maneuver	1120	-	-	010	-	-	134	168	391	257	168	020
Stage 1	-	-	-	-	-	-	340	391	-	588	565	-
Stage 1 Stage 2	-	-			-	- 1	576	564	-	580	391	-
Stage 2		_					310	J0 4		300	331	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.2			12.6			19.3		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		485	1128	-	-	815	-	-	277			
HCM Lane V/C Ratio		0.023	0.001		-	0.012	-		0.09			
HCM Control Delay (s)		12.6	8.2	0	_	9.5	_	_	19.3			
HCM Lane LOS		В	A	A	-	A	-	-	C			
HCM 95th %tile Q(veh)	0.1	0	-	_	0	_	_	0.3			
nom oom mad w(ven	,	0.1	0			0	_		0.0			

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

2025 Future Background 02-26-2021

	۶	-	\rightarrow	1	←	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		414			414			4		ሻ	1>	
Traffic Volume (vph)	23	766	1	2	387	42	3	0	15	81	0	32
Future Volume (vph)	23	766	1	2	387	42	3	0	15	81	0	32
Satd. Flow (prot)	0	3312	0	0	3266	0	0	1536	0	1658	1483	(
Flt Permitted		0.937			0.953			0.949		0.746		
Satd. Flow (perm)	0	3107	0	0	3112	0	0	1469	0	1302	1483	(
Satd. Flow (RTOR)					18			33			395	
Lane Group Flow (vph)	0	790	0	0	431	0	0	18	0	81	32	(
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2	_		6	•		8	•		4	•	
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	_	_		•	•		·	Ū		•	•	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	50.8	50.8		50.8	50.8		25.6	25.6		25.6	25.6	
Total Split (s)	50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
Total Split (%)	55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)	2.5	0.0		2.5	0.0		2.5	0.0		0.0	0.0	
Total Lost Time (s)		5.8			5.8			5.6		5.6	5.6	
Lead/Lag		J.0			J.0			J.0		3.0	3.0	
Lead-Lag Optimize?												
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	IVIAX	53.6		IVIAX	53.6		None	10.9		10.9	10.9	
Actuated g/C Ratio		0.75			0.75			0.15		0.15	0.15	
v/c Ratio		0.73			0.73			0.13		0.13	0.13	
Control Delay		4.8			3.9			5.7		33.4	0.00	
		0.0			0.0			0.0		0.0	0.2	
Queue Delay		4.8			3.9			5.7		33.4	0.0	
Total Delay LOS								5. <i>1</i>				
		A 4.8			A 3.9			5.7		С	A	
Approach Delay					3.9 A			5.7 A			24.0 C	
Approach LOS		A 17.8						0.0		10.0	_	
Queue Length 50th (m)					8.0					10.2	0.0	
Queue Length 95th (m)		30.7			15.0			3.0		20.2	0.0	
Internal Link Dist (m)		414.4			185.4			258.4		45.0	148.6	
Turn Bay Length (m)		0000			00.40			744		15.0	004	
Base Capacity (vph)		2333			2342			741		642	931	
Starvation Cap Reductn		0			0			0		0	0	
Spillback Cap Reductn		0			0			0		0	0	
Storage Cap Reductn		0			0			0		0	0	
Reduced v/c Ratio		0.34			0.18			0.02		0.13	0.03	
Intersection Summary												
Cycle Length: 91.4												
Actuated Cycle Length: 71.3												
Natural Cycle: 80												
Control Type: Semi Act-Unco	ord											
Maximum v/c Ratio: 0.41												

6295, 6363, 6409 Perth St AM Peak Hour Synchro 10 Light Report Page 4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth 2025 Future Background 02-26-2021

Intersection Signal Delay: 6.1 Intersection LOS: A Intersection Capacity Utilization 60.8% ICU Level of Service B Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St AM Peak Hour Synchro 10 Light Report Page 5

MOVEMENT SUMMARY

∀ Site: 101 [Perth-Meynell AM FB2025]

Fox Run Phase 2 Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	n: Meynell											
1	L2	47	1.0	0.381	12.8	LOS B	2.6	18.5	0.77	0.81	0.77	53.1
2	T1	1	1.0	0.381	8.2	LOS A	2.6	18.5	0.77	0.81	0.77	53.1
3	R2	266	1.0	0.381	7.9	LOS A	2.6	18.5	0.77	0.81	0.77	51.9
Appro	oach	315	1.0	0.381	8.7	LOS A	2.6	18.5	0.77	0.81	0.77	52.1
East:	Perth											
4	L2	143	1.0	0.315	9.1	LOS A	2.3	16.0	0.26	0.49	0.26	54.6
5	T1	274	2.0	0.315	4.5	LOS A	2.3	16.0	0.26	0.49	0.26	54.6
6	R2	35	1.0	0.315	4.2	LOS A	2.3	16.0	0.26	0.49	0.26	53.4
Appro	oach	452	1.6	0.315	5.9	LOS A	2.3	16.0	0.26	0.49	0.26	54.5
North	: Meynell											
7	L2	78	1.0	0.137	11.2	LOS B	0.8	5.3	0.57	0.69	0.57	52.8
8	T1	1	1.0	0.137	6.5	LOSA	0.8	5.3	0.57	0.69	0.57	52.8
9	R2	52	1.0	0.137	6.3	LOS A	0.8	5.3	0.57	0.69	0.57	51.6
Appro	oach	131	1.0	0.137	9.2	LOS A	0.8	5.3	0.57	0.69	0.57	52.3
West:	: Perth											
10	L2	15	1.0	0.453	10.2	LOS B	3.2	22.9	0.52	0.56	0.52	54.3
11	T1	507	2.0	0.453	5.6	LOS A	3.2	22.9	0.52	0.56	0.52	54.3
12	R2	18	1.0	0.453	5.4	LOS A	3.2	22.9	0.52	0.56	0.52	53.0
Appro	oach	540	1.9	0.453	5.8	LOSA	3.2	22.9	0.52	0.56	0.52	54.2
All Ve	hicles	1437	1.5	0.453	6.8	LOSA	3.2	22.9	0.50	0.60	0.50	53.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 3:34:56 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

MOVEMENT SUMMARY

∀ Site: 101 [Perth-Meynell PM FB2025]

Fox Run Phase 2 Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Meynell			.,.								
1	L2	31	1.0	0.243	11.7	LOS B	1.5	10.7	0.66	0.71	0.66	54.1
2	T1	1	1.0	0.243	6.9	LOS A	1.5	10.7	0.66	0.71	0.66	54.2
3	R2	187	1.0	0.243	6.8	LOS A	1.5	10.7	0.66	0.71	0.66	52.8
Appro	ach	219	1.0	0.243	7.5	LOSA	1.5	10.7	0.66	0.71	0.66	53.0
East:	Perth											
4	L2	256	1.0	0.588	9.2	LOS A	5.8	41.5	0.33	0.48	0.33	54.5
5	T1	581	2.0	0.588	4.5	LOS A	5.8	41.5	0.33	0.48	0.33	54.6
6	R2	56	1.0	0.588	4.2	LOS A	5.8	41.5	0.33	0.48	0.33	53.3
Appro	ach	893	1.7	0.588	5.8	LOSA	5.8	41.5	0.33	0.48	0.33	54.5
North	: Meynell											
7	L2	115	1.0	0.275	15.2	LOS B	1.8	13.0	0.83	0.88	0.83	49.8
8	T1	1	1.0	0.275	10.7	LOS B	1.8	13.0	0.83	0.88	0.83	49.9
9	R2	65	1.0	0.275	10.3	LOS B	1.8	13.0	0.83	0.88	0.83	48.8
Appro	oach	181	1.0	0.275	13.4	LOS B	1.8	13.0	0.83	0.88	0.83	49.4
West	Perth											
10	L2	25	1.0	0.418	11.2	LOS B	2.8	20.0	0.63	0.67	0.63	53.7
11	T1	357	2.0	0.418	6.7	LOS A	2.8	20.0	0.63	0.67	0.63	53.7
12	R2	51	1.0	0.418	6.5	LOS A	2.8	20.0	0.63	0.67	0.63	52.5
Appro	ach	433	1.8	0.418	6.9	LOSA	2.8	20.0	0.63	0.67	0.63	53.6
All Ve	hicles	1725	1.5	0.588	7.1	LOSA	5.8	41.5	0.50	0.60	0.50	53.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 3:34:57 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

Appendix G

Synchro Intersection Worksheets – 2030 Future Background Conditions

Traffic Volume (vph)

Future Volume (vph)

Satd. Flow (prot)

Satd. Flow (perm)

Protected Phases

Permitted Phases

Minimum Split (s)

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Lead/Lag Lead-Lag Optimize? Recall Mode

v/c Ratio

Control Delay

Queue Delay

Total Delay

Approach Delay

Approach LOS

Queue Length 50th (m)

Queue Length 95th (m)

LOS

Lost Time Adjust (s)

Total Lost Time (s)

Act Effct Green (s) Actuated g/C Ratio

Detector Phase Switch Phase Minimum Initial (s)

Satd. Flow (RTOR)

Lane Group Flow (vph)

Flt Permitted

Turn Type

Lane Group Lane Configurations EBT

413→

3312

0.938

3110

1071

NA

50.8

50.8

0.0

5.8

53.6

0.75

0.46

5.7

0.0

5.7

Α

5.7

Α

27.6

46.6 4444

23 1047

23

Perm

2

10.0

50.8

50.8

3.3 3.3

2.5 2.5

Max Max

55.6% 55.6%

EBR WBL WBT WBR

413→ 496

496

3276

0.953

3122

13

540

NA

50.8

50.8

3.3

2.5

0.0

5.8

Max

53.6

0.75

0.23

4.1

0.0

4.1

Α

4.1

Α

10.7

19.2

10E /

Perm

6

10.0

50.8

50.8

3.3

2.5

55.6% 55.6%

42

2030 Future Background

02-26-2021

0 32

1483

1483

295

32

NA

10.0

25.6

5.6

10.9

0.15

0.3

0.0

0.3

Α

C

24.1

0.0

0.0

140 6

4

0

1536

0.949

1469

33

18

NA

40.6

2.3

0.0

5.6

10.9

0.15

0.07

5.7

0.0

5.7

Α

Α

5.7

0.0

3.0

OEO 4

Perm

8

10.0

25.6 25.6

40.6

3.3 3.3

2.3

None None

44.4% 44.4%

15 81

1658

0.746

1302

Perm

4

25.6

40.6 40.6

2.3 2.3

0.0 0.0

5.6

10.9

0.15

0.41 0.07

33.4

0.0

С

33.4

10.2

20.2

44.4% 44.4%

3.3 3.3

None None

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414		7	1>			4			44	
Traffic Vol, veh/h	1	1090	0	10	534	5	0	1	10	20	1	4
Future Vol. veh/h	1	1090	0	10	534	5	0	1	10	20	1	4
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sian Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	_	None	-	-	None	-	-	None
Storage Length	350		-	0		-						-
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	1090	0	10	534	5	0	1	10	20	1	4
Major/Minor	Major1			Major2			Minor1			Minor2		_
Conflicting Flow All	539	0	0	1090	0	0	1651	1651	545	1105	1649	537
Stage 1	-	-	-	-	-	-	1092	1092	-	557	557	-
Stage 2							559	559		548	1092	
Critical Hdwy	4 13			4 13			7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1	- 10		-	- "	-		6.53	5.53	-	6.13	5.53	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-			3.319		4.019	3.319
Pot Cap-1 Maneuver	1027	-	-	638	-	-	71	98	483	176	98	543
Stage 1	-	-	-	-	-	-	230	290	-	514	511	-
Stage 2	-	-	-	-	-	-	513	510	-	489	290	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1027	-	-	638	-	-	69	96	483	169	96	543
Mov Cap-2 Maneuver	-	-	-	-	-	-	69	96	-	169	96	-
Stage 1	-	-	-	-	-	-	230	289	-	513	503	-
Slage 2	-	-	-	-	-	-	500	502	-	476	289	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.2			15.5			27.6		
HCM LOS							С			D		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		353	1027	-	-	638	-	-	184			
HCM Lane V/C Ratio		0.031	0.001			0.016						
HCM Control Delay (s)		15.5	8.5	0	-	10.7	-	-	27.6			
HCM Lane LOS		C	A	Ā	-	В			D			
HCM 95th %tile Q(veh)	0.1	0	-	-	0	-	-	0.5			
	,	V. 1				•			0.0			

internal Link Dist (III)	414.4	100.4	200.4		140.0	
Turn Bay Length (m)				15.0		
Base Capacity (vph)	2336	2348	741	642	881	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.46	0.23	0.02	0.13	0.04	
Intersection Summary						
Cycle Length: 91.4						
Actuated Cycle Length: 71.3						
Natural Cycle: 80						
Control Type: Semi Act-Uncoord						
Maximum v/c Ratio: 0.46						
						_
6295, 6363, 6409 Perth St AM Pea	ak Hour			Synchro	10 Light F	Report
				,		age 4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

2030 Future Background 02-26-2021

Intersection Signal Delay: 6.4 Intersection LOS: A Intersection Capacity Utilization 68.8% ICU Level of Service C
Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St AM Peak Hour Synchro 10 Light Report

HCM 2010 TWSC 1: Queen Charlotte/Rochelle & Perth

HCM 95th %tile Q(veh)

2030 Future Background 02-26-2021

Interportion												
Intersection Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		47>		- ሻ	₽			4			4	
Traffic Vol, veh/h	5	813	0	3	1166	20	1	0	4	13	1	6
Future Vol, veh/h	5	813	0	3	1166	20	1	0	4	13	1	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	813	0	3	1166	20	1	0	4	13	1	6
Major/Minor I	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	1186	0	0	813	0	0	2009	2015	407	1599	2005	1176
Stage 1	-	-	_	-			823	823	-	1182	1182	-
Stage 2		-		-		-	1186	1192		417	823	-
Critical Hdwy	4 13	_	_	4 13	-		7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.53	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519	4.019	3.319	3.519	4.019	3.319
Pot Cap-1 Maneuver	587	-	-	812	-	-	39	58	594	78	59	232
Stage 1	-	-		-	-	-	335	387	-	231	262	-
Stage 2	-	-	-	-	-	-	229	260	-	585	387	-
Platoon blocked, %		-			-	-						
Mov Cap-1 Maneuver	587	-	-	812	-	-	37	57	594	76	58	232
Mov Cap-2 Maneuver	-	-	-	-	-	-	37	57	-	76	58	
Stage 1	-	-	-	-	-	-	330	381	-	227	261	-
Slage 2	-	-	-	-	-	-	221	259	-	572	381	-
Ü												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0			30.2			54		
HCM LOS	0.2			U			JU.2			F		
TICW LOS							U			'		
Minor Long/Major Mum		NIDI 51	EBL	EDT	EBR	WBL	MDT	W/DD	CDI 51			
Minor Lane/Major Mvm	IL	NBLn1 148	587	EBT -	EDK	812	WBT	WOR	SBLn1 93			
Capacity (veh/h)			0.009			0.004	-		0.215			
HCM Cantrol Dalay (a)		0.034		0.1	-		-					
HCM Control Delay (s)			11.2 B	0.1	-	9.4 A	-	-	54 F			
HCM Lane LOS		D	В	Α	-	A	-	-				

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

2030 Future Background 02-26-2021

43 43 0 0 Perm 2 2 10.0 24.8	## Company of the com	1 1 0 0 0 0	17 17 0 0 Perm	WBT 1253 1253 3276 0.941 3086 13 1373 NA	103 103 0 0	2 2 0 0	NBT 2 2 2 1549 0.967 1505 16	16 16 0	59 59 1658 0.744 1298	SBT 0 0 1483 1483 35	39
43 0 0 Perm 2 2 10.0 24.8	798 798 3306 0.821 2722 842 NA 2	0	17 0 0 0 Perm	1253 1253 3276 0.941 3086 13 1373	103 0	0	2 2 1549 0.967 1505 16	16	59 59 1658 0.744	0 0 1483 1483	39 39 0
43 0 0 Perm 2 2 10.0 24.8	798 3306 0.821 2722 842 NA 2	0	17 0 0 0 Perm	1253 3276 0.941 3086 13 1373	103 0	0	2 1549 0.967 1505 16	16	59 1658 0.744	0 1483 1483	39
0 0 Perm 2 2 10.0 24.8	3306 0.821 2722 842 NA 2	0	0 0 0 Perm	3276 0.941 3086 13 1373	0	0	1549 0.967 1505 16	0	1658 0.744	1483 1483	(
0 0 Perm 2 2 2	0.821 2722 842 NA 2	0	0 0 Perm	0.941 3086 13 1373	0	0	0.967 1505 16		0.744	1483	
0 Perm 2 2 2 10.0 24.8	2722 842 NA 2		0 Perm	3086 13 1373		-	1505 16	0			(
0 Perm 2 2 2 10.0 24.8	842 NA 2		0 Perm	13 1373		-	16	0	1298		(
Perm 2 2 2 10.0 24.8	NA 2	0	Perm	1373	0	0				35	
Perm 2 2 2 10.0 24.8	NA 2	0	Perm		0	0					
2 2 10.0 24.8	2			NA		U	20	0	59	39	(
10.0 24.8	2		6			Perm	NA		Perm	NA	
10.0 24.8	_		6	6			8			4	
10.0 24.8	_					8			4		
10.0 24.8	_		6	6		8	8		4	4	
24.8	10.0		*	•		-	-			•	
24.8	100		10.0	10.0		10.0	10.0		10.0	10.0	
	24.8		24.8	24.8		40.6	40.6		40.6	40.6	
50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
2.3			2.5			2.3					
	0.6			0.6			0.0		0.0	0.0	
N4	M		NA	M		Mana	Mana		Mana	NI	
IVIAX			IVIAX			None					
									С		
									16.0		
	414.4			185.4			258.4			148.6	
	2065			2344			751		641	750	
	0			0			0		0	0	
				0					0	0	
	0			0			0		0	0	
	0.41			0.59			0.03		0.09	0.05	
rd											
	3.3 2.5 Max	2.5 2.5 0.0 5.8 Max Max 54.1 0.76 0.41 5.1 A 20.6 32.8 414.4 2065 0 0 0 0.41	2.5	2.5 2.5 2.5 0.0 5.8 Max Max Max 54.1 0.76 0.41 5.1 0.0 5.1 A 5.1 A 20.6 32.8 414.4 2065 0 0 0 0 0.41	2.5 2.5 2.5 2.5 0.0 0.0 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	2.5 2.5 2.5 2.5 0.0 0.0 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	2.5 2.5 2.5 2.5 2.3 0.0 0 0.0 5.8 5.8 Max Max Max Max None 54.1 0.76 0.41 0.59 5.1 6.6 0.0 0.0 0.0 5.1 6.6 A A A 5.1 6.6 A A 20.6 41.3 32.8 63.7 414.4 185.4 2065 2344 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5 2.5 2.5 2.5 2.3 2.3 2.3 0.0 0.0 5.8 5.8 5.6 Max Max Max Max Max None None 54.1 54.1 10.4 0.76 0.15 0.41 0.59 0.09 5.1 6.6 14.9 A A B 5.1 6.6 14.9 A A B 20.6 41.3 2.8 63.7 5.6 414.4 185.4 258.4 258.4 265 2344 751 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5 2.5 2.5 2.5 2.3 2.3 0.0 0.0 5.8 5.8 5.6 Max Max Max Max Max None None 54.1 54.1 10.4 0.76 0.15 0.41 0.59 0.09 5.1 6.6 14.9 0.0 0.0 0.0 5.1 6.6 14.9 A A B 5.1 6.6 14.9 A A B 5.1 6.6 14.9 A B 20.6 41.3 0.5 32.8 63.7 5.6 414.4 185.4 258.4 258.4 265 2344 751 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5 2.5 2.5 2.5 2.3 2.3 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.5 2.5 2.5 2.5 2.3 2.3 2.3 2.3 2.3 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

6295, 6363, 6409 Perth St PM Peak Hour Synchro 10 Light Report Page 4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth 2030 Future Background 02-26-2021

Intersection Signal Delay: 6.9 Intersection LOS: A Intersection Capacity Utilization 76.7% ICU Level of Service D Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St PM Peak Hour Synchro 10 Light Report Page 5

MOVEMENT SUMMARY

∀ Site: 101 [Perth-Meynell AM FB2030]

Fox Run Phase 2 Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Meynell		- , ,	.,,			75					
1	L2	51	1.0	0.720	20.6	LOS C	9.1	64.1	0.99	1.16	1.46	47.8
2	T1	1	1.0	0.720	16.0	LOS B	9.1	64.1	0.99	1.16	1.46	47.9
3	R2	480	1.0	0.720	15.8	LOS B	9.1	64.1	0.99	1.16	1.46	46.9
Appro	ach	532	1.0	0.720	16.2	LOS B	9.1	64.1	0.99	1.16	1.46	46.9
East:	Perth											
4	L2	239	1.0	0.397	9.1	LOS A	3.2	22.9	0.32	0.52	0.32	54.1
5	T1	274	2.0	0.397	4.5	LOS A	3.2	22.9	0.32	0.52	0.32	54.1
6	R2	54	1.0	0.397	4.3	LOS A	3.2	22.9	0.32	0.52	0.32	52.9
Appro	ach	566	1.5	0.397	6.5	LOS A	3.2	22.9	0.32	0.52	0.32	54.0
North	: Meynell											
7	L2	124	1.0	0.215	12.0	LOS B	1.3	9.1	0.66	0.76	0.66	51.9
8	T1	1	1.0	0.215	7.4	LOSA	1.3	9.1	0.66	0.76	0.66	52.0
9	R2	63	1.0	0.215	7.2	LOSA	1.3	9.1	0.66	0.76	0.66	50.8
Appro	oach	188	1.0	0.215	10.4	LOS B	1.3	9.1	0.66	0.76	0.66	51.5
West	Perth											
10	L2	19	1.0	0.560	12.0	LOS B	4.6	33.0	0.70	0.72	0.75	53.4
11	T1	544	2.0	0.560	7.4	LOS A	4.6	33.0	0.70	0.72	0.75	53.4
12	R2	21	1.0	0.560	7.2	LOS A	4.6	33.0	0.70	0.72	0.75	52.2
Appro	ach	584	1.9	0.560	7.6	LOSA	4.6	33.0	0.70	0.72	0.75	53.4
All Ve	hicles	1871	1.4	0.720	10.0	LOS A	9.1	64.1	0.66	0.79	0.81	51.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 3:44:00 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

MOVEMENT SUMMARY

∀ Site: 101 [Perth-Meynell PM FB2030]

Fox Run Phase 2 Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Meynell			.,,								
1	L2	34	1.0	0.468	12.9	LOS B	3.6	25.7	0.80	0.83	0.84	53.3
2	T1	1	1.0	0.468	8.2	LOS A	3.6	25.7	0.80	0.83	0.84	53.3
3	R2	359	1.0	0.468	8.0	LOS A	3.6	25.7	0.80	0.83	0.84	52.1
Appro	ach	394	1.0	0.468	8.4	LOSA	3.6	25.7	0.80	0.83	0.84	52.2
East:	Perth											
4	L2	509	1.0	0.829	9.8	LOS A	15.4	109.3	0.66	0.50	0.66	52.9
5	T1	623	2.0	0.829	5.2	LOS A	15.4	109.3	0.66	0.50	0.66	52.9
6	R2	104	1.0	0.829	5.0	LOS A	15.4	109.3	0.66	0.50	0.66	51.7
Appro	ach	1237	1.5	0.829	7.1	LOSA	15.4	109.3	0.66	0.50	0.66	52.8
North	: Meynell											
7	L2	145	1.0	0.578	31.5	LOS C	5.7	40.5	1.00	1.16	1.42	40.9
8	T1	1	1.0	0.578	26.8	LOS C	5.7	40.5	1.00	1.16	1.42	40.9
9	R2	73	1.0	0.578	26.6	LOS C	5.7	40.5	1.00	1.16	1.42	40.2
Appro	ach	219	1.0	0.578	29.8	LOS C	5.7	40.5	1.00	1.16	1.42	40.7
West	Perth											
10	L2	37	1.0	0.587	16.3	LOS B	5.7	40.2	0.90	0.99	1.12	50.7
11	T1	357	2.0	0.587	11.7	LOS B	5.7	40.2	0.90	0.99	1.12	50.7
12	R2	57	1.0	0.587	11.4	LOS B	5.7	40.2	0.90	0.99	1.12	49.6
Appro	ach	451	1.8	0.587	12.1	LOS B	5.7	40.2	0.90	0.99	1.12	50.6
All Ve	hicles	2300	1.4	0.829	10.5	LOS B	15.4	109.3	0.76	0.71	0.85	50.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 3:44:22 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

Appendix H

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Consultant Scenario Comments

CGH Transportation	Project
Existing and Future	
	Date

2019-64 - 6295, 6363, 6409 Perth, 6305 Ottawa 21-Dec-20

Lance					U					
Approach Formation Approach Formation Approach Formation Approach Formation Approach Appro				Perth & Nixor	n Farm/Fowler					
Median		Crossing Side	NORTH	SOUTH	EAST	WEST				
Permissive or yield control Perm			-		•	•				
Ped Signal Leading Interval? No		Conflicting Left Turns	Permissive	Permissive	Permissive	Permissive				
Ped Signal Leading Interval? No No No No No No No No No Channel No Channel No Channel No Channel No Channel No Channel No Channel No Ch		Conflicting Right Turns	•	•	•	•				
Right Turn Channel No Channel No Channel No Channel Corner Radius S-10m		Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed				
Pett Store 71		Ped Signal Leading Interval?	No	No	No	No				
Pett Store 71	rian	Right Turn Channel	No Channel	No Channel	No Channel	No Channel				
Pett Store 71	ssti	Corner Radius	5-10m	5-10m	5-10m					
Pett Store 71) ede	Crosswalk Type								
Cycle Length 50 50 40 40	_	PETSI Score	71	86	54	54				
Effective Walk Time		Ped. Exposure to Traffic LoS	С	В	D	D				
Average Pedestrian Delay		Cycle Length	50	50	40	40				
Pedestrian Delay LoS		Effective Walk Time	19	19	20	20				
Level of Service		Average Pedestrian Delay	10	10	5	5				
Approach From North South East West		Pedestrian Delay LoS	В	В	Α	Α				
Approach From North South EAST WEST		Lovel of Comice	С	В	D	D				
Bicycle Lane Arrangement on Approach Right Turn Lane Configuration Right Turning Speed Separated or Mixed Traffic Mixed Traffic Separated or Mixed Traffic Left Turn Approach Operating Speed Average Signal Delay Average Signal Delay Average Signal Delay Effective Corner Radius Number of Receiving Lanes on Departure from Intersection Mixed Traffic		Level of Service			ס					
Right Turn Lane Configuration		Approach From	NORTH	SOUTH	EAST	WEST				
Right Turning Speed		Bicycle Lane Arrangement on Approach	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic				
Cyclist relative to RT motorists D		Right Turn Lane Configuration	≤ 50 m	≤ 50 m	≤ 50 m	≤ 50 m				
Separated or Mixed Traffic Left Turn Approach Operating Speed Operating Speed Level of Service Average Signal Delay Effective Corner Radius Number of Receiving Lanes on Departure from Intersection Level of Service Separated or Mixed Traffic No lane crossed No lane c		Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h				
Operating Speed	Φ	Cyclist relative to RT motorists	D	D	D	D				
Operating Speed	/cl	Separated or Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic				
Left Turning Cyclist B	Bicy	Left Turn Approach	No lane crossed	No lane crossed	No lane crossed	No lane crossed				
Level of Service		Operating Speed	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h				
Level of Service Average Signal Delay Level of Service B Effective Corner Radius Number of Receiving Lanes on Departure from Intersection Level of Service The service of Service or		Left Turning Cyclist	В	В	С	С				
Average Signal Delay Level of Service Effective Corner Radius Number of Receiving Lanes on Departure from Intersection Level of Service D 4 10 sec ≤ 10 sec ≤ 10 sec B F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Louis of Comitee	D	D	D	D				
Level of Service Comparison of Particle C		Level of Service	D							
Effective Corner Radius Number of Receiving Lanes on Departure from Intersection 1 1 Level of Service F	ij	Average Signal Delay			≤ 10 sec	≤ 10 sec				
Effective Corner Radius Number of Receiving Lanes on Departure from Intersection 1 1 Level of Service F	nsi		-	-	В	В				
Number of Receiving Lanes on Departure from Intersection 1 1 Level of Service F	Tra	Level of Service		E	3					
Number of Receiving Lanes on Departure from Intersection 1 1 Level of Service F		Effective Corner Radius			< 10 m	< 10 m				
Level of Service F	×	•			1	1				
Level of Service F	Truc		-	-	F	F				
Volume to Capacity Ratio 0.61 - 0.70 Level of Service B		Level of Service	F							
Level of Service B	0	Volume to Capacity Ratio	0.61 - 0.70							
	Aut			E	3					

Multi-Modal Level of Service - Segments Form

Consultant	CGH Transportation	Project	2019-64 - 6295, 6363, 6409
Scenario	Existing and Future		Perth, 6305 Ottawa
Comments		Date	21-Dec-20

SEGMENTS		Street A	Meynell	Oldenburg	Ex. Perth	Mira	Cedarstone	Burke	Ex. Ottawa	Fut. Ottawa	Int. Perth N	Int. Perth S	Fut. Perth
SEGMENTS		SireerA	1	2	3	4	5	6	7	9	11	12	13
	Sidewalk Width Boulevard Width		1.8 m 0.5 - 2 m	1.8 m < 0.5 m	no sidewalk n/a	no sidewalk n/a	1.5 m < 0.5 m	no sidewalk n/a	no sidewalk n/a	≥ 2 m < 0.5	≥ 2 m > 2 m	no sidewalk n/a	≥ 2 m > 2 m
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	> 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	> 3000	> 3000	> 3000	> 3000
Pedestrian	Operating Speed On-Street Parking		> 30 to 50 km/h yes	> 30 to 50 km/h yes	> 60 km/h no	> 30 to 50 km/h yes	> 30 to 50 km/h yes	≤ 30 km/h yes	> 60 km/h no	> 50 to 60 km/h no	> 50 to 60 km/h no	> 50 to 60 km/h no	> 50 to 60 km/h
Sti	Exposure to Traffic PLoS	Е	С	С	F	F	E	С	F	Е	С	F	С
de	Effective Sidewalk Width	_	2.0 m	1.5 m			1.5 m			2.0 m	2.0 m		2.0 m
Pe	Pedestrian Volume		250 ped/hr	250 ped/hr			250 ped/hr			250 ped/hr	250 ped/hr		250 ped/hr
	Crowding PLoS		В	В	-	-	В	-	-	В	В	-	В
	Level of Service		С	С	-	-	E	-	-	E	С	-	С
	Type of Cycling Facility		Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Physically Separated	Curbside Bike Lane	Physically Separated
	Number of Travel Lanes		≤ 2 (no centreline)	≤ 2 (no centreline)	2-3 lanes total	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)		≤ 1 each direction	
	Operating Speed		≤ 40 km/h	≤ 40 km/h	≥ 60 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≥ 60 km/h	≥ 50 to 60 km/h		>50 to 70 km/h	
	# of Lanes & Operating Speed LoS		Α	Α	F	Α	Α	Α	F	D	-	С	-
Bicycle	Bike Lane (+ Parking Lane) Width											≥1.5 to <1.8 m	
Š	Bike Lane Width LoS	F	-	-	-	-	-	-	-	-	-	В	-
ĕ	Bike Lane Blockages											Rare	
	Blockage LoS		-	-	-	-	-	-	-	-	-	Α	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge		< 1.8 m refuge	
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes		≤ 3 lanes	
	Sidestreet Operating Speed		≤ 40 km/h	≤ 40 km/h	>40 to 50 km/h	≤ 40 km/h	≤ 40 km/h	≤ 40 km/h	≥ 65 km/h	>50 to 60 km/h		>40 to 50 km/h	
	Unsignalized Crossing - Lowest LoS		Α	Α	Α	Α	Α	Α	D	В	A	Α	A
	Level of Service		Α	Α	F	Α	Α	Α	F	D	Α	С	Α
## ## #	Facility Type		Mixed Traffic		Mixed Traffic					Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
ansit	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8		Vt/Vp ≥ 0.8					Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8
F 2	Level of Service		D	-	D	-	-	-	-	D	D	D	D
	Truck Lane Width				≤ 3.5 m						≤ 3.5 m	≤ 3.5 m	≤ 3.5 m
쑹	Travel Lanes per Direction				1						1	1	1
Truck	Level of Service	С	-	-	С	-	-	-	-	-	С	С	С
Auto	Level of Service						Not Ap	plicable					

Appendix I

Synchro Intersection Worksheets – 2025 Future Total Conditions

HCM 95th %tile Q(veh)

2025 Future Total 02-26-2021

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			1>			4			4	
Traffic Vol., veh/h	4	987	0	10	516	14	0	1	10	20	1	12
Future Vol. veh/h	4	987	0	10	516	14	0	1	10	20	1	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sian Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-		None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2		2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	987	0	10	516	14	0	1	10	20	1	12
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	530	0	0	987	0	0	1545	1545	494	1045	1538	523
Stage 1	-	-	-	-	_	-	995	995	-	543	543	-
Stage 2		-			-		550	550		502	995	
Critical Hdwy	4 13	-	-	4 13	-	-	7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1		-	-		-	-	6.53	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519	4.019	3.319		4.019	3.319
Pot Cap-1 Maneuver	1035	-	-	698	-	-	85	114	522	194	115	553
Stage 1	-		-	-	-		263	322	-	523	519	-
Stage 2	-	-	-	-	-	-	518	515	-	521	322	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver	1035	-	-	698	-	-	81	111	522	186	112	553
Mov Cap-2 Maneuver	-	-	-	-	-	-	81	111	-	186	112	-
Stage 1	-	-	-	-	-	-	261	319	-	518	512	-
Slage 2	-	-	-	-	-	-	499	508	-	505	319	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0.2			14.5			22.5		
HCM LOS	0			0.2			В			ZZ.5		
										J		
Minor Lane/Major Mvm	ıt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		391	1035	-	-	698	-	-	239			
HCM Lane V/C Ratio		0.028	0.004			0.014	-					
HCM Control Delay (s)		14.5	8.5	0	_	10.2	_	_	22.5			
HCM Lane LOS		В	Α.	Ā	_	В	_	_	ZZ.5			
TIOW Lanc LOO						U						

	۶	→	•	•	←	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		475			414			4		ች	₽	
Traffic Volume (vph)	23	999	1	2	517	42	3	0	15	104	0	32
Future Volume (vph)	23	999	1	2	517	42	3	0	15	104	0	32
Satd. Flow (prot)	0	3312	0	0	3279	0	0	1536	0	1658	1483	0
Flt Permitted		0.937			0.953			0.953		0.746		
Satd. Flow (perm)	0	3107	0	0	3125	0	0	1475	0	1302	1483	0
Satd. Flow (RTOR)					13			33			278	
Lane Group Flow (vph)	0	1023	0	0	561	0	0	18	0	104	32	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	_	_										
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	50.8	50.8		50.8	50.8		25.6	25.6		25.6	25.6	
Total Split (s)	50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
Total Split (%)	55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		2.0	0.0		0.0	0.0	
Total Lost Time (s)		5.8			5.8			5.6		5.6	5.6	
Lead/Lag		0.0			0.0			0.0		0.0	0.0	
Lead-Lag Optimize?												
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	WIGA	53.0		WILL	53.0		140110	11.8		11.8	11.8	
Actuated g/C Ratio		0.74			0.74			0.16		0.16	0.16	
v/c Ratio		0.44			0.24			0.07		0.49	0.07	
Control Delay		6.0			4.6			5.5		35.0	0.3	
Queue Delay		0.0			0.0			0.0		0.0	0.0	
Total Delay		6.0			4.6			5.5		35.0	0.3	
LOS		A			Α			Α.		C	A	
Approach Delay		6.0			4.6			5.5			26.8	
Approach LOS		Α.			4.0 A			Α.			20.0 C	
Queue Length 50th (m)		27.1			11.7			0.0		12.6	0.0	
Queue Length 95th (m)		47.8			22.0			2.9		25.0	0.0	
Internal Link Dist (m)		414.4			185.4			258.4		20.0	148.6	
Turn Bay Length (m)		717.7			100.4			200.4		15.0	140.0	
Base Capacity (vph)		2301			2318			741		639	870	
Starvation Cap Reductn		0			0			0		039	0/0	
Spillback Cap Reductn		0			0			0		0	0	
Storage Cap Reductn		0			0			0		0	0	
Reduced v/c Ratio		0.44			0.24			0.02		0.16	0.04	
		0.44			0.24			0.02		0.10	0.04	
Intersection Summary												
Cycle Length: 91.4	^											
Actuated Cycle Length: 71.	.b											
Natural Cycle: 80												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.49												

0.1 0 - - 0 - - 0.5

6295, 6363, 6409 Perth St AM Peak Hour

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth 2025 Future Total 02-26-2021

Intersection Signal Delay: 7.2 Intersection LOS: A
Intersection Capacity Utilization 68.8% ICU Level of Service C
Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St AM Peak Hour Synchro 10 Light Report

 HCM 2010 TWSC
 2025 Future Total

 4: Perth & Street O
 02-26-2021

Movement							
Movement	Intersection						
Cannel Configurations Cannel Configurations Cannel Configurations Cannel Configurations Cannel Configurations Cannel Conficting Peds, #/hr Cannel Conficting Peds, #/hr Cannel Conficting Peds, #/hr Cannel Configuration Cannel Configu	Int Delay, s/veh	2					
Cannel Configurations Cannel Configurations Cannel Configurations Cannel Configurations Cannel Configurations Cannel Conficting Peds, #/hr Cannel Conficting Peds, #/hr Cannel Conficting Peds, #/hr Cannel Configuration Cannel Configu	Movement	EBI	EBT	WBT	WBR	SBI	SBR
Fraffic Vol, veh/h 27 521 356 18 53 53 Future Vol, veh/h 27 521 356 18 53 53 Conflicting Peds,#hr 0 <					TIDIT		ODIT
Future Vol, veh/h Conflicting Peds, #/hr Stop Stop Stop TChannelized None None		27			18		53
Conflicting Peds, #hr 0							
Sign Control Free Road Free None Free None Free None Free None Stop None <							
None				_			
Storage Length							
//eh in Median Storage, # - 0 0 0 - 0 - 0 - 0 0 0 0 0 0 0 0 0 0							
Grade, %							
Peak Hour Factor		e,# -		•	-	•	-
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	Grade, %	-			-	0	-
Movint Flow 27 521 356 18 53 53 Major/Minor Major1 Major2 Minor2 Jondicting Flow All 374 0 0 940 365 Stage 1 - - 365 - Stage 2 - - 575 - Critical Hdwy 4 12 - - 6 42 6 22 Critical Hdwy Stg 1 - - - 5 42 - Follow-up Hdwy 2 218 - - 3 518 3 318 Pot Cap-1 Maneuver 1184 - - 293 680 Stage 1 - - - 563 - Platoon blocked, % - - - 284 680 Mov Cap-1 Maneuver 1184 - - 284 680 Stage 1 - - - 284 - Mov Cap-2 Maneuver - - - - - <td>Peak Hour Factor</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	Peak Hour Factor	100	100	100	100	100	100
Movint Flow 27 521 356 18 53 53 Major/Minor Major1 Major2 Minor2 Jondicting Flow All 374 0 0 940 365 Stage 1 - - 365 - Stage 2 - - 575 - Critical Hdwy 4 12 - - 6 42 6 22 Critical Hdwy Stg 1 - - - 5 42 - Follow-up Hdwy 2 218 - - 3 518 3 318 Pot Cap-1 Maneuver 1184 - - 293 680 Stage 1 - - - 563 - Platoon blocked, % - - - 284 680 Mov Cap-1 Maneuver 1184 - - 284 680 Stage 1 - - - 284 - Mov Cap-2 Maneuver - - - - - <td>Heavy Vehicles, %</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td>	Heavy Vehicles, %	2	2	2	2	2	2
Major/Minor Major1 Major2 Minor2		27	521	356	18	53	53
Stage 1			02.	000			
Stage 1							
Stage 1	Major/Minor		1	//ajor2	1	Minor2	
Stage 2	Conflicting Flow All	374	0	-	0	940	365
Stage 2	Stage 1	-	-	-	-	365	-
Critical Hdwy 4 12 - - 6 42 6 22 Critical Hdwy Stg 1 - - - 5 42 - Critical Hdwy Stg 2 - - - 5 42 - Critical Hdwy Stg 2 - - - 5 42 - Critical Hdwy Stg 2 - - - 3 518 3 318 Pot Cap-1 Maneuver 1184 - - 293 680 Stage 1 -<		-	-	-	-	575	-
Difficial Hdwy Stg 1		1 12	_	_	_		6 22
Critical Hdwy Stg 2 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42					_		
Follow-up Hdwy 2 218 3 518 3318 20t Cap-1 Maneuver 1184 293 680 Stage 1 563 - 563 562 Stage 2 284 680 Mov Cap-1 Maneuver 1184 284 680 Mov Cap-1 Maneuver 1184 284 680 Stage 1 680 - 563 56							
Pot Cap-1 Maneuver				_			
Stage 1			-	-			
Stage 2			-	-	-		
Platoon blocked, %							
Mov Cap-1 Maneuver 1184 - - 284 680 Mov Cap-2 Maneuver - - - 284 - Stage 1 - - - 680 - Stage 2 - - - 563 - Approach EB WB SB 4CM Control Delay, s 0.4 0 17.2 4CM LOS C C C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1184 - - 401 1CM Lane V/C Ratio 0.023 - - 0.264 1CM Control Delay (s) 8.1 0 - 17.2 4CM Lane LOS A A - - C		-	-	-	-	563	-
Mov Cap-2 Maneuver	Platoon blocked, %		-	-	-		
Stage 1 - - - 680 - Slage 2 - - - 563 - Approach EB WB SB HCM Control Delay, s 0.4 0 17.2 HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1184 - - 401 HCM Lane V/C Ratio 0.023 - - 0.264 HCM Control Delay (s) 8.1 0 - 17.2 HCM Lane LOS A A - - C	Mov Cap-1 Maneuver	1184	-	-	-	284	680
Stage 1 - - - 680 - Slage 2 - - - 563 - Approach EB WB SB HCM Control Delay, s 0.4 0 17.2 HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1184 - - 401 HCM Lane V/C Ratio 0.023 - - 0.264 HCM Control Delay (s) 8.1 0 - 17.2 HCM Lane LOS A A - - C			-	_	-		-
Stage 2							
Approach EB WB SB		-					
CM Control Delay, s	Stage 2	_				303	
CM Control Delay, s							
CM CM CM CM	Approach			WB			
CM CM CM CM CM CM CM CM	HCM Control Delay, s	0.4		0		17.2	
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1184 - - - 401 1CM Lane V/C Ratio 0.023 - - 0.264 1CM Control Delay (s) 8.1 0 - 17.2 4CM Lane LOS A A - - C		• • • • • • • • • • • • • • • • • • • •		•			
Capacity (veh/h) 1184 - - 401 HCM Lane V/C Ratio 0.023 - - 0.264 HCM Control Delay (s) 8.1 0 - 17.2 HCM Lane LOS A A - - C							
Capacity (veh/h) 1184 - - 401 HCM Lane V/C Ratio 0.023 - - 0.264 HCM Control Delay (s) 8.1 0 - 17.2 HCM Lane LOS A A - C							
HCM Lane V/C Ratio 0.023 - - 0.264 HCM Control Delay (s) 8.1 0 - - 17.2 HCM Lane LOS A A - C		nt		EBT	WBT	WBR:	
HCM Control Delay (s) 8.1 0 17.2 HCM Lane LOS A A C	Capacity (veh/h)			-	-		
HCM Control Delay (s) 8.1 0 17.2 HCM Lane LOS A A C	HCM Lane V/C Ratio		0.023	-	-	-	0.264
HCM Lane LOS A A C)		0	-		
		,			-		
ICIVI 30tti /otile Q(veii) U.I I		.\				-	
	HOW SOUL WILLE CALLACT	1)	U. I	-	-	-	

₩ Site: 101 [Perth-Meynell AM FT2025]

Fox Run Phase 2 Site Category: (None) Roundabout

Move	Movement Performance - Vehicles													
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h		
South	: Meynell													
1	L2	54	1.0	0.520	16.8	LOS B	4.6	32.5	0.92	1.00	1.10	50.2		
2	T1	1	1.0	0.520	12.2	LOS B	4.6	32.5	0.92	1.00	1.10	50.2		
3	R2	299	1.0	0.520	11.9	LOS B	4.6	32.5	0.92	1.00	1.10	49.1		
Appro	ach	354	1.0	0.520	12.7	LOS B	4.6	32.5	0.92	1.00	1.10	49.3		
East:	Perth													
4	L2	160	1.0	0.396	9.2	LOS A	3.1	22.1	0.33	0.50	0.33	54.5		
5	T1	293	2.0	0.396	4.6	LOS A	3.1	22.1	0.33	0.50	0.33	54.5		
6	R2	103	1.0	0.396	4.4	LOS A	3.1	22.1	0.33	0.50	0.33	53.3		
Appro	ach	556	1.5	0.396	5.9	LOSA	3.1	22.1	0.33	0.50	0.33	54.3		
North	: Meynell													
7	L2	202	1.0	0.301	11.8	LOS B	1.9	13.2	0.66	0.77	0.66	51.8		
8	T1	1	1.0	0.301	7.2	LOS A	1.9	13.2	0.66	0.77	0.66	51.9		
9	R2	73	1.0	0.301	7.0	LOS A	1.9	13.2	0.66	0.77	0.66	50.7		
Appro	ach	276	1.0	0.301	10.6	LOS B	1.9	13.2	0.66	0.77	0.66	51.5		
West:	Perth													
10	L2	25	1.0	0.571	12.1	LOS B	5.0	35.3	0.73	0.74	0.78	53.2		
11	T1	542	2.0	0.571	7.5	LOS A	5.0	35.3	0.73	0.74	0.78	53.3		
12	R2	21	1.0	0.571	7.3	LOS A	5.0	35.3	0.73	0.74	0.78	52.1		
Appro	ach	588	1.9	0.571	7.7	LOSA	5.0	35.3	0.73	0.74	0.78	53.2		
All Ve	hicles	1774	1.5	0.571	8.6	LOS A	5.0	35.3	0.63	0.72	0.68	52.4		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 4:06:25 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

Lanes, Volumes, Timings

Lane Group

Lane Configurations

Traffic Volume (vph)
Future Volume (vph)

Satd. Flow (prot)

Satd. Flow (perm)

Protected Phases

Permitted Phases

Minimum Initial (s)

Minimum Split (s)

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Lead/Lag Lead-Lag Optimize? Recall Mode

v/c Ratio

Control Delay

Queue Delay

Total Delay

Approach Delay

Approach LOS

Queue Length 50th (m)

Queue Length 95th (m)

Internal Link Dist (m)

Turn Bay Length (m) Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Intersection Summary
Cycle Length: 91.4
Actuated Cycle Length: 71.1
Natural Cycle: 80
Control Type: Semi Act-Uncoord

Reduced v/c Ratio

LOS

Lost Time Adjust (s)

Total Lost Time (s)

Act Effct Green (s)

Actuated g/C Ratio

Detector Phase Switch Phase

Satd. Flow (RTOR)

Lane Group Flow (vph)

Flt Permitted

Turn Type

3: Fowler/Nixon Farm & Perth

EBT

41≯ 779

3306

0.829

2749

823

NA

0.0

5.8

53.5

0.75

0.40

5.2

0.0

5.2

Α

5.2

Α

19.8

33.7

414.4

2069

0

0

0

0.40

43 779

Perm

2

10.0

24.8 24.8

50.8 50.8

3.3 3.3

2.5 2.5

Max Max

55.6% 55.6%

EBR WBL WBT WBR

17 1163

Perm

6

10.0

24.8

50.8 50.8

3.3

2.5

55.6% 55.6%

41→ 1163

3273

0.941

3083

1283

NA

24.8

3.3

2.5

0.0

5.8

Max

53.5

0.75

0.55

6.5

0.0

6.5

Α

6.5

Α

36.5

60.2

185.4

2324

0

0

0.55

14

103

1483

1483

46

39

NA

10.0

40.6

10.7

0.15

0.15

8.7

0.0

8.7

Α

С

24.4

0.0

6.1

148.6

0

0

39

4

1549

0.968

1507

16

20

NA

40.6

2.3

0.0

5.6

10.7

0.15

0.08

14.4

0.0

14.4

В

14.4

В

0.5

5.4

754

0

0

0

0.03

258.4

0

Perm

8

10.0

40.6 40.6

40.6

3.3 3.3

2.3

44.4% 44.4%

16 74

1658

0.744

1298

Perm

4

40.6

40.6 40.6

2.3 2.3

5.6 5.6

10.7

0.15

0.38

32.7

0.0

С

32.7

18.9

15.0

643

0

0

0.12 0.05

0.0 0.0

44.4% 44.4%

3.3 3.3

Intersection												
Int Delay, s/veh	0.7											
		EDT	EDD	WDI	MOT	WDD	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	40	414	•	7	\$			4		40	4	
Traffic Vol, veh/h	13	753	0	3	1010	44	1	0	4	13	1	11
Future Vol, veh/h	13	753	0	3	1010	44	1	0	4	13	1	11
Conflicting Peds, #/hr	_ 0	_ 0	0	0	_ 0	_ 0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-
Grade, %	400	0	400	400	•	400	400	0	400	400	0	400
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	13	753	2	2	1010	44	2	2	4	13	2	11
Mvmt Flow	13	100	U	3	1010	44	- 1	U	4	13	- 1	- 11
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	1054	0	0	753	0	0	1823	1839	377	1441	1817	1032
Stage 1	-	-	-	-	-	-	779	779	-	1038	1038	-
Stage 2	-	-	-	-	-	-	1044	1060	-	403	779	-
Critical Hdwy	4 13	-	-	4 13	-	-	7.33	6 53	6 93	7 33	6 53	6 23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.53	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519		3.319		4.019	
Pot Cap-1 Maneuver	658	-	-	855	-	-	54	75	621	101	77	282
Stage 1	-	-	-	-	-	-	356	405	-	278	307	-
Stage 2	-	-	-	-	-	-	276	300	-	596	405	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	658	-	-	855	-	-	50	72	621	97	74	282
Mov Cap-2 Maneuver	-	-	-	-	-	-	50	72	-	97	74	-
Stage 1	-	-	-	-	-	-	344	391	-	269	306	-
Slage 2	-	-	-	-	-	-	263	299	-	572	391	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			0			24.6			37.9		
HCM LOS	0.4			U			24.0 C			57.5		
I IOWI EOO							Ū					
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR				
Capacity (veh/h)		189	658	-	-	855	-	-	134			
HCM Lane V/C Ratio		0.026	0.02	-	-	0.004	-	-	0.187			
HCM Control Delay (s)		24.6	10.6	0.2	-	9.2	-	-	37.9			
HCM Lane LOS		С	В	Α	-	Α	-	-	Е			
HCM 95th %tile Q(veh)	0.1	0.1	-	-	0	-	-	0.7			

		Maximum v/c Ratio: 0.55	
6295, 6363, 6409 Perth St PM Peak Hour	Synchro 10 Light Report Page 2	6295, 6363, 6409 Perth St PM Peak Hour	Synchro 10 Light Report Page 4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

Intersection Signal Delay: 7.0 Intersection Capacity Utilization 77.1%

Analysis Period (min) 15

2025 Future Total 02-26-2021

Intersection LOS: A ICU Level of Service D

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St PM Peak Hour Synchro 10 Light Report

 HCM 2010 TWSC
 2025 Future Total

 4: Perth & Street O
 02-26-2021

Intersection						
Int Delay, s/veh	1.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	€ 1	\$	TTDIN	₩.	אפט
Traffic Vol. veh/h	50	430	649	33	39	39
Future Vol, veh/h	50	430	649	33	39	39
Conflicting Peds, #/hr	0	430	049	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length		INOITE		INOHE -	0	INOHE
Veh in Median Storage		0	0		0	-
Grade. %	-,#	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
	100	2	100	100	100	100
Heavy Vehicles, %	50	430	649	33	39	39
Mvmt Flow	50	430	649	33	39	39
Major/Minor	Major1	N	Major2	1	Minor2	
Conflicting Flow All	682	0	-	0	1196	666
Stage 1	-	-	-	-	666	-
Stage 2	-	-	-	-	530	-
Critical Hdwy	4 12	-		_	6.42	6.22
Critical Hdwy Stg 1	-	-	_	_	5.42	-
Critical Hdwy Stg 2	-	-	-	_	5.42	-
Follow-up Hdwy	2 218		-		3 518	3 318
Pot Cap-1 Maneuver	911	_		_	206	459
Stage 1	-				511	-100
Stage 2	_			_	590	_
Platoon blocked. %	_				330	
Mov Cap-1 Maneuver	911	-	-	-	191	459
Mov Cap-2 Maneuver	-	-	-	-	191	-
Stage 1	-	-	-	-	474	-
Slage 2	-	-	-	-	590	-
Approach	EB		WB		SB	
HCM Control Delay, s	1		0		23.7	
HCM LOS	•		·		C	
TIOWI EGG						
				14/57		on: /
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		911	-	-	-	270
HCM Lane V/C Ratio		0.055	-	-		0.289
HCM Control Delay (s)		9.2	0	-	-	23.7
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh)	0.2	-	-	-	1.2

∀ Site: 101 [Perth-Meynell PM FT2025]

Fox Run Phase 2 Site Category: (None) Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h	
South	: Meynell												
1	L2	36	1.0	0.318	12.9	LOS B	2.1	15.2	0.77	0.80	0.77	53.1	
2	T1	1	1.0	0.318	8.2	LOS A	2.1	15.2	0.77	0.80	0.77	53.1	
3	R2	212	1.0	0.318	8.0	LOS A	2.1	15.2	0.77	0.80	0.77	51.8	
Appro	ach	248	1.0	0.318	8.8	LOS A	2.1	15.2	0.77	0.80	0.77	52.0	
East:	Perth												
4	L2	286	1.0	0.733	9.7	LOS A	9.7	68.5	0.53	0.50	0.53	53.9	
5	T1	606	2.0	0.733	5.0	LOS A	9.7	68.5	0.53	0.50	0.53	53.9	
6	R2	184	1.0	0.733	4.7	LOS A	9.7	68.5	0.53	0.50	0.53	52.7	
Appro	ach	1077	1.6	0.733	6.2	LOS A	9.7	68.5	0.53	0.50	0.53	53.7	
North	: Meynell												
7	L2	206	1.0	0.507	19.6	LOS B	4.5	31.8	0.96	1.07	1.18	46.8	
8	T1	1	1.0	0.507	15.1	LOS B	4.5	31.8	0.96	1.07	1.18	46.9	
9	R2	81	1.0	0.507	14.8	LOS B	4.5	31.8	0.96	1.07	1.18	45.9	
Appro	ach	288	1.0	0.507	18.3	LOS B	4.5	31.8	0.96	1.07	1.18	46.6	
West	Perth												
10	L2	45	1.0	0.532	13.2	LOS B	4.5	31.6	0.78	0.82	0.86	52.8	
11	T1	388	2.0	0.532	8.7	LOS A	4.5	31.6	0.78	0.82	0.86	52.8	
12	R2	57	1.0	0.532	8.4	LOS A	4.5	31.6	0.78	0.82	0.86	51.6	
Appro	ach	491	1.8	0.532	9.0	LOSA	4.5	31.6	0.78	0.82	0.86	52.7	
All Ve	hicles	2104	1.5	0.733	8.8	LOSA	9.7	68.5	0.68	0.69	0.73	52.2	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 4:06:47 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

Appendix J

Synchro Intersection Worksheets – 2030 Future Total Conditions

2030 Future Total

Lanes, Volumes, Timings

Lane Group Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Satd. Flow (prot)

Satd. Flow (perm)

Protected Phases

Permitted Phases

Minimum Initial (s)

Minimum Split (s)

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Lead/Lag Lead-Lag Optimize? Recall Mode

v/c Ratio

Control Delay

Queue Delay

Total Delay

Approach Delay

Approach LOS

Queue Length 50th (m)

Queue Length 95th (m)

Internal Link Dist (m)

Turn Bay Length (m) Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Intersection Summary Cycle Length: 91.4 Actuated Cycle Length: 71.6

Reduced v/c Ratio

LOS

Lost Time Adjust (s)

Total Lost Time (s)

Act Effct Green (s)

Actuated g/C Ratio

Detector Phase Switch Phase

Satd. Flow (RTOR)

Lane Group Flow (vph)

Flt Permitted

Turn Type

3: Fowler/Nixon Farm & Perth

EBT

4**1**3

3312

0.937

3107

1304

NA

0.0

5.8

53.0

0.74

0.57

7.4

0.0

7.4

Α

7.4

Α

39.9

70.5

414.4

2301

0

0

0

0.57

23 1280

23

Perm

2

50.8 50.8

50.8 50.8

3.3 3.3

2.5 2.5

Max Max

55.6% 55.6%

EBR WBL WBT WBR

2 626

Perm

6

10.0

50.8

50.8 50.8

3.3

2.5

55.6% 55.6%

414

626

3286

0.952

3128

10

670

NA

50.8

3.3

2.5

0.0

5.8

Max

53.0

0.74

0.29

4.9

0.0

4.9

Α

4.9

Α

14.8

27.2

185.4

2319

0

0

0.29

4

1536

0.953

1475

33

18

NA

40.6

2.3

0.0

5.6

None

11.8

0.16

0.07

5.5

0.0

5.5

Α

5.5

Α

0.0

2.9

0

0

0

0.02

258.4

0

Perm

8

10.0

25.6 25.6

40.6

3.3 3.3

2.3

44.4% 44.4%

15 104

1658

0.746

1302

Perm

4

25.6

40.6 40.6

2.3 2.3

5.6 5.6

11.8

0.16

0.49

35.0

0.0

С

35.0

12.6

25.0

15.0

639

0

0

0.16 0.04

0.0 0.0

None None

11.8

0.16

0.08

0.4

0.0

0.4

Α

26.8

0.0

0.0

148.6

0

0

C

44.4% 44.4%

3.3 3.3

0 32

1483

1483

207

32

NA

10.0

25.6

luture etter												
Intersection												
Int Delay, s/veh	8.0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4î.b		*	1₃			4			44	
Traffic Vol, veh/h	4	1269	0	10	625	14	0	1	10	20	1	12
Future Vol. veh/h	4	1269	0	10	625	14	0	1	10	20	1	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	_	-	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	1269	0	10	625	14	0	1	10	20	1	12
Major/Minor N	//ajor1			Major2			Minor1			Minor		
		0	0		0	0	Minor1 1936	1936	635	Minor2 1295	1929	632
Conflicting Flow All	639			1269								
Stage 1	-	-	-	-	-	-	1277	1277	-	652	652	-
Stage 2	4 13	-	-	4 13	-	-	659	659	6.93	643	1277 6.53	6.23
Critical Hdwy		-	-	4 13	-	-	7.33 6.53	6.53 5.53	h 93	7.33 6.13	5.53	b 23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.13	5.53		6.53	5.53	-
Critical Hdwy Stg 2		_	-	2.219		-	3.519	4.019	2 240		4 019	3 319
Follow-up Hdwy Pot Cap-1 Maneuver	2.219 943	-	-	545	-	-	3.519	4.019	422	129	4.019	479
	943		-		-	-	177	236		456	463	4/9
Stage 1				-	-	-	452		-			-
Stage 2	-	-	-	-	-	-	452	460	-	429	236	-
Platoon blocked, %	0.42	-	-	EAF	-	-	4.4	60	400	101	0.4	470
Mov Cap-1 Maneuver	943	-	-	545	-	-	41	63	422	121	64	479
Mov Cap-2 Maneuver	-	-	-	-	-	-	41 175	63 233	-	121 450	64 455	-
Stage 1	-	-	-	-	-	-	432	452	-	411	233	-
Slage 2	_	-	_	_		_	432	402		411	233	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.2			18.5			33.3		
HCM LOS							С			D		
Minor Lane/Major Mvmt	+ N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SRI n1			
	ı I	278	943	EDI	EDK -	545	VVDI	WDK	160			
Capacity (veh/h)			0.004	-		0.018			0.206			
HCM Control Dolor (a)		18.5	8.8	0.1	-	11.7	-	-	33.3			
HCM Control Delay (s) HCM Lane LOS		16.5 C	0.0 A	U.1	-	11.7 B	-	-				
		0.1	A 0	А	-	0.1			D 0.7			
HCM 95th %tile Q(veh)		U.T	U	-	-	0.1	-	-	0.7			

		Natural Cycle: 80 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.57	
6295, 6363, 6409 Perth St AM Peak Hour	Synchro 10 Light Report Page 2	6295, 6363, 6409 Perth St AM Peak Hour	Synchro 10 Light Report Page 4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth 2030 Future Total 02-26-2021

Intersection Signal Delay: 7.8 Intersection LOS: A Intersection Capacity Utilization 76.9% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St AM Peak Hour Synchro 10 Light Report

 HCM 2010 TWSC
 2030 Future Total

 4: Perth & Street O
 02-26-2021

Intersection						
Int Delay, s/veh	2					
	_	EDT	MOT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	07	€ 1	∱	40	*	
Traffic Vol, veh/h	27	563	377	18	53	53
Future Vol, veh/h	27	563	377	18	53	53
Conflicting Peds, #/hr	_ 0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length		-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	27	563	377	18	53	53
Major/Minor N	Major1		Major2		Minor2	
Conflicting Flow All	395	0	-	0		386
Stage 1	-	-	_	-	386	-
Stage 2			-		617	
Critical Hdwy	4 12				6.42	6 22
Critical Hdwy Stg 1	4 17				** **	077
Critical Hdwy Stg 2					5.42	-
	2 218	-	-		3 518	
Pot Cap-1 Maneuver	1164				268	662
Stage 1	-		-		687	- 002
Stage 2					538	
Platoon blocked, %	-		-		550	-
Mov Cap-1 Maneuver	1101	-	-	-	259	662
Mov Cap-2 Maneuver	-	-	-	-	259	-
Stage 1	-	-	-	-	664	-
Slage 2	-	-	-	-	538	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		18.5	
	•		•		С	
HCM LOS						
HCM LOS						
						001 4
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR	
Minor Lane/Major Mvm Capacity (veh/h)	t	1164	-	-	-	372
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		1164 0.023		-	-	372 0.285
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1164 0.023 8.2	- - 0	-	-	372 0.285 18.5
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		1164 0.023		-	-	372 0.285

Site: 101 [Perth-Meynell AM FT2030]

Fox Run Phase 2 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Vehi	icles								
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	n: Meynell											
1	L2	57	1.0	0.963	61.8	LOS E	27.0	190.9	1.00	1.90	3.33	31.1
2	T1	1	1.0	0.963	57.2	LOS E	27.0	190.9	1.00	1.90	3.33	31.1
3	R2	513	1.0	0.963	56.9	LOS E	27.0	190.9	1.00	1.90	3.33	30.7
Appro	oach	571	1.0	0.963	57.4	LOS E	27.0	190.9	1.00	1.90	3.33	30.7
East:	Perth											
4	L2	256	1.0	0.478	9.3	LOS A	4.2	29.8	0.38	0.52	0.38	54.0
5	T1	293	2.0	0.478	4.7	LOS A	4.2	29.8	0.38	0.52	0.38	54.0
6	R2	122	1.0	0.478	4.5	LOS A	4.2	29.8	0.38	0.52	0.38	52.8
Appro	oach	671	1.4	0.478	6.4	LOS A	4.2	29.8	0.38	0.52	0.38	53.8
North	: Meynell											
7	L2	248	1.0	0.399	12.9	LOS B	2.7	19.1	0.76	0.83	0.76	51.0
8	T1	1	1.0	0.399	8.3	LOS A	2.7	19.1	0.76	0.83	0.76	51.1
9	R2	84	1.0	0.399	8.0	LOS A	2.7	19.1	0.76	0.83	0.76	50.0
Appro	oach	334	1.0	0.399	11.7	LOS B	2.7	19.1	0.76	0.83	0.76	50.8
West	: Perth											
10	L2	29	1.0	0.699	16.4	LOS B	8.3	59.1	0.89	0.99	1.19	50.7
11	T1	579	2.0	0.699	11.9	LOS B	8.3	59.1	0.89	0.99	1.19	50.7
12	R2	24	1.0	0.699	11.6	LOS B	8.3	59.1	0.89	0.99	1.19	49.6
Appro	oach	633	1.9	0.699	12.1	LOS B	8.3	59.1	0.89	0.99	1.19	50.7
All Ve	hicles	2207	1.4	0.963	22.0	LOS C	27.0	190.9	0.75	1.06	1.43	44.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 4:21:14 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

2030 Future Total 02-26-2021

Intersection												
Int Delay, s/veh	1.2											
**	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Movement	EDL		EDR			WBR	NDL		NDK	SBL		SBR
Lane Configurations	40	41€	^	7	}	4.4		♣		40	4	44
Traffic Vol, veh/h	13	945	0	3	1336	44	1	0	4	13	1	11
Future Vol, veh/h	13	945	0	3	1336	44	1	0	4	13	1	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	13	945	0	3	1336	44	1	0	4	13	1	11
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	1380	0	0	945	0	0	2341	2357	473	1863	2335	1358
Stage 1	-	-	-	-	-	-	971	971	-	1364	1364	-
Stage 2							1370	1386		499	971	
Critical Hdwy	4 13	_		4 13	_		7.33	6.53	6.93	7.33	6.53	6.23
Critical Hdwy Stg 1	4 13			4 13			6.53	5.53	0 83	6.13	5.53	073
Critical Hdwy Stg 2	-						6.33	5.53	-	6.53	5.53	
Follow-up Hdwy	2.219			2.219			3.519	4.019	3 310		4 019	3.319
Pot Cap-1 Maneuver	495			724			22	35	538	50	36	181
Stage 1	485			124			272	330	J30 -	182	215	101
			-				180	209	-	523	330	
Stage 2	-	-	-	-	-		100	209	-	023	330	-
Platoon blocked, %	405	-	-	704	-	-	40	20	E00	47	0.4	404
Mov Cap-1 Maneuver	495	-	-	724	-	-	19	33	538	47	34	181
Mov Cap-2 Maneuver	-	-	-	-	-	-	19	33	-	47	34	-
Stage 1	-	-	-	-	-	-	257	312	-	172	214	-
Slage 2	-	-	-	-	-	-	168	208	-	491	312	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0			51.1			86		
HCM LOS							F			F		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		83	495	-	-	724			68			
HCM Lane V/C Ratio		0.06				0.004			0.368			
HCM Control Delay (s)		51.1	12.5	0.3	_	10	_	_	86			
HCM Lane LOS		F	12.3 B	Α.	_	A			F			
HCM 95th %tile Q(veh)		0.2	0.1	-		0			1.4			
TION COULT TOUTE CE(VEIT)		0.2	0.1	_		U			1.4			

	۶	-	\rightarrow	•	—	•	1	†	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			4		ሻ	1,	
Traffic Volume (vph)	43	971	1	17	1498	103	2	2	16	74	0	39
Future Volume (vph)	43	971	1	17	1498	103	2	2	16	74	0	39
Satd. Flow (prot)	0	3309	0	0	3279	0	0	1549	0	1658	1483	0
Flt Permitted		0.810			0.940			0.968		0.744		
Satd. Flow (perm)	0	2686	0	0	3086	0	0	1507	0	1298	1483	0
Satd. Flow (RTOR)					11			16			33	
Lane Group Flow (vph)	0	1015	0	0	1618	0	0	20	0	74	39	(
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2	_		6	-		8	_		4	•	
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	_	_			-			-			•	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	24.8	24.8		24.8	24.8		40.6	40.6		40.6	40.6	
Total Split (s)	50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
Total Split (%)	55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.5	2.5		2.5	2.5		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		2.0	0.0		0.0	0.0	
Total Lost Time (s)		5.8			5.8			5.6		5.6	5.6	
Lead/Lag		0.0			3.0			5.0		5.0	0.0	
Lead-Lag Optimize?												
Recall Mode	Max	Max		Max	Max		None	None		None	None	
Act Effct Green (s)	WIGA	53.5		WILL	53.5		140110	10.7		10.7	10.7	
Actuated g/C Ratio		0.75			0.75			0.15		0.15	0.15	
v/c Ratio		0.50			0.70			0.08		0.38	0.16	
Control Delay		6.2			8.7			14.4		32.7	12.6	
Queue Delay		0.0			0.0			0.0		0.0	0.0	
Total Delay		6.2			8.7			14.4		32.7	12.6	
LOS		Α.2			Α.			В.		02.1	12.0 B	
Approach Delay		6.2			8.7			14.4		U	25.8	
Approach LOS		Α.2			Α.			В			20.0 C	
Queue Length 50th (m)		27.5			57.1			0.5		9.2	0.7	
Queue Length 95th (m)		46.8			95.7			5.4		18.9	7.6	
Internal Link Dist (m)		414.4			185.4			258.4		10.0	148.6	
Turn Bay Length (m)		717.7			100.4			200.4		15.0	140.0	
Base Capacity (vph)		2022			2326			754		643	751	
Starvation Cap Reductn		0			2320			7.54		043	0	
Spillback Cap Reductn		0			0			0		0	0	
Storage Cap Reductn		0			0			0		0	0	
Reduced v/c Ratio		0.50			0.70			0.03		0.12	0.05	
Reduced V/C Railo		0.50			0.70			0.03		0.12	0.05	
Intersection Summary												
Cycle Length: 91.4												
Actuated Cycle Length: 71.	1											
Natural Cycle: 90												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.70												

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

2030 Future Total 02-26-2021

Intersection Signal Delay: 8.5 Intersection LOS: A Intersection Capacity Utilization 82.2% ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 3: Fowler/Nixon Farm & Perth

6295, 6363, 6409 Perth St PM Peak Hour Synchro 10 Light Report

 HCM 2010 TWSC
 2030 Future Total

 4: Perth & Street O
 02-26-2021

Intersection						
Int Delay, s/veh	2					
	_					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	Þ		¥	
Traffic Vol, veh/h	50	447	738	33	39	39
Future Vol, veh/h	50	447	738	33	39	39
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	50	447	738	33	39	39
Main //Min an	A-:4		M-:0		M: 0	
	Major1		Major2		Minor2	755
Conflicting Flow All	771	0	-	0	1302	755
Stage 1	-	-	-	-	755	-
Stage 2	-	-	-	-	547	-
Critical Hdwy	4 12	-	-	-	6 42	6 22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
	2.218	-	-		3.518	
Pot Cap-1 Maneuver	844	-	-	-	177	409
Stage 1	-	-	-	-	464	-
Stage 2	-	-	-	-	580	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	844	-	-	-	163	409
Mov Cap-2 Maneuver	-	-	-	-	163	-
Stage 1	-	-	-	-	427	-
Slage 2	-	-	-	-	580	-
Approach	EB		WB		SB	
HCM Control Delay, s	1		0		28	
HCM LOS			U		20 D	
HUM LUS					U	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		844	-	-	-	233
HCM Lane V/C Ratio		0.059	-	-	-	0.335
HCM Control Delay (s)		9.5	0	-	-	28
HCM Lane LOS		Α	Ā	-	-	D
HCM 95th %tile Q(veh)		0.2	-	-		1.4
		0.2				

Site: 101 [Perth-Meynell PM FT2030]

Fox Run Phase 2 Site Category: (None) Roundabout

Move	ement Pe	erformance	e - Vehi	icles			_					
Mov ID	Turn	Demand l Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: Meynell											
1	L2	39	1.0	0.567	15.6	LOS B	5.3	37.4	0.90	0.97	1.08	51.2
2	T1	1	1.0	0.567	11.0	LOS B	5.3	37.4	0.90	0.97	1.08	51.2
3	R2	383	1.0	0.567	10.8	LOS B	5.3	37.4	0.90	0.97	1.08	50.1
Appro	ach	423	1.0	0.567	11.2	LOS B	5.3	37.4	0.90	0.97	1.08	50.2
East:	Perth											
4	L2	540	1.0	0.987	15.6	LOS B	46.7	330.9	1.00	0.59	1.10	50.3
5	T1	648	2.0	0.987	11.0	LOS B	46.7	330.9	1.00	0.59	1.10	50.3
6	R2	233	1.0	0.987	10.8	LOS B	46.7	330.9	1.00	0.59	1.10	49.2
Appro	ach	1421	1.5	0.987	12.7	LOS B	46.7	330.9	1.00	0.59	1.10	50.1
North	: Meynell											
7	L2	237	1.0	1.227	281.4	LOS F	54.8	386.6	1.00	2.85	6.03	10.9
8	T1	1	1.0	1.227	276.8	LOS F	54.8	386.6	1.00	2.85	6.03	10.9
9	R2	88	1.0	1.227	276.6	LOS F	54.8	386.6	1.00	2.85	6.03	10.8
Appro	ach	326	1.0	1.227	280.1	LOS F	54.8	386.6	1.00	2.85	6.03	10.9
West	Perth											
10	L2	57	1.0	0.771	24.3	LOS C	10.6	75.3	1.00	1.25	1.62	45.6
11	T1	388	2.0	0.771	19.7	LOS B	10.6	75.3	1.00	1.25	1.62	45.7
12	R2	63	1.0	0.771	19.4	LOS B	10.6	75.3	1.00	1.25	1.62	44.8
Appro	ach	508	1.8	0.771	20.2	LOS C	10.6	75.3	1.00	1.25	1.62	45.5
All Ve	hicles	2679	1.4	1.227	46.5	LOS D	54.8	386.6	0.98	1.05	1.79	34.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 4:21:36 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8

Appendix K

TDM Checklist

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed &
			add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

		TDM	measures: Residential developments	Check if proposed & add descriptions
		3.	TRANSIT	
		3.1	Transit information	
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	
BETTER		3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
		3.2	Transit fare incentives	
BASIC	*	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	Provide as an option for new home owners.
BETTER		3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
		3.3	Enhanced public transit service	
BETTER	*	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
		3.4	Private transit service	
BETTER		3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
		4.	CARSHARING & BIKESHARING	
		4.1	Bikeshare stations & memberships	
BETTER		4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	
BETTER		4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
		4.2	Carshare vehicles & memberships	
BETTER		4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER		4.2.2	Provide residents with carshare memberships, either free or subsidized	
		5.	PARKING	
		5.1	Priced parking	
BASIC	*	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC	*	5.1.2	Unbundle parking cost from monthly rent	

12

1	ГОМ	measures: Residential developments	Check if proposed & add descriptions
6		TDM MARKETING & COMMUNICATIONS	
6.	.1	Multimodal travel information	
BASIC ★ 6.		Provide a multimodal travel option information package to new residents	♥
6.	.2	Personalized trip planning	
BETTER ★ 6.	.2.1	Offer personalized trip planning to new residents	☑∕

Appendix L

Signal Warrants – Justification 7

Perth St @ Rochelle Dr/Queen Charlotte St 2025 BG

Justification #7

		Minimum R	Requirement	Minimum R	equirement					
Justification	Description	1 Lane Highway		2 or Mo	re Lanes	Sectional		Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	857	95%	11%	No	
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	19	11%	11/0	INO	
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	839	93%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	9	12%	12%	No	

Notes

- 1. Refer to OTM Book 12, pg 88, Nov 2007
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including applicable amplification factors
- 4. T-intersection factor corrected, applies only to 1B
- 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Perth St @ Rochelle Dr/Queen Charlotte St 2030 FT - w/SBL

Justification #7

		Minimum R	Requirement	Minimum R	equirement					
Justification	Description	1 Lane Highway		2 or Mo	re Lanes	Sectional		Entire %	Signal	
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /0		
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	1084	120%	11%	No	
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	19	11%	11/0	NO	
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	1066	118%			
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	9	12%	12%	No	

Notes

- 1. Refer to OTM Book 12, pg 88, Nov 2007
- 2. Lowest section percentage governs justification
- 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including applicable amplification factors
- 4. T-intersection factor corrected, applies only to 1B
- 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Appendix M

Synchro/Sidra Intersection Worksheets – 2030 Future Total Conditions PM Diverted Volumes

6295, 6363, 6409 Perth St PM Peak Hour

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414		*	1>			4			4	
Traffic Vol, veh/h	13	945	0	3	1213	44	1	0	4	1	1	11
Future Vol. veh/h	13	945	0	3	1213	44	1	0	4	1	1	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	350	-	-	0	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	13	945	0	3	1213	44	1	0	4	1	1	11
Major/Minor N	//ajor1			Major2			Minor1			Minor2		
Conflicting Flow All	1257	0	0	945	0	0	2218	2234	473	1740	2212	1235
Stage 1	-	-	-	-	-	-	971	971	-	1241	1241	-
Stage 2	-	-	-	-	-	-	1247	1263	-	499	971	-
Critical Hdwy	4 13	-	-	4 13	-	-	7.33	6.53	6 93	7.33	6 53	6 23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.53	5.53	-	6.13	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.13	5.53	-	6.53	5.53	-
Follow-up Hdwy	2.219	-	-	2.219	-	-	3.519	4.019	3.319		4.019	3.319
Pot Cap-1 Maneuver	551	-	-	724	-	-	27	42	538	62	44	214
Stage 1	-	-	-	-	-	-	272	330	-	213	246	-
Stage 2	-	-	-	-	-	-	212	240	-	523	330	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	551	-	-	724	-	-	24	40	538	59	42	214
Mov Cap-2 Maneuver	-	-	-	-	-	-	24	40	-	59	42	-
Stage 1	-	-	-	-	-	-	258	314	-	202	245	-
Slage 2	-	-	-	-	-	-	199	239	-	493	314	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0			42.1			33.1		
HCM LOS							Е			D		
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		102	551	-	-	724	-	-	141			
HCM Lane V/C Ratio		0.049	0.024	-	-	0.004	-	-	0.092			
HCM Control Delay (s)		42.1	11.7	0.3	-	10	-	-	33.1			
HCM Lane LOS		Е	В	Α	-	Α	-	-	D			
HCM 95th %tile Q(veh)		0.2	0.1	-	-	0	-	-	0.3			

-	-	*	₹		_	7			*	*	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
	414			414			4		7	î,	
43	959	1	17	1498	103	2	2	16	86	0	3
43	959	1	17	1498	103	2	2	16	86	0	3
0	3309	0	0	3279	0	0	1549	0	1658	1483	
	0.809			0.940			0.969		0.744		
0	2682	0	0	3086	0	0	1508	0	1298	1483	
				11			16			33	
0	1003	0	0	1618	0	0	20	0	86	39	
Perm	NA		Perm	NA		Perm	NA		Perm	NA	
	2			6			8			4	
2			6			8			4		
2	2		6	6		8	8		4	4	
10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
24.8	24.8		24.8	24.8		40.6	40.6		40.6	40.6	
50.8	50.8		50.8	50.8		40.6	40.6		40.6	40.6	
55.6%	55.6%		55.6%	55.6%		44.4%	44.4%		44.4%	44.4%	
3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
2.5	2.5		2.5	2.5		2.3	2.3		2.3	2.3	
	0.0			0.0			0.0		0.0	0.0	
	5.8			5.8			5.6		5.6	5.6	
Max	Max		Max	Max		None	None		None	None	
	53.2			53.2			11.1		11.1	11.1	
	0.75			0.75			0.16		0.16	0.16	
	0.50			0.70			0.08		0.43	0.15	
	6.4			9.2			14.2		33.6	12.2	
	0.0			0.0			0.0		0.0	0.0	
	6.4			9.2			14.2		33.6	12.2	
	Α			Α			В		С	В	
	6.4			9.2			14.2			26.9	
	Α			Α			В			С	
	27.1			57.1			0.5		10.5	0.7	
	48.5			101.1			5.4		21.4	7.6	
	414.4			185.4			258.4			148.6	
									15.0		
	2005			2310			754		642	750	
	0			0			0		0	0	
				0			0		0	0	
	0										
				0			0		0	0	
	43 43 0 0 Perm 2 2 10.0 24.8 50.8 55.6% 3.3 2.5	43 959 43 959 0 3309 0 809 0 2682 0 1003 Perm NA 2 2 2 2 2 2 10.0 10.0 24.8 24.8 50.8 50.8 55.6% 55.6% 3.3 3.3 2.5 2.5 0.0 5.8 Max Max 53.2 0.75 0.50 6.4 0.0 6.4 A 6.4 A 27.1 48.5 414.4	43 959 1 43 959 1 0 3309 0 0.809 0 2682 0 0 1003 0 Perm NA 2 2 2 2 2 2 10.0 10.0 24.8 24.8 50.8 50.8 55.6% 55.6% 33 3.3 2.5 2.5 0.0 5.8 Max Max 53.2 0.75 0.50 6.4 0.0 6.4 A 6.4 A 27.1 48.5 414.4	43 959 1 17 43 959 1 17 0 3309 0 0 0.809 0 2682 0 0 0 1003 0 0 Perm NA Perm 2 2 6 2 2 6 10.0 10.0 10.0 24.8 24.8 24.8 50.8 50.8 50.8 55.6% 55.6% 55.6% 3.3 3.3 3.3 2.5 2.5 2.5 0.0 5.8 Max Max Max Max 53.2 0.75 0.50 6.4 0.0 6.4 A 4 A 27.1 48.5 414.4	43 959 1 17 1498 43 959 1 17 1498 0 3309 0 0 3279 0.809 0 0 3086 0 110 110 110 0 1003 0 0 1618 Perm NA Perm NA 2 6 2 6 2 2 6 6 2 2 2 6 6 2 2 2 6 6 2 2 2 6 6 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	43 959 1 17 1498 103 43 959 1 17 1498 103 0 3309 0 0 3279 0 0 809 0 90.940 0 2682 0 0 3086 0 11 0 1003 0 0 1618 0 Perm NA Perm NA 2 66 2 2 6 6 2 2 6 6 2 2 6 6 2 2 2 6 6 10.0 10.0 10.0 10.0 24.8 24.8 24.8 24.8 50.8 50.8 50.8 50.8 55.6% 55.6% 55.6% 55.6% 53.3 3.3 3.3 3.3 3.3 2.5 2.5 2.5 2.5 2.5 0.0 0 0.0 5.8 53.2 0.75 0.75 0.50 0.70 6.4 9.2 0.0 0.0 6.4 9.2	43 959 1 17 1498 103 2 43 959 1 17 1498 103 2 0 3309 0 0 3279 0 0 0.809 0.940 0 2682 0 0 3086 0 0 11 0 1003 0 0 1618 0 0 Perm NA Perm NA Perm 2 6 8 2 2 6 6 8 2 2 2 6 6 8 2 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 8 3 2 2 6 6 6 8 3 8 40.6 55.68 55.68 55.68 40.6 55.68 55.68 55.68 44.48 3.3 3.3 3.3 3.3 3.3 2.5 2.5 2.5 2.5 2.3 0.0 0 0.0 5.8 53.2 5.8 Max Max Max Max Max None 53.2 5.8 Max Max Max Max Max None 6.4 9.2 0.0 0.0 6.4 9.2	43 959 1 17 1498 103 2 2 43 959 1 17 1498 103 2 2 0 3309 0 0 3279 0 0 1549 0.809 0.940 0.969 0 2682 0 0 3086 0 0 1508 11 1 16 0 1003 0 0 1618 0 0 20 Perm NA Perm NA Perm NA 2 6 6 8 2 2 6 6 8 8 2 2 2 6 6 6 8 8 2 2 2 6 6 6 8 8 2 2 2 6 6 6 4 8 2 2 2 6 6 6 8 8 3 8 10.0 10.0 10.0 10.0 10.0 10.0 10.0 24.8 24.8 24.8 24.8 40.6 40.6 50.8 50.8 50.8 50.8 40.6 40.6 55.6% 55.6% 55.6% 55.6% 44.4% 44.4% 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.5 2.5 2.5 2.5 2.5 2.3 2.3 0.0 0 0.0 0.0 0.0 5.8 53.2 53.2 11.1 0.75 0.75 0.75 0.16 0.50 0.70 0.08 6.4 9.2 14.2 0.0 0 0.0 0.0 0.0 0.0 6.4 9.2 14.2 0.0 0 0.0 0.0 0.0 0.0 6.4 9.2 14.2 0.0 0 0.0 0.0 0.0 0.0 6.4 9.2 14.2 0.0 0 0.0 0.0 0.0 0.0 6.4 9.2 14.2 0.0 0 0.0 0.0 0.0 0.0 0.0 6.4 9.2 14.2 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 9.2 14.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	43 959 1 17 1498 103 2 2 16 43 959 1 17 1498 103 2 2 16 0 3309 0 0 3279 0 0 1549 0 0.809 0.940 0.969 0 2682 0 0 3086 0 0 1508 0 11 1 16 0 1003 0 0 1618 0 0 20 0 Perm NA Perm NA Perm NA 2 6 8 8 2 2 6 6 8 8 2 2 2 6 6 8 8 2 2 2 6 6 8 8 2 2 2 6 6 6 8 8 2 2 2 6 6 6 8 8 2 2 2 6 6 6 8 8 2 2 2 6 6 6 8 8 3 10.0 10.0 10.0 10.0 10.0 10.0 24.8 24.8 24.8 24.8 40.6 40.6 55.68 55.68 55.68 55.68 44.49 44.49 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.5 2.5 2.5 2.5 2.5 2.3 2.3 2.3 0.0 0.0 5.8 5.8 5.8 5.6 Max Max Max Max Max None None 53.2 53.2 11.1 0.75 0.75 0.75 0.16 0.50 0.70 0.08 6.4 9.2 14.2 0.0 0.0 0.0 0.0 6.4 9.2 14.2 A A A B 6.4 9.2 14.2 A A A B 27.1 57.1 0.5 48.5 101.1 5.4 414.4 185.4 258.4	43 959	43 959

Synchro 10 Light Report Page 2

6295, 6363, 6409 Perth St PM Peak Hour

Synchro 10 Light Report Page 4

Lanes, Volumes, Timings 3: Fowler/Nixon Farm & Perth

2030 Future Total - Diverted Volumes 02-26-2021

Intersection Signal Delay: 9.0	Intersection LOS: A
Intersection Capacity Utilization 82.6%	ICU Level of Service E
Analysis Period (min) 15	

Splits and Phases: 3: Fowler/Nixon Farm & Perth

	₩ Ø4	
→ Ø2 50.8 s	40.6 s	
4 Ø6 50.8 s	↑ Ø8	
50.8 s	40.6 s	

Site: 101 [Perth-Meynell PM FT2030 - 75 veh reduction]

Fox Run Phase 2 Site Category: (None) Roundabout

Movement Performance - Vehicles												
Mov ID	Turn	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Meynell		- , ,	.,,								
1	L2	39	1.0	0.580	16.6	LOS B	5.6	39.5	0.92	1.01	1.14	50.5
2	T1	1	1.0	0.580	11.9	LOS B	5.6	39.5	0.92	1.01	1.14	50.5
3	R2	383	1.0	0.580	11.7	LOS B	5.6	39.5	0.92	1.01	1.14	49.4
Appro	ach	423	1.0	0.580	12.2	LOS B	5.6	39.5	0.92	1.01	1.14	49.5
East:	Perth											
4	L2	408	1.0	0.900	10.6	LOS B	20.9	147.9	0.95	0.54	0.95	52.2
5	T1	648	2.0	0.900	6.0	LOS A	20.9	147.9	0.95	0.54	0.95	52.2
6	R2	233	1.0	0.900	5.8	LOS A	20.9	147.9	0.95	0.54	0.95	51.1
Appro	ach	1289	1.5	0.900	7.4	LOS A	20.9	147.9	0.95	0.54	0.95	52.0
North	: Meynell											
7	L2	237	1.0	0.919	73.6	LOS F	17.2	121.1	1.00	1.62	2.65	28.0
8	T1	1	1.0	0.919	69.0	LOS E	17.2	121.1	1.00	1.62	2.65	28.0
9	R2	88	1.0	0.919	68.7	LOS E	17.2	121.1	1.00	1.62	2.65	27.6
Appro	oach	326	1.0	0.919	72.3	LOS F	17.2	121.1	1.00	1.62	2.65	27.9
West	Perth											
10	L2	57	1.0	0.670	18.1	LOS B	7.5	53.5	0.95	1.07	1.28	49.4
11	T1	388	2.0	0.670	13.5	LOS B	7.5	53.5	0.95	1.07	1.28	49.4
12	R2	63	1.0	0.670	13.2	LOS B	7.5	53.5	0.95	1.07	1.28	48.4
Appro	ach	508	1.8	0.670	14.0	LOS B	7.5	53.5	0.95	1.07	1.28	49.3
All Ve	hicles	2547	1.4	0.919	17.8	LOS B	20.9	147.9	0.95	0.86	1.26	46.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Processed: February 26, 2021 4:34:15 PM
Project: C:\Users\AndrewHarte\CGH TRANSPORTATION\CGH Working - Documents\Projects\2019-64 Caivan 6295, 6363, 6409 Perth St\DATA \sidra\2019-64 Green-Laffin.sip8