Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Noise & Vibration Studies

patersongroup

Geotechnical Investigation

Proposed Residential Development Conservancy Lands West Ottawa, Ontario

Prepared For

Caivan Communities

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca October 19, 2021

Report: PG5036-2 Revision 1

Table of Contents

1.0	Introduction	Page
2.0	Proposed Development	
3.0	Method of Investigation3.1 Field Investigation3.2 Field Survey3.3 Laboratory Testing3.4 Analytical Testing	2
4.0	Observations 4.1 Surface Conditions	4
5.0	Discussion 5.1 Geotechnical Assessment. 5.2 Site Grading and Preparation 5.3 Foundation Design 5.4 Design for Earthquakes. 5.5 Basement Slab / Slab on Grade Construction. 5.6 Pavement Structure.	
6.0	Design and Construction Precautions 6.1 Foundation Drainage and Backfill 6.2 Protection Against Frost Action 6.3 Excavation Side Slopes 6.4 Pipe Bedding and Backfill 6.5 Groundwater Control 6.6 Winter Construction 6.7 Landscaping Considerations 6.8 Slope Stability Assessment 6.9 Corrosion Potential and Sulphate	
7.0	Recommendations	25
8.0	Statement of Limitations	26

Appendices

Appendix 1 Soil Profile and Test Data Sheets by Others

Symbols and Terms by Others

Seismic Site Class Testing Results by Others

Shrinkage Limit Results by Others

Analytical Testing Results

Appendix 2 Figure 1 - Key Plan

Figure 2 to 5 - Slope Stability Analysis Sections Drawing PG5036-4 - Test Hole Location Plan

Drawing PG5036-5 - Permissible Grade Raise Plan

Drawing PG5036-6 - Tree Planting Setback Recommendations

Page ii

1.0 Introduction

Paterson Group (Paterson) was commissioned by Caivan Communities to prepare a geotechnical report for the proposed residential development to be located at the Conservancy Lands West, along Borrisokane Road in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2). The objective of the geotechnical investigation was to:

review	available	subsurface	soil	and	groundwater	information	prepared	by
others.								

provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect its design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains the geotechnical findings and includes recommendations pertaining to the design and construction of the subject development as understood at the time of writing this report.

2.0 Proposed Development

It is understood that the proposed residential development will consist of single-family dwellings and townhouses with associated driveways, local roadways, landscaping areas, and park lands.

It is further anticipated that the proposed development will be serviced by future municipal water, sanitary and storm services.

Report: PG5036-2 Revision 1 October 19, 2021

3.0 Method of Investigation

3.1 Field Investigation

A geotechnical investigation was previously completed by others at the subject site during the periods of January 31 through March 31, 2017, and November 5 through 9, 2018. The geotechnical investigation consisted of 33 boreholes advanced to a maximum depth of 9.1 m below the existing ground surface. The locations of the boreholes are shown on Drawing PG5036-4 - Test Hole Location Plan included in Appendix 2.

The boreholes were advanced using a track-mounted auger drill rig operated by a two person crew. The drilling procedure consisted of augering to the required depths and sampling the overburden soils.

Reference should be made to the Soil Profile and Test Data sheets, prepared by others, which are presented in Appendix 1 for specific details of the soil profile encountered at the test hole locations.

Groundwater

Groundwater monitoring wells and standpipes were installed in 32 boreholes by others to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. All groundwater observations by others are noted on the Soil Profile and Test Data sheets presented in Appendix 1.

3.2 Field Survey

The ground surface elevations at the borehole locations were surveyed by others and are understood to be referenced to a geodetic datum. The locations of the boreholes and the ground surface elevation for each borehole location are presented on Drawing PG5036-4 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

A total of 8 Shelby tube samples collected from the boreholes during the geotechnical investigation were submitted for unidimensional consolidation testing by others. The results of the consolidation testing are summarized in Section 5.3.

Conservancy Lands West - Borrisokane Road - Ottawa, Ontario

A total of 35 representative soil samples were submitted for Atterberg limit testing by others from the geotechnical investigation. The results of the Atterberg testing are presented in Section 4.2 and are discussed in Section 6.7.

3.4 **Analytical Testing**

Four (4) soil samples were submitted to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was analyzed to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are discussed in Subsection 6.9 and shown in Appendix 1.

Page 3

4.0 Observations

4.1 Surface Conditions

Generally, the subject site consists of agricultural fields and is bordered by Highway 416 to the west, a railroad to the northwest, a stormwater retention pond to the northeast, the Foster Drain to the east, vacant City Lands to the southeast, and the Jock River to the southwest. The existing ground surface across the site is relatively level at approximate geodetic elevation 91 to 92 m.

4.2 Subsurface Profile

Overburden

The subsurface profile encountered at the borehole locations generally consisted of an approximate 50 to 360 mm thick layer of topsoil underlain by a silty clay deposit.

The silty clay deposit was generally observed to have a very stiff to stiff, brown silty clay crust, becoming a firm to stiff, grey silty clay at approximate depths of 2.5 to 3 m below the existing ground surface. The silty clay deposit generally extended beyond the bottom of the boreholes at depths of up to 9 m.

However, near the western boundary of the site, a glacial till deposit was encountered underlying the silty clay at depths varying from 1.5 to 7.5 m below the existing ground surface. The glacial till was generally observed to consist of a loose to compact, grey silty clay to silty sand with some gravel, cobbles and boulders.

Laboratory Testing

Atterberg limit testing, as well as associated moisture content testing, was completed by others on recovered silty clay samples at selected locations throughout the subject site.

The results of the Atterberg limit tests are presented in Table 1 on the following page.

Report: PG5036-2 Revision 1

Table 1 - Atterberg Limits Results					
Sample	Depth (m)	LL (%)	PL (%)	PI (%)	w (%)
BH 17-1	1.5	42	15	28	32
BH 17-2	0.8	53	16	37	35
BH 17-3	0.8	67	22	44	43
BH 17-4	0.8	68	23	45	33
BH 17-5	0.8	42	19	22	31
BH 17-9	1.5	43	19	24	35
BH 17-16	0.8	66	22	44	42
BH 17-17	1.5	42	17	25	34
BH 17-18	1.5	38	15	23	37
BH 17-19	0.8	67	21	46	41
BH 17-20	0.6	52	17	35	32
BH 17-21	0.8	40	20	20	33
BH 17-22	0.8	35	20	15	32
BH 17-23	1.5	44	16	28	37
BH 17-24	0.8	56	17	39	46
BH 17-25	1.4	30	17	13	33
BH 17-26	0.8	60	18	42	37
BH 17-27	0.8	61	21	40	44
BH 17-28	0.8	54	21	33	38
BH 17-29	0.8	37	19	18	31
BH 17-30	0.6	43	16	27	32
BH 18-1	0.8	51	21	30	59
BH 18-2	1.5	36	16	20	45
BH 18-3	0.7	66	26	40	50
BH 18-4	1.5	35	17	18	37
BH 18-5	0.8	56	23	33	39
BH 18-6	0.8	64	26	38	46
BH 18-7	0.8	42	21	21	30

Report: PG5036-2 Revision 1 October 19, 2021

Table 1 - Atterberg Limits Results (continued)					
Sample	Depth (m)	LL (%)	PL (%)	PI (%)	w (%)
BH 18-8	1.5	54	21	33	45
BH 18-9	0.8	55	22	33	40
BH 18-10	1.5	35	16	19	33
BH 18-11	0.8	30	19	11	29
BH 18-12	1.5	47	20	27	37
BH 18-13	0.8	31	18	13	30
BH 18-14 1.5	1.5	38	18	20	33
Notes: LL: Liquid Limit; PL: Plastic Limit; PI: Plasticity Index; w: water content;					

The results of the shrinkage limit test indicate a shrinkage limit of 17.7% and a shrinkage ratio of 1.85.

Bedrock

Based on available geological mapping, bedrock in the area consists of interbedded limestone and dolomite of the Gull River formation with overburden drift thicknesses ranging between 5 and 15 m.

4.3 Groundwater

Groundwater levels (GWL) were measured by others in 32 boreholes following completion of the geotechnical investigation. The measured GWL readings are presented in Table 2 below. It should be noted that surface water can become trapped within a backfilled borehole, which can lead to higher than normal groundwater level readings. It should be noted that long-term groundwater levels within a silty clay deposit can also be estimated based on the observed colour, moisture levels and consistency of the recovered soil samples. Based on these observations, the long-term groundwater level is expected between a 2 to 3 m depth.

However, it should be noted that the groundwater levels can fluctuate periodically throughout the year and higher levels could be encountered at the time of construction.

Table 2 - S	Table 2 - Summary of Groundwater Level Readings				
Borehole	Ground	Measured Groun	dwater Level (m)		
Number	Elevation (m)	Depth	Elevation	Recording Date	
17-01	91.76	0.69	91.07	February 21, 2017	
17-05	91.12	1.22	89.90	February 21, 2017	
17-09	90.87	0.81	90.06	February 21, 2017	
17-16	91.27	0.93	90.34	April 13, 2017	
17-17A	91.82	0.61	91.21	March 31, 2017	
17-18A	91.40	0.45	90.95	March 31, 2017	
17-19	91.24	1.35	89.89	April 13, 2017	
17-20A	91.03	0.66	90.37	March 31, 2017	
17-22	91.36	0.37	90.99	April 13, 2017	
17-23	91.41	0.06	91.36	April 13, 2017	
17-24	90.90	0.31	90.59	April 13, 2017	
17-25A	91.09	0.01	91.08	March 31, 2017	
17-26	91.54	0.26	91.28	March 31, 2017	
17-28A	91.10	0.32	90.78	March 31, 2017	
17-30	90.92	0.46	90.46	April 13, 2017	
18-01	92.12	-0.19	92.31	April 30, 2019	
18-02	91.65	0.46	91.19	April 30, 2019	
18-03	91.32	0.22	91.09	April 30, 2019	
18-04A	91.28	0.06	91.22	April 30, 2019	
18-04B	91.28	0.22	91.06	April 30, 2019	
18-05	91.29	0.19	91.10	April 30, 2019	
18-06	91.25	0.18	91.07	April 30, 2019	
18-07A	91.43	0.51	90.92	April 30, 2019	
18-07B	91.43	0.25	91.18	April 30, 2019	
18-08	91.48	0.32	91.16	April 30, 2019	
18-09	91.12	0.07	91.05	April 30, 2019	
18-10	91.24	0.18	91.06	April 30, 2019	
18-11	91.26	0.05	91.21	April 30, 2019	
18-12A	91.14	0.08	91.06	April 30, 2019	

Report: PG5036-2 Revision 1 October 19, 2021

Page 7

Table 2 - Summary of Groundwater Level Readings (continued)				
Borehole	Ground	Measured Ground	dwater Level (m)	
Number	Elevation (m)	Depth	Elevation	Recording Date
18-12B	91.14	0.04	91.10	April 30, 2019
18-13	91.07	0.49	90.57	April 30, 2019
18-14	91.38	0.37	91.01	April 30, 2019

Notes:

Page 8

⁻ Borehole elevations are understood to be referenced to a geodetic datum.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed residential development. It is expected that the proposed residential buildings will be founded on conventional shallow footings placed on an undisturbed, stiff to firm silty clay bearing surface or an engineered fill pad over an approved subgrade soil.

Due to the presence of a silty clay deposit, permissible grade raise restrictions are recommended for this site.

A construction setback defined as the Limit of Hazard Lands has been defined for the slope face along the adjacent segment of the Jock River, as presented on Drawing PG5036-4 - Test Hole Location Plan. This is discussed further in Section 6.8.

The above and other considerations are discussed in the following paragraphs.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

It is anticipated that the existing fill, free of deleterious materials and topsoil can be left in place below the proposed park blocks. However, it is recommended that the existing fill layer be thoroughly proof-rolled under dry conditions and in above freezing temperatures, using several passes of a vibratory drum roller and approved by the geotechnical consultant at the time of construction. Any poor performing areas noted during the proof-rolling operation should be removed and replaced with approved fill material, such as OPSS Granular B, Type II.

Fill Placement

Fill used for grading beneath the building areas, including the park blocks, should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. Consideration could be given to using an alternative granular fill provided that the geotechnical engineer provides fill placement recommendations for the selected material. Granular material should be tested and approved prior to delivery to the site.

Report: PG5036-2 Revision 1

The fill should be placed in loose lifts of 300 mm thick or less and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of the Standard Proctor Maximum Dry Density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of the SPMDD. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 2 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **100 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **150 kPa**. Strip footings, up to 2 m wide, and pad footings, up to 5 m wide, placed on an undisturbed, firm silty clay bearing surface can be designed using a bearing resistance value at SLS of **60 kPa** and a factored bearing resistance value at ULS of **90 kPa**. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance values at ULS.

Footings placed over an engineered pad, consisting of a Granular A or Granular B Type II or approved granular fill alternative placed in maximum 300 mm loose lifts and compacted to 98% of its SPMDD, can be designed using a bearing resistance value at SLS of 100 kPa and a factored bearing resistance value at ULS of 200 kPa.

Bearing resistance values for footing design should be determined on a per lot basis at the time of construction. The bearing resistance values are provided on the assumption that the footings will be placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Park Block Structures

Thickened edge concrete slabs or footings supported on the proof-rolled and approved existing fill can be designed using a bearing resistance value at serviceability limit states (SLS) for **100 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **180 kPa**, provided that the bearing surface is inspected and approved by the geotechnical consultant at the time of construction. The total and differential settlements for the proposed structures are 25 and 20 mm, respectively.

Where the existing fill material is encountered at the foundation subgrade, the existing fill shall be proof-rolled under dry conditions and above freezing temperatures, using a vibratory drum roller making several passes and approved by the geotechnical consultant at the time of construction. Any poor performing areas noted during the proof-rolling operation should be removed and replaced with approved fill material, such as OPSS Granular B, Type II.

The bearing medium under thickened edge concrete slab supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to silty clay and engineered fill above the groundwater table when a plane extending horizontally and vertically from the underside of the foundation at a minimum of 1.5H:1V passing through in situ soil of the same or higher bearing capacity as the bearing medium soil.

Consideration can be given to slab-on-grade construction within the park blocks. With the removal of fill, containing significant amounts of deleterious or organic materials, the existing fill or native soil subgrade approved by the geotechnical consultant at the time of excavation will be considered an acceptable subgrade surface on which to commence backfilling for slab-on-grade construction. Where the subgrade consists of existing fill, a vibratory drum roller should complete several passes over the subgrade surface as a proof-rolling program. Any poor performing areas should be removed and reinstated with an engineered fill such as OPSS Granular B Type II.

It is recommended the the upper 400 mm of sub-floor fill consist of OPSS Granular A crushed stone. All backfill material required to raise grade within the footprint of settlement sensitive structures should be placed in maximum 300 mm thick loose layers and compacted to at least 98% of its SPMDD.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels.

Page 11

Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Permissible Grade Raise Recommendations

Consideration must be given to potential settlements which could occur due to the presence of the silty clay deposit and the combined loads from the proposed footings, any groundwater lowering effects, and grade raise fill. The foundation loads to be considered for the settlement case are the continuously applied loads which consist of the unfactored dead loads and the portion of the unfactored live load that is considered to be continuously applied. For dwellings, a minimum value of 50% of the live load is recommended by Paterson.

Generally, the potential long term settlement is evaluated based on the compressibility characteristics of the silty clay. These characteristics are estimated in the laboratory by conducting unidimensional consolidation tests on undisturbed soil samples collected using Shelby tubes in conjunction with a piston sampler. Eight (8) site specific consolidation tests were conducted by others as part of the geotechnical investigation at the subject site. The results of the consolidation testing are presented in Table 3 below.

Table 3 - Summary of Consolidation Test Results						
Borehole No.	Sample	Depth (m)	p' _c (kPa)	p'。 (kPa)	C _{cr}	C _c
17-01	3	3.60	110.0	35.0	0.055	0.760
17-05	5	5.00	85.0	50.0	0.055	0.800
17-16	7	8.10	115.0	65.0	0.006	1.470
17-17	4	4.90	105.0	45.0	0.011	1.070
17-19	4	5.00	90.0	50.0	0.004	1.100
17-21	5	6.50	110.0	60.0	0.007	1.330
18-03	5	3.40	58.0	35.0	0.011	0.540
18-07	5	5.00	115.0	42.0	0.004	1.110

Report: PG5036-2 Revision 1

The value for p'_c is the preconsolidation pressure and p'_o is the effective overburden pressure of the test sample. The difference between these values is the available preconsolidation. The increase in stress on the soil due to the cumulative effects of the fill surcharge, the footing pressures, the slab loadings and the lowering of the groundwater should not exceed the available preconsolidation if unacceptable settlements are to be avoided.

The values for $C_{\rm cr}$ and $C_{\rm c}$ are the recompression and compression indices, respectively. These soil parameters are a measure of the compressibility due to stress increases below and above the preconsolidation pressures. The higher values for the $C_{\rm cr}$, as compared to the $C_{\rm cr}$, illustrate the increased settlement potential above, as compared to below, the preconsolidation pressure.

The values of p'_c, p'_o, C_{cr} and C_c are determined using standard engineering testing procedures and are estimates only. Natural variations within the soil deposit will affect the results. The p'_o parameter is directly influenced by the groundwater level. Groundwater levels were measured during the site investigation. Groundwater levels vary seasonally which has an impact on the available preconsolidation. Lowering the groundwater level increases the p'_o and therefore reduces the available preconsolidation. Unacceptable settlements could be induced by a significant lowering of the groundwater level. The p'_o values for the consolidation tests carried out for the present investigation are based on the long term groundwater level observed at each borehole location. The groundwater level is based on the colour and undrained shear strength profile of the silty clay.

The total and differential settlements will be dependent on characteristics of the proposed buildings. For design purposes, the total and differential settlements are estimated to be 25 and 20 mm, respectively. A post-development groundwater lowering of 1 m was assumed.

The potential post construction total and differential settlements are dependent on the position of the long term groundwater level when buildings are situated over deposits of compressible silty clay. Efforts can be made to reduce the impacts of the proposed development on the long term groundwater level by placing clay dykes in the service trenches, reducing the sizes of paved areas, leaving green spaces to allow for groundwater recharge or limiting planting of trees to areas away from the buildings. However, it is not economically possible to control the groundwater level.

To reduce potential long term liabilities, consideration should be given to accounting for a larger groundwater lowering and to provide means to reduce long term groundwater lowering (e.g. clay dykes, restriction on planting around the dwellings, etc). Buildings on silty clay deposits increases the likelihood of movements and therefore of cracking.

Report: PG5036-2 Revision 1

October 19, 2021

The use of steel reinforcement in foundations placed at key structural locations will tend to reduce foundation cracking compared to unreinforced foundations.

Based on the consolidation testing results and undrained shear strength values at the borehole locations and our experience with local Ottawa clays, we have determined our permissible grade raise recommendations for the current phase of the proposed development. Our permissible grade raise recommendations are presented in Drawing PG5036-5 - Permissible Grade Raise Plan in Appendix 2.

Based on the above discussion, several options could be considered to accommodate proposed grade raises with respect to our permissible grade raise recommendations, such as the use of lightweight fill, which allow for raising the grade without adding a significant load to the underlying soils. Alternatively, it is possible to preload or surcharge the subject site in localized areas provided sufficient time is available to achieve the desired settlements.

5.4 Design for Earthquakes

The results of seismic shear wave velocity testing performed by others indicated an average shear wave velocity, Vs₃₀, at this site of 211 m/s and 176 m/s. A **Site Class D** is therefore applicable for design across the majority of the site. However, a **Site Class E** is applicable for an area within the northeast portion of the site, as shown on Drawing PG5036-4 in Appendix 2. The soils underlying the subject site are not susceptible to liquefaction.

Reference should be made to the latest revision of the Ontario Building Code (OBC) 2012 for a full discussion of the earthquake design requirements.

5.5 Basement Slab / Slab-on-Grade Construction

With the removal of all topsoil and deleterious fill from within the footprint of the proposed buildings, the native soil surface or approved fill subgrade will be considered an acceptable subgrade on which to commence backfilling for floor slab construction.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

For structures with slab-on-grade construction, the upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

October 19, 2021

For structures with basement slabs, it is recommended that the upper 200 mm of subfloor fill consists of 19 mm clear crushed stone.

5.6 Pavement Structure

For design purposes, the pavement structure presented in the following tables is recommended for the design of park block pathways, access pathways, car only parking areas, local roadways and arterial roadways with bus traffic.

Table 4 - Recommended Pavement Structure - Park Block Pathways				
Thickness (mm)	Material Description			
50	Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete			
300	SUBBASE - OPSS Granular B Type II			
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill				

Table 5 - Recommended Pavement Structure - Driveways / Car Only Parking Areas / Park Block Parking Areas and Access Pathways				
Thickness (mm)	Material Description			
50	Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete			
150	BASE - OPSS Granular A Crushed Stone			
300	SUBBASE - OPSS Granular B Type II			
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill				

Table 6 - Recommended Pavement Structure - Local Roads				
Thickness (mm)	Material Description			
40	Wear Course - Superpave 12.5 Asphaltic Concrete			
50	Binder Course - Superpave 19.0 Asphaltic Concrete			
150	BASE - OPSS Granular A Crushed Stone			
400	SUBBASE - OPSS Granular B Type II			
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill				

Report: PG5036-2 Revision 1

October 19, 2021

Table 7 - Recommended Pavement Structure - Roadways with Bus Traffic				
Thickness mm	Material Description			
40	Wear Course - Superpave 12.5 Asphaltic Concrete			
50	Upper Binder Course - Superpave 19.0 Asphaltic Concrete			
50	Lower Binder Course - Superpave 19.0 Asphaltic Concrete			
150	BASE - OPSS Granular A Crushed Stone			
600	SUBBASE - OPSS Granular B Type II			
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill				

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. Weak subgrade conditions may be experienced over service trench fill materials. This may require the use of a geotextile, thicker subbase or other measures that can be recommended at the time of construction as part of the field observation program.

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for driveways and local roadways and PG 64-34 asphalt cement should be used for roadways with bus traffic. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on maintaining the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

Due to the low permeability of the subgrade materials consideration should be given to installing subdrains during the pavement construction as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

Report: PG5036-2 Revision 1

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

A perimeter foundation drainage system is recommended for each proposed structure. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated, corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone which is placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

6.2 Protection Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for other exterior unheated footings, such as structures within the park blocks.

It is recommended that Paterson review the proposed frost protection for each structure at the time of detailed design.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavations to be undertaken by opencut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level.

Report: PG5036-2 Revision 1

The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

The pipe bedding for sewer and water pipes placed on a relatively dry, undisturbed subgrade surface should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD.

Generally, it should be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay material will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

Report: PG5036-2 Revision 1

To reduce long-term lowering of the groundwater at this site, clay seals should be provided within the service trenches excavated through the silty clay deposit. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. The seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches excavated through the silty clay deposit.

6.5 Groundwater Control

Due to the relatively impervious nature of the silty clay materials, it is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation, and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

The subsurface conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur. Precautions should be taken if winter construction is considered for this project.

Report: PG5036-2 Revision 1 October 19, 2021

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters, tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be constructed in a manner that will avoid the introduction of frozen materials into the trenches. As well, pavement construction is difficult during winter. The subgrade consists of frost susceptible soils which will experience total and differential frost heaving as the work takes place. In addition, the introduction of frost, snow or ice into the pavement materials, which is difficult to avoid, could adversely affect the performance of the pavement structure. Additional information could be provided, if required.

6.7 Landscaping Considerations

Tree Planting Restrictions - Area 1 - Low to Medium Sensitivity Area

A low to medium sensitivity clay soil was encountered between the anticipated design underside of footing elevations and 3.5 m below finished grade as per City Guidelines in the areas outlined in Drawing PG5036-6 - Tree Planting Setback Recommendations in Appendix 2. Based on our Atterberg limits test results, the modified plasticity index does not exceed 40% in these areas. The following tree planting setbacks are recommended for the low to medium sensitivity area. Large trees (mature height over 14 m) can be planted within these areas provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). Tree planting setback limits may be reduced to **4.5 m** for small (mature height up to 7.5 m) and medium size trees (mature tree height 7.5 to 14 m), provided that the conditions noted below are met.

- The underside of footing (USF) is 2.1 m or greater below the lowest finished grade for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan.
- A small tree must be provided with a minimum of 25 m³ of available soils volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.

Report: PG5036-2 Revision 1 October 19, 2021

	The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
	Grading surrounding the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.
Tree	Planting Restrictions - Area 2 - High Sensitivity Area
of foo areas Based excee for the within of the setba	sensitivity clay soils were encountered between the anticipated design underside ting elevations and 3.5 m below finished grade as per City Guidelines at the outlined in PG5036-6 - Tree Planting Setback Recommendations in Appendix 2. d on our Atterberg limits test results, the modified plasticity index generally eds 40% in these areas. The following tree planting setbacks are recommended ese high sensitivity areas. Large trees (mature height over 14 m) can be planted these areas provided a tree to foundation setback equal to the full mature height etree can be provided (e.g. in a park or other green space). Tree planting ck limits are 7.5 m for small (mature height up to 7.5 m) and medium size trees re tree height 7.5 to 14 m), provided that the following conditions are met:
	The underside of footing (USF) is 2.1 m or greater below the lowest finished grade for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan.
	A small tree must be provided with a minimum of 25 m³ of available soils volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
	The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.
	The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
	Grading surrounding the tree must promote drainage to the tree root zone (in

Report: PG5036-2 Revision 1

Grading Plan.

October 19, 2021 Page 21

such a manner as not to be detrimental to the tree), as noted on the subdivision

Aboveground Swimming Pools

The in-situ soils are considered to be acceptable for in-ground swimming pools. Above ground swimming pools must be placed at least 5 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's recommendations.

Aboveground Hot Tubs

Additional grading around hot tubs should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications.

Decks and Building Additions

Additional grading around proposed decks or additions should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

6.8 Slope Stability Assessment

A slope stability analysis was carried out to determine the required construction setback from the top of the bank. Two (2) slope cross-sections were studied as the worst case scenarios.

Erosional and access allowances were also considered in the determination of limits of hazard lands and are discussed in the following sections. The cross-section locations and the proposed limit of hazard lands are shown on Drawing PG5036-4 - Test Hole Location Plan attached to the current report.

Slope Stability Assessment

The analyses of the stability of the slopes were carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favouring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain that the risks of failure are acceptable.

A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would endanger permanent structures.

Report: PG5036-2 Revision 1 October 19, 2021

The cross-sections were analyzed based on our review of the available topographic mapping. The slope stability analysis was completed at each slope cross-section under worst-case-scenario by assigning cohesive soils under fully saturated conditions. Subsoil conditions at the cross-sections were inferred based on nearby boreholes and general knowledge of the area's geology.

The effective strength soil parameters used for static analysis were chosen based on the subsoil information recovered during the geotechnical investigation. The effective strength soil parameters used for static analysis are presented in Table 7 below.

Table 7 - Effective So	il and Material Para	meters (Static Analy	sis)
Soil Layer	Unit Weight (kN/m³)	Friction Angle (degrees)	Cohesion (kPa)
Brown Silty Clay Crust	17	33	5
Grey Silty Clay	16	33	10
Glacial Till	20	33	0

The total strength parameters for seismic analysis were chosen based on the in situ, undrained shear strengths recovered within the open boreholes completed at the time of the geotechnical investigation and based on our general knowledge of the geology in the area. The strength parameters used for seismic analysis at the slope cross-sections are presented in Table 8 below.

Table 8 - Total Stress	Soil and Material P	arameters (Seismic	Analysis)
Soil Layer	Unit Weight (kN/m³)	FrictionAngle(degrees)	Undrained Shear Strength (kPa)
Brown Silty Clay Crust	17	-	150
Grey Silty Clay	16	-	25 to 40
Glacial Till	20	33	0

Static Loading Analysis

The results for the slope stability analyses under static conditions at Sections A and B are shown on Figures 2 and 4, attached to the present report. The factor of safety was found to be greater than 1.5 at Sections A and B. Based on these results, the slopes are considered to be stable under static loading.

Report: PG5036-2 Revision 1 October 19, 2021

Seismic Loading Analysis

An analysis considering seismic loading was also completed. A horizontal acceleration of 0.16 g was considered for all slopes. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

The results of the slope stability analyses under seismic conditions are shown on Figures 3 and 5 in Appendix 2. The results indicate that the factors of safety are greater than 1.1 under seismic conditions. Based on these results, the slopes are considered to be stable under seismic loading. Therefore, when considering seismic loading, no geotechnical setback from the top of the slope is required to achieve a factor of safety of 1.1 for the limit of the hazard lands.

Geotechnical Setback - Limit of Hazard Lands

Based on site reconnaissance completed by others, signs of active erosion were noted along portions of the slope. A 5 m toe erosion allowance is deemed appropriate for this slope based on the cohesive nature of the soils, the observed erosion areas and the current watercourse depth and width. It is considered that a toe erosion allowance of 5 m and an erosion access allowance of 6 m is required from the top of stable slope (ie.- slope with factor of safety greater than 1.5).

The limit of hazard lands, which include these allowances, is indicated on Drawing PG5036-4 - Test Hole Location Plan attached to the present report.

It is recommended that any existing vegetation on the slope faces not be removed as it contributes to the stability of the slope and reduces erosion.

6.9 Corrosion Potential and Sulphate

Four (4) soil sample was submitted for analytical testing. The analytical test results of the soil sample indicate that the sulphate content is less than 0.01%. These results along with the chloride and pH value are indicative that Type 10 Portland cement would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a moderate to aggressive corrosive environment.

Report: PG5036-2 Revision 1

7.0 Recommendations

development are determined: Review detailed grading plan(s) from a geotechnical perspective. Observation of all bearing surfaces prior to the placement of concrete. Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable. Observation of all subgrades and subdrains prior to placing backfilling materials. Observation of proof-rolling operations for subgrade within park blocks Field density tests to ensure that the specified level of compaction has been achieved.

It is recommended that the following be completed once the master plan and site

A report confirming that these works have been conducted in general accordance with Paterson's recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

Sampling and testing of the bituminous concrete including mix design reviews.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with Paterson's present understanding of the project. Paterson requests permission to review the grading plan once available. Paterson's recommendations should also be reviewed when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and the test hole logs are furnished as a matter of general information only. Test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests to be notified immediately in order to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Caivan Communities or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Oct.19-2021

OLINCE OF ONTE

Paterson Group Inc.

Owen Canton, E.I.T.

Report Distribution:

☐ Caivan Communities (e-mail copy)

☐ Paterson Group (1 copy)

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

SEISMIC SITE CLASS TESTING RESULTS BY OTHERS

SHRINKAGE LIMIT TESTING RESULTS BY OTHERS

ANALYTICAL TEST RESULTS

RECORD OF BOREHOLE: 17-01

BORING DATE: February 2, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5013143.8 ;E 361309.9

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

SHEET 1 OF 1

ES	ETHOD	SOIL PROFILE	ТО	1		MPL		DYNAMIC RESISTAN 20	PENET ICE, BL	.OWS/	0.3m	80	HYDRA 10	k, cm/s		11V11 Y,	10 ⁻³	NAL	PIEZOMETER OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	SHEAR ST Cu, kPa	- 1	TH n	at V. +	1	W	ATER C	ONTEN	T PERC		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
0	<u> </u>	GROUND SURFACE TOPSOIL - (SM) SILTY SAND; dark	S	91.76			IB BI	20	40	6	0	80	20) 4	10	60	80		
		brown; moist (CL/CI/CH) SILTY CLAY to CLAY; grey brown, contains silty sand layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		0.16															Bentonite Seal
1					1	SS	3							0					Bentonite and
2					2	SS	1						-	—-С) 				Cuttings Mix
3		(CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL, firm		89.02 2.74		-		Φ		+									Bentonite Seal Silica Sand
	Power Auger				3	TP	PH	⊕ ·	+									С	Standpipe
4	Pc 200 mm D								+										Silica Sand
5					4	SS	WH									0			
6						-		Φ	+ +										Native Backfill
7					5	SS	WH												
7		End of Borehole		84.14 7.62				⊕⊕⊕	+ + +										
8																			W.L. in Standpipe at Elev. 91.07 m on February 21, 2017
9																			
10																			
DE	PTH	SCALE							Gol	do	•							L	OGGED: DG

1:50

RECORD OF BOREHOLE: 17-02

SHEET 1 OF 1

CHECKED: SD

LOCATION: N 5013269.0 ;E 361573.3

BORING DATE: February 1, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE WATER CONTENT PERCENT BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ DESCRIPTION DEPTH −OW Wp H (m) GROUND SURFACE 91.75 TOPSOIL - (SM) SILTY SAND; dark 0.07 brown; moist (CL/CI/CH) SILTY CLAY to CLAY, some sand; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to SS 8 2 SS 3 SS 2 2 Ф \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL, stiff to firm ss wh Power Auger n Diam. (Hollow \oplus 0 200 ss wh + ss wh Ф 0 \oplus End of Borehole MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 DEPTH SCALE LOGGED: DG Golder

RECORD OF BOREHOLE: 17-03

SHEET 1 OF 1
DATUM: CGVD28

LOCATION: N 5012851.9 ;E 361409.3

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: February 1, 2017

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

» ALE	QQH,		SOIL PROFILE	 	ı	SA	MPL	_	DYNAMIC P RESISTANC			1	1	HYDRAULIC CONDUCTIVITY, k, cm/s					PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 SHEAR STR Cu, kPa	ENGTH	nat V. + rem V. ⊕	Q - • U - ○	Wp	ATER CO		PERCENT		LAB. TESTING	OR STANDPIPE INSTALLATION
_	\vdash	\dashv	GROUND SURFACE	(0)	91.20			ш.	20	40	60 8	80	2	υ 4	0 6	0 80	\dashv	+	
0	П	\dashv	TOPSOIL - (SM) sandy SILT; dark	EEE	0.00													+	
			\text{\rmsix} brown; moist \((CL/C/I) \text{\rmsix} SILTY CLAY to CLAY; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		0.13														
1						1	ss	3						<u> </u>	0	-			
2						2	SS	wн											
		-	(CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL,		88.46 2.74				Ф Ф	+ +									
3			black organic mottling; cohesive, w>PL, soft to firm																
		200 mm Diam. (Hollow Stem)				3	ss	WH											
	Power Auger	n. (Hollo																	
4	Powe	n Diam							+										
		200 mr							+										
						4	ss	WH											
5						Ĺ													
									+										
									+										
6																			
						5	SS	WP											
							00	****											
							1												
7									Φ +										
									+										
	Ц	4	End of Porcholo		83.58 7.62				+										
			End of Borehole		7.62														
8																			
9																			
10																			
				<u> </u>	<u> </u>	<u> </u>													
DE	PTH	H S	CALE					-		-olda	er ates							LOC	GGED: DG
1:	50							1		COCi	atos							CHE	CKED: SD

1:50

RECORD OF BOREHOLE: 17-04

SHEET 1 OF 1

CHECKED: SD

LOCATION: N 5013010.7 ;E 361684.6

BORING DATE: February 1, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES DEPTH SCALE METRES BORING METHOD ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.30m NUMBER STANDPIPE INSTALLATION ELEV. TYPE WATER CONTENT PERCENT SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ DESCRIPTION DEPTH −OW Wp ⊢ (m) GROUND SURFACE 91.21 TOPSOIL - (SM) SILTY SAND; dark brown; moist (CL/CI/CH) SILTY CLAY to CLAY, some sand; grey brown, contains silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to firm SS 5 -2 ss WH 2 \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL, ss wh Power Auger n Diam. (Hollow \oplus 0 200 ss wh \oplus TP PH \oplus + \oplus End of Borehole MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 DEPTH SCALE LOGGED: DG Golder

RECORD OF BOREHOLE: 17-05

SHEET 1 OF 1

LOCATION: N 5012743.9 ;E 361739.5

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: February 1, 2017

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

DATUM: CGVD28

Щ	오	SOIL PROFILE			SA	AMPL	_	DYNAMIC PENETRA RESISTANCE, BLOV	WS/0.3m	HY	DRAULIC CONDUC k, cm/s	TIVITY,	ڳڏ	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		监		BLOWS/0.30m	20 40	60 80			10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
MET	SING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	WS/0	SHEAR STRENGTH Cu, kPa	I nat V. + Q - rem V. ⊕ U -		WATER CONTEN		DDDIT.	INSTALLATION
5	BOF		STR/	(m)	ž	ľ	BLO	20 40	60 80		Wp I → → W	WI 60 80	4 5	
		GROUND SURFACE	1	91.12				20 70			7 70			
0		TOPSOIL - (SM) SILTY SAND; dark \brown; moist	A	0.0 <u>0</u> 0.10										
		(CL/Cl/CH) SILTY CLAY to CLAY; grey												
		brown, contains silt layers (WEATHERED CRUST); cohesive,												Bentonite Seal
		w>PL, very stiff to stiff			<u> </u>	-								
1					1	SS	3							⋉
														∑
2					2	SS	2				0			
2					⊢	+								Rontonito and
														Bentonite and Cuttings Mix
		(CI/CH) SILTY CLAY to CLAY; grey with		88.53 2.59	3	SS	1				b			
		black organic mottling; cohesive, w>PL, soft to firm												
3					\vdash	+								
	(ma				4	SS	WH							
	Power Auger 200 mm Diam. (Hollow Stem)			1										Bentonite Seal
	Power Auger Diam. (Hollov			1										Silica Sand
4	Powe 1 Dian			1				⊕ +						N. Carlot
	00 mm			1				+						
				1		1								Standpipe
5					5	TP	PH				0		С	
J					⊢	+								
														Silica Sand
								⊕						
								⊕						
6					_									
					6	SS	WH							Native Backfill
						1								
7								+						
				1				⊕						
	\vdash	End of Borehole		83.50 7.62				+						
_														W.L. in Standpipe at Elev. 89.90 m on February 21, 2017
8														February 21, 2017
9														
10														
		1	-		_	1				-				1
		SCALE					(Gold	ler					OGGED: DG
1:	50							Assoc	<u>ciates</u>				CH	ECKED: SD

1:50

RECORD OF BOREHOLE: 17-09

SHEET 1 OF 1

CHECKED: SD

LOCATION: N 5012670.0 ;E 362072.9

BORING DATE: February 3, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp H (m) GROUND SURFACE 90.87 TOPSOIL - (SM) SILTY SAND; dark 0.00 brown; moist 0.13 (CL/Cl/CH) SILTY CLAY to CLAY; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff Bentonite Seal SS 2 SS 2 0 |1 2 Bentonite and Cuttings Mix \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL, soft to firm ss wh Power Auger n Diam. (Hollow Bentonite Seal Silica Sand 200 Standpipe TP PH Silica Sand **(H)** ss wh Native Backfill \oplus \oplus \oplus End of Borehole W.L. in Standpipe at Elev. 90.06 m on February 21, 2017 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 MIS-BHS 001 DEPTH SCALE LOGGED: DG Golder

RECORD OF BOREHOLE: 17-16

SHEET 1 OF 1

LOCATION: N 5012987.6 ;E 361366.8

BORING DATE: March 31, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.27 TOPSOIL - (SM) SILTY SAND; brown, contains rootlets; moist
(CL/Ci/CH) SILTY CLAY to CLAY; grey brown, contains silty sand layers
(WEATHERED CRUST); cohesive, 0.15 GRAB Bentonite Seal ✓ w>PL, very stiff to stiff SS 2 3 SS 2 \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL, \oplus soft to firm Cuttings ss wh 0 Power Auger ss WH 0 80 Bentonite Seal SS WH Silica Sand Standpipe W.L. in Standpipe at Elev. 90.34 m on April 13, 2017 TP PH 0 С 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 82.13 End of Borehole 10 MIS-BHS 001 DEPTH SCALE LOGGED: SN Golder 1:50 CHECKED: SD

1:50

RECORD OF BOREHOLE: 17-17

SHEET 1 OF 1

CHECKED: SD

LOCATION: N 5013210.1 ;E 361450.6

BORING DATE: March 23 & 24, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE SAMPLES DEPTH SCALE METRES BORING METHOD ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp ⊢ (m) GROUND SURFACE 91.82 TOPSOIL - (ML) sandy SILT; dark brown; moist (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 2 SS 3 -02 (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w>PL, soft to firm SS 0 \oplus \oplus Power Auger 4 TP PH С 200 Ф ss wh 0 SS WH 0 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM \oplus 0 + 9 82.68 9.14 \oplus End of Borehole 10 MIS-BHS 001 DEPTH SCALE LOGGED: KM Golder

RECORD OF BOREHOLE: 17-17A

SHEET 1 OF 1

LOCATION: Adjacent to BH 17-17

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 24, 2017

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

DATUM: CGVD28

, F	THOD-	SOIL PROFILE	L		SA	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	K, cm/s 10° 10° 10⁴ 10³ WATER CONTENT PERCENT Wp	OR STANDPIPE INSTALLATION
1	BO		STR	(m)			BLC	20 40 60 80	20 40 60 80	
0		GROUND SURFACE		91.82						
	Power Auger 200 mm Diam. (Hollow Stem)	Refer to Borehole 17-17 for Stratigraphy		0.00						Bentonite Seal Silica Sand 51 mm Diam. PVC #10 Slot Screen
3 ,		End of Borehole		88.77 3.05						Silica Sand WL in Screen at Elev. 91.21 m on March 31, 2017
4										
5										
6										
7										
8										
9										
10										
DE	PTH S	CALE	•				_	Golder	L	OGGED: KM

1:50

RECORD OF BOREHOLE: 17-18

SHEET 1 OF 1

CHECKED: SD

LOCATION: N 5013064.6 ;E 361497.9

BORING DATE: March 23, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.30m NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp | (m) GROUND SURFACE 91.40 TOPSOIL - (ML) sandy SILT; dark brown; moist (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to firm SS 6 2 ss WH 0 2 \oplus (CI/CH) SILTY CLAY to CLAY; grey, contains silt seams; cohesive, w>PL, soft to firm ss wh Power Auger n Diam. (Hollow 200 ss wh lф ss wh Ф \oplus \oplus End of Borehole MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 DEPTH SCALE LOGGED: KM/SM Golder

RECORD OF BOREHOLE: 17-18A

SHEET 1 OF 1 BORING DATE: March 23, 2017 DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: Adjacent to BH 17-18

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Ш Д			SOIL PROFILE	1.		SA	MPL	_	DYNAMIC PENETRATION RESISTANCE, BLOWS	ON \ /0.3m	k,	IC CONDU cm/s	CHVIII	,	NG AF	PIEZOMETER
METRES		BORING MEI HOU		STRATA PLOT	ELEV.	ËR	ш	BLOWS/0.30m		80 80	10-6		10-4	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
- E		JAIN	DESCRIPTION	3ATA	DEPTH	NUMBER	TYPE)/S//(C	SHEAR STRENGTH I	nat V. + Q - ● em V. ⊕ U - ○	WATE Wp I	ER CONTE		CENT - WI	ADDI .AB. T	INSTALLATION
_	2	ਜ਼ੂ		STF	(m)	_		BLC	20 40 6	80 80	20	40	60	80		
0	_	\dashv	GROUND SURFACE Pefer to Borehole 17, 18 for Stratigraphy		91.40 0.00									\perp	\perp	I ZI
			Refer to Borehole 17-18 for Stratigraphy		0.00											₩
																∇
																Bentonite Seal
1		e l														
		w Ster														Silica Sand
	Auge	(Hollo														
	Power	Diam														
2		200 mm Diam. (Hollow Stem)														<u> </u>
_		2														51 mm Diam. PVC #10 Slot Screen
3	L				88.35											Silica Sand
		\neg	End of Borehole		3.05											WL in Screen at
																WL in Screen at Elev. 90.95 m on March 31, 2017
4																
5																
6																
7																
8																
9																
10																
				1												
DE	PT	H S	CALE						Colde						LC	DGGED: KM/SM
1:								- (Golde Associa	[ECKED: SD

RECORD OF BOREHOLE: 17-19

SHEET 1 OF 1

LOCATION: N 5012932.6 ;E 361556.3

BORING DATE: March 30, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F - WI (m) GROUND SURFACE 91.24 TOPSOIL - (SM) SILTY SAND; dark brown; moist 0.15 (CL/Cl/CH) SILTY CLAY to CLAY; brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to firm SS 2 2 ss WH 2 \oplus \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling; cohesive, w>PL, soft to firm Cuttings ss wh Power Auger TP PH 0 С 80 Bentonite Seal SS WH Silica Sand Standpipe SS lwн 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM Cuttings 0 82.10 9.14 \oplus End of Borehole W.L. in Standpipe at Elev. 89.89 m on April 13, 2017 10 MIS-BHS 001 DEPTH SCALE LOGGED: SM Golder 1:50 CHECKED: SD

1:50

RECORD OF BOREHOLE: 17-20

SHEET 1 OF 1

CHECKED: SD

LOCATION: N 5012801.4 ;E 361573.1

BORING DATE: March 20, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 60 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp | (m) GROUND SURFACE 91.03 TOPSOIL - (ML) sandy SILT; dark brown; moist (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 0 ss WH 2 2 \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains sandy silt seams; cohesive, w>PL, soft to firm 3 ss WH Power Auger n Diam. (Hollow Ф 200 SS WH \oplus æ 6 ss wh 5 \oplus \oplus \oplus Ф End of Borehole MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 DEPTH SCALE LOGGED: KM Golder

RECORD OF BOREHOLE: 17-20A

SHEET 1 OF 1 DATUM: CGVD28

LOCATION: Adjacent to BH 17-20

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 20, 2017

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

, ALE	ТНОБ	SOIL PROFILE	L		SA	MPL	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	K, cm/s	OR STANDPIPE INSTALLATION
_	B		STF	(m)	_		BL(20 40 60 80	20 40 60 80	
0		GROUND SURFACE Refer to Borehole 17-20 for Stratigraphy		91.03 0.00						120
1	Power Auger 200 mm Diam. (Hollow Stem)									Bentonite Seal Silica Sand 51 mm Diam. PVC #10 Slot Screen
3		End of Borehole		87.98 3.05						Silica Sand WL in Screen at Elev. 90.37 m on March 31, 2017
. 4										March 31, 2017
5										
6										
7										
8										
9										
10										
DE	PTH S	CALE	•					Golder	L	OGGED: KM

RECORD OF BOREHOLE: 17-21

SHEET 1 OF 1

LOCATION: N 5012670.3 ;E 361616.6

BORING DATE: March 29, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm SAMPLES DYNAMIC PENETRATION \ HYDRAULIC CONDUCTIVITY,

Щ	בַּ		SOIL PROFILE		,	SA	MPL	_	DYNAI RESIS	MIC PEN TANCE,	BLOW:	ION S/0.3m		HYDR	AULIC C k, cm/	ONDUC	TIVITY,		ا وِدِ	PIEZOMETER
DEPTH SCALE METRES	BOBING METHOD			STRATA PLOT	ELEV.	ER	ш	BLOWS/0.30m			1	1	30 ,	1	1	1		10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	SINIG		DESCRIPTION	SATA	DEPTH	NUMBER	TYPE)/S/(C	Cu, kP	R STREI a	NGTH	nat V. + rem V. ⊕	Q - • U - O	v		ONTENT		WI	ADDI	INSTALLATION
د	a			STF	(m)	_		BLC	2	20 4	10	60 8	30	1				80	-	
0	L		GROUND SURFACE TOPSOIL - (ML) sandy SILT; dark	888	91.24															
			brown; moist		0.00 0.10															
			(CL/CI/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers																	
			brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff																	
			, .,																	
1						1	SS	4							-	1				
						2	SS	WH												
2																				
									0			+								
									0			+								
3			(CI/CH) SILTY CLAY to CLAY; grey with		88.19 3.05															
		Ê	black organic mottling, contains silt seams; cohesive, w>PL, firm		3.05	3	00	WH								0				
	L	ow Ste	seams, conesive, w>PL, iiiii			3	33	VVII												
	Power Auger	.(Ho∭																		
4	Powe	200 mm Diam. (Hollow Stem)							0		+									
		00 mr							⊕	+										
		5																		
5						4	SS	WH								0				
									⊕	+										
6									⊕	+										
O																				
						5	TP	PH							-	+	þ		С	
7									0	+										
									⊕	+										
	Ш	4	End of Borehole		83.62 7.62				⊕	+										
8																				
9																				
10																				
									L											
DE	PTI	H S	CALE								_ 4 4								LO	GGED: KM
	50								V	Acc	orde	r ates								CKED: SD

RECORD OF BOREHOLE: 17-22

SHEET 1 OF 1

LOCATION: N 5012555.0 ;E 361697.8

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 29, 2017

DATUM: CGVD28

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Щ	HOD H	SOIL PROFILE	, ,		SA	MPLE		DYNAMI RESIST	ANCE, E	BLOW	ION S/0.3m		HYE	JKAU k	LIC COI	NDOCII	VIIY,		وٰڐ ا	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT	_	H.		BLOWS/0.30m	20			60	80 '		10 ⁻⁶	10-	10	4 1	10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
MET	NG	DESCRIPTION	ITAF	ELEV. DEPTH	NUMBER	TYPE	VS/0	SHEAR Cu, kPa	STREN	GTH	nat V. rem V.	+ Q - €	3		TER CO				DDIT B. TE	INSTALLATION
i	BOR		STR	(m)	z	[]	BLO\	20		n	60	80		Wp F 20	40			WI 80	4 4	
		GROUND SURFACE	+"+	91.36		\vdash	_	20	40			55	+	20	40	90			1	
0		TOPSOIL - (ML) sandy SILT; dark	THE REAL PROPERTY.	0.00		П	\top								$\overline{}$					J.J
		\brown; moist (CL/CI/CH) SILTY CLAY to CLAY; grey																		
		brown, contains silty sand layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff																		
		w>PL, very stiff to stiff		-		.														
1																				
					1	SS	2								—a					
				ŀ		-														
				İ		1														
					2	ss	2													
2																				
								0				-	-							
								Ð	₽			-	-							
3				88.31																Cuttings
		(CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w>PL, firm		3.05																
		seams; cohesive, w>PL, firm			3	SS	WH													
4	(ma							Φ	+											
	ow St							0	+											
	Power Auger Diam. (Hollo			ļ																
	Power Auger 200 mm Diam. (Hollow Stem)																			
5	0 mm				4	SS	WH													
	20			ŀ																
								Đ	+											
							(∌	+											
6				}																Bentonite Seal
					5	SS	ᄴ													
					J	33	****													
				ŀ																Silica Sand
7								Φ	+	-										
								_	,											Standpipe
								⊕	†											Į į
				ŀ																
					6	TP	РН													
8																				
																				Cuttings
								0	+											
								⊕	1	_										
9				82.22																
		End of Borehole		9.14				Φ	+											WI in Standar
																				W.L. in Standpipe at Elev. 90.99 m on April 13, 2017
																				April 13, 2017
10																				
						Ш														
DE	PTH S	SCALE						43	(A)	Jda	N#*								L	OGGED: KM
۸.	50						1	J	GC Ass	oci:	ates								СН	ECKED: SD

1:50

RECORD OF BOREHOLE: 17-23

SHEET 1 OF 1

LOCATION: N 5013132.3 ;E 361640.7

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 30, 2017

DATUM: CGVD28

CHECKED: SD

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.41 TOPSOIL - (ML) sandy SILT; dark 91:23 brown; moist (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains silt seams (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 9 2 SS -0H 2 Ф Ф (CI/CH) SILTY CLAY to CLAY; grey with Cuttings black organic mottling; cohesive, w>PL, ss wh \oplus Ф Power Auger ss WH 80 Bentonite Seal SS Silica Sand Standpipe ss WH 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM Cuttings \oplus + 82.27 \oplus End of Borehole W.L. in Standpipe at Elev. 91.36 m on April 13, 2017 10 MIS-BHS 001 DEPTH SCALE LOGGED: SM Golder

RECORD OF BOREHOLE: 17-24

SHEET 1 OF 1

LOCATION: N 5012870.0 ;E 361739.6

BORING DATE: March 29, 2017

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F - WI (m) GROUND SURFACE 90.90 TOPSOIL - (ML) sandy SILT; dark 0.00 ablabrown; moist (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt seams (WEATHERED CRUST); cohesive, w>PL, stiff to firm SS 2 2 SS 2 \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w>PL, soft to firm Cuttings ss wh Power Auger TP PH 80 Bentonite Seal SS WH Silica Sand Standpipe \oplus 6 SS WH 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM Cuttings \oplus 81.76 9.14 \oplus End of Borehole W.L. in Standpipe at Elev. 90.59 m on April 13, 2017 10 MIS-BHS 001 DEPTH SCALE LOGGED: KM Golder 1:50 CHECKED: SD

1:50

RECORD OF BOREHOLE: 17-25

SHEET 1 OF 1

CHECKED: SD

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5012633.8 ;E 361839.8

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 24, 2017

DATUM: CGVD28

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES DEPTH SCALE METRES BORING METHOD ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp | (m) GROUND SURFACE 91.09 TOPSOIL - (ML) sandy SILT; dark 0.00 brown; moist (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 2 SS 2 0 2 \oplus \oplus (CI/CH) SILTY CLAY to CLAY; grey, contains silt seams; cohesive, w>PL, ss wh Power Auger n Diam. (Hollow \oplus \oplus 200 ss wh 0 6 SS WH \oplus End of Borehole 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 MIS-BHS 001 DEPTH SCALE LOGGED: SM/KM Golder

RECORD OF BOREHOLE: 17-25A

SHEET 1 OF 1 BORING DATE: March 24, 2017 DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: Adjacent to BH 17-25

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

0		SOIL PROFILE			SA	чин	ES		O I LIVE IIV	IION	/	IIIDIVA	DLIC C	ONDUCT	IVIII,			
Ĭ	ŀ		TC			Τ.			C PENETRA ANCE, BLOW		SU ,		k, cm/s		∩-4 4	O-3	NAL	PIEZOMETER OR
G ME		DECORIDATION	\ PLC	ELEV.	BER	밁	70.30										TES.	STANDPIPE
RIN		DESCRIPTION	ZAT/	DEPTH	ΣOM	Ξ	SMC	Cu, kPa	01112110111	rem V. \oplus	ŭ - Ŏ						ADD-	INSTALLATION
B			STI	(m)	_		B	20	40	60 8	30	1						
	- 1	GROUND SURFACE		91.09														∇
		Refer to Borehole 17-25 for Stratigraphy		0.00														_ [[]
																		Dentenite Cool
																		Bentonite Seal
	Sterr																	8
ger	ollo																	Silica Sand
er Au	Ē																	
Pow	Dia																	
	Ē 0																	
	$ ^{\aleph}$																	51 mm Diam. PVC X 110 Slot Screen
				88.04														Silica Sand Silica Sand
Ĺ	\top	End of Borehole		3.05														MII in Coroor -+
																		WL in Screen at Elev. 91.08 m on March 31, 2017
																		Maici1 31, 2017
	- 1		I	1		1	1	1		1	1	1			1	1	1	
		v Stem)	GROUND SURFACE Refer to Borehole 17-25 for Stratigraphy (uma) Dawe (Hellow Sterm) GROUND SURFACE Refer to Borehole 17-25 for Stratigraphy (uas Swip) (uas Swi	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 0.00 0.00	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 0.00	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 88.04	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 0.00 88.04	GROUND SURFACE GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 88.04	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 88.04	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy ODD Refer to Borehole 17-25 for Stratigraphy Refer to Borehole 17-25 for Stratigraphy ODD Refer to Borehole 17-25 for Stratigraphy ODD Refer to Borehole 17-25 for Stratigraphy	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy 0.00 88.04	GROUND SURFACE 91.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0	GROUND SURFACE 91.09 Refer to Borehole 17-25 for Stratigraphy Refer to Borehole 17-25 for Stratigraphy 88.04	GROUND SURFACE 91.09 0.00 Page 17-25 for Stratigraphy 0.00 Page 18-10-10-10-10-10-10-10-10-10-10-10-10-10-	GROUND SURFACE 91.09 0.00 Page 17-25 for Stratigraphy 0.00 0.00 Page 17-25 for Stratigraphy 0.00 Pa	GROUND SURFACE 91.09 0.00 0.0	GROUND SURFACE 91.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0	

1:50

MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM

CHECKED: SD

1:50

RECORD OF BOREHOLE: 17-26

SHEET 1 OF 1

CHECKED: SD

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5013197.9 ;E 361757.1

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 23, 2017

DATUM: CGVD28

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 60 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW - WI Wp F (m) GROUND SURFACE 91.54 TOPSOIL - (ML) sandy SILT; dark 0.00 brown; moist SS 12 (CL/CI/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt seams (WEATHERED CRUST); cohesive, Bentonite Seal w>PL, very stiff to firm 2 SS 6 Silica Sand 3 SS 1 2 51 mm Diam. PVC #10 Slot Screen \oplus + (CI/CH) SILTY CLAY to CLAY; grey, contains silt seams; cohesive, w>PL, Power Auger n Diam. (Hollow Silica Sand ss WH 200 \oplus \oplus (SM) gravelly SILTY SAND; grey, contains cobbles and boulders (GLACIAL TILL); non-cohesive, wet, SS 7 loose to compact Cuttings 6 SS 10 SS 6 End of Borehole WL in Screen at Elev. 91.28 m on March 31, 2017 8 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 MIS-BHS 001 DEPTH SCALE LOGGED: KM/SM Golder

RECORD OF BOREHOLE: 17-27

SHEET 1 OF 1 DATUM: CGVD28

LOCATION: N 5013051.5 ;E 361831.3

BORING DATE: March 28, 2017

ES	ЕТНОС	SOIL PROFILE	ТО.		MPL		DYNAMIC PER RESISTANCE 20	BLOW:		80	HYDRAULIO k, ci 10 ⁻⁶	m/s	10 ⁻⁴ 10 ⁻³	STING	PIEZOMETER OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	-1 =	TYPE	BLOWS/0.30m	SHEAR STRE Cu, kPa	NGTH	nat V rem V. 6	1		R CONTEN	IT PERCENT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
0	\dashv	GROUND SURFACE TOPSOIL - (ML) sandy SILT; dark	91.2 EEE: 0.0	1											
		\begin{array}{l} \begin	0.09	9	-										
1				1	ss	2					 	0			
2				2	ss	WH									
3		(CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w>PL, soft to firm	88.4 2.7				⊕⊕	+							
		seams; conesive, w>PL, soft to firm		3	ss	WH									
4	ger blow Stem)						⊕ + +								
5	Power Auger 200 mm Diam. (Hollow Stem)			4	ss	1									
							⊕ + +								
6				5	TP	PH									
7							⊕ + +								
8				6	ss	WH									
							+++								
9		End of Borehole	82.0 ⁻ 9.1	<u>7</u>			+								
10															

1:50

RECORD OF BOREHOLE: 17-28

SHEET 1 OF 1

CHECKED: SD

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5012922.4 ;E 361888.7

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: March 20, 2017

DATUM: CGVD28

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT BLOWS/0.30m NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH −OW Wp H (m) GROUND SURFACE 91.10 TOPSOIL - (ML) sandy SILT; dark brown; moist SS 13 (CL/Cl/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff 2 SS 5 3 ss WH 2 \oplus (CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w>PL, soft to firm ss wh Power Auger n Diam. (Hollow 200 ss wh ss wh \oplus \oplus Ф End of Borehole MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM 9 10 DEPTH SCALE LOGGED: KM Golder

RECORD OF BOREHOLE: 17-28A

SHEET 1 OF 1 BORING DATE: March 20, 2017 DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: Adjacent to BH 17-28

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	HOD	SOIL PROFILE			SA	MPL		DYNAMIC PENETF RESISTANCE, BLO			HYDRAULIC C k, cm/s	GINDOC	iiviii,		ڳڍ	PIEZOMETER
	BORING METHOD	DESCRIPTION		ELEV.	NUMBER	TYPE	BLOWS/0.30m	20 40 SHEAR STRENGT Cu, kPa	60 80	,	WATER C		PERCE	ENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
	BORII		STRAT	DEPTH (m)	N		SLOW			$^{\circ}$	Wp ├				AD	into integrinent
+		GROUND SURFACE	0)	91.10				20 40	60 80	\dashv	20	10 6	50	80		
⁰┝		Refer to Borehole 17-28 for Stratigraphy		0.00						\dashv						ŝ
																∇
																Bentonite Seal
	Stem															, s
	allow															Silica Sand
	Power Auger Diam. (Hollo															
	Diar															
	200 mm Diam. (Hollow Stem)															
	7															51 mm Diam. PVC 2 #10 Slot Screen
																#
L		End of Dorohol-		88.05 3.05												Silica Sand
		End of Borehole		3.05												WL in Screen at
																WL in Screen at Elev. 90.78 m on March 31, 2017
l																
,																
l																
l																
l																
-1			1	1						- 1			1		1	

1:50

MIS-BHS 001 1771847.GPJ GAL-MIS.GDT 09/12/17 JEM

CHECKED: SD

RECORD OF BOREHOLE: 17-29

SHEET 1 OF 1 BORING DATE: March 28, 2017 DATUM: CGVD28

LOCATION: N 5012811.0 ;E 361925.0 SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

CICKON SUPPLY AND	CALE	THON		SOIL PROFILE	70			MPL		DYNAMIC PI RESISTANC 20	ENETRATIC E, BLOWS/	1	HYDRAULIC CONDUCTIVITY, k, cm/s 10 ⁻⁵ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	NAL	PIEZOMETER OR
CICCH SLIP CLAY to CLAY gray with black organic medicing contains sit source, contains si	METRI	RORING M		DESCRIPTION	STRATA PL	DEPTH	NUMBER	TYPE	BLOWS/0.30	SHEAR STR Cu, kPa	ENGTH r	at V. + Q - € em V. ⊕ U - (WATER CONTENT PERCENT Wp I WI	ADDITIC LAB. TES	STANDPIPE INSTALLATION
TOPSOIL - (NL) servey 9LT date Topsoil - T			1	GROUND SURFACE	1	92.08				20	1	3 00	20 40 00 00		
2 88 2 CCNC3) SETY CLAY to CLAY, grey with block organic mothing, contains all sorting, contains all sorting and contain				\brown; moist \\((CL/CL/CH) SILTY CLAY to CLAY; gray		0.08									
CCICH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w-PL, soft to firm 3 SS WH 4 SS WH 5 SS WH 6 End of Borehole End of Borehole End of Borehole															
Second S	2		-	(CI/CH) SILTY CLAY to CLAY; grey with							-	-			
5 SS WH 7 End of Borehole 8 8 9		ver Auger	am. (Hollow Stem)	black organic mottling, contains slit seams; cohesive, w>PL, soft to firm			3	SS							
6 B4.46 7.62 B4.46 ## ## ## ## ## ## ## ## ## ## ## ## ##	4	Pov	200 mm Dia				4	ss							
5 SS WH 84.46 7.62 End of Borehole 7.62 8															
8 End of Borehole							5	SS							
	7			End of Borehole		84.4 <u>6</u> 7.62	-			+					
	8														
10	9														
DEPTH SCALE 1:50 LOGGED: KM CHECKED: SD	10														

RECORD OF BOREHOLE: 17-30

SHEET 1 OF 1 BORING DATE: March 29, 2017 DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5012708.4 ;E 361971.8

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا <u>ل</u> ا	위	SOIL PROFILE	1		SA	MPLE		DYNAMIC PENETRA RESISTANCE, BLOV	VS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	e =	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	1 4 1	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 I I SHEAR STRENGTH Cu, kPa	60 80 nat V. + Q - ● rem V. ⊕ U - ○	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp W WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	m	GROUND SURFACE	ST	()			В	20 40	60 80	20 40 60 80	+	
1		TOPSOIL - (ML) sandy SILT; dark brown; moist (CL/CI/CH) SILTY CLAY to CLAY; grey brown, contains sandy silt layers (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		90.92 0.00 0.09	1	SS	4			1-0-1		⊻
2					2	SS	3	Φ	+			
3		(CI/CH) SILTY CLAY to CLAY; grey with black organic mottling, contains silt seams; cohesive, w>PL, soft to firm		88.02 2.90	3	SS	WH					Cuttings
4	Power Auger 200 mm Diam. (Hollow Stem)							⊕+++				
5	Power 200 mm Diam			-	4	SS		⊕ + ⊕ +				
6				_	5	ss	WH					Bentonite Seal
7								# # +				Silica Sand
8					6	ss	WH					Standpipe
9								+++				Cuttings
10		End of Borehole		81.78 9.14				Φ +				W.L. in Standpipe at Elev. 90.46 m on April 13, 2017

RECORD OF BOREHOLE: 18-01

SHEET 1 OF 1

LOCATION: N 5012964.6 ;E 361071.4

BORING DATE: November 5, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Щ	오	SOIL PROFILE	1.		SA	AMPL		DYNAMIC PENETRATION HY RESISTANCE, BLOWS/0.3m	k, cm/s	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - ○	k, cm/s 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	OR STANDPIPE INSTALLATION
ž	BOF		STR/	(m)	ž	ľ	BLO	20 40 60 80	Wp	∇
. 0 .		GROUND SURFACE TOPSOIL - (CI/CH) SILTY CLAY, trace sand; dark brown (CI/CH) SILTY CLAY to CLAY, trace sand; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff (CI/CH) SILTY CLAY to CLAY; grey, contains sitly sand seams; cohesive, w>PL, firm		92.12 91.94 0.18 91.05 1.07		ss	8			Bentonite Seal Silica Sand
2	10000	(ML) gravelly sandy SiLT; grey (GLACIAL TILL); non-cohesive, wet, compact to loose (SM) gravelly SiLTY SAND; grey (GLACIAL TILL); non-cohesive, wet, compact to loose		90.60 1.52 89.99 2.13	3	ss	10			PVC #10 Slot Screen
. 3	Power Auger	(SW) SAND, trace gravel; non-cohesiv	X	89.07 3.05 88.77		ss				
4		(SM) gravelly SILTY SAND; grey (GLACIAL TILL); non-cohesive, wet, dense to very dense		3.35	6	SS			O MH	
. 5		End of Borehole		86.56 5.56	7	ss	34			Cave
7		LIN O BOTTION	<							WL in screen at Elev. 92.31 m on April 30, 2019
8										
9										
10 DE	ЭТН	I SCALE						GOLDER		OGGED: RI

1:50

RECORD OF BOREHOLE: 18-02

SHEET 1 OF 1

CHECKED:

LOCATION: N 5013068.6 ;E 361173.1

BORING DATE: November 6, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. BLOWS/0. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp F GROUND SURFACE 91.65 TOPSOIL - (CI/CH) SILTY CLAY (Cl/CH) SILTY CLAY to CLAY to CLAY; brown (WEATHERED CRUST); cohesive, w>PL 0.15 SS Native Backfill Bentonite Seal SS 7 Silica Sand SS 2 МН (CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, firm 38 mm Diam. PVC #10 Slot \oplus \oplus ss WH Ф ST РМ Cave Φ \oplus 6 Ф Ф End of Borehole WL in screen at Elev. 91.19 m on April 30, 2019 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 9 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RA

1:50

RECORD OF BOREHOLE: 18-03

SHEET 1 OF 1

CHECKED:

LOCATION: N 5012861.1 ;E 361112.0

BORING DATE: November 6, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.32 TOPSOIL - (CI/CH) SILTY CLAY to CLAY, trace to some sand 91.07 SS 5 (CI/CH) SILTY CLAY to CLAY, trace sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 2 0 МН Silica Sand SS 38 mm Diam. PVC #10 Slot Screen (CI/C) SILTY CLAY to CLAY; grey, contains silty sand seams; cohesive, w>PL, firm to soft ss wh Silica Sand TP РН С Φ SS 6 3 (SM) gravelly SILTY SAND; grey (GLACIAL TILL); non-cohesive, wet, very loose to loose Cave SS 8 9 šs End of Borehole WL in screen at Elev. 91.09 m on April 30, 2019 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 9 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RI

1:50

RECORD OF BOREHOLE: 18-04

SHEET 1 OF 1

CHECKED:

LOCATION: N 5012942.7 ;E 361222.8

BORING DATE: November 7, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.28 TOPSOIL - (CL/CI) SILTY CLAY; brown Native Backfill (CI/CH) SILTY CLAY to CLAY; grey (WEATHERED CRUST); cohesive, w>PL, stiff to very stiff 0.15 SS Bentonite Seal SS 2 2 Silica Sand SS (CI/CH) SILTY CLAY to CLAY; grey; 38 mm Diam. PVC #10 Slot Screen 'B' cohesive, w>PL, soft to firm SS wн Power Auger SS WH Native Backfill 6 0 Bentonite Seal Silica Sand SS wн 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 38 mm Diam. PVC #10 Slot Screen 'A' Ф \oplus Ф End of Borehole WL in screen 'A' at Elev. 91.22 m on April 30, 2019 WL in screen 'B' at Elev. 91.06 m on April 30, 2019 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RA

RECORD OF BOREHOLE: 18-05

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5012741.6 ;E 361151.9

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: November 7, 2018

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

S ALE	THOD	SOIL PROFILE	1 ⊢	\square	SA	MPLES		MIC PENETRATI TANCE, BLOWS		,	HYDRAULIC CONDUCTIVITY, k, cm/s	NA NA	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.30m	SHEAI Cu, kP	R STRENGTH a	nat V. + rem V. ⊕	30 Q - ● O U - ○	WATER CONTENT PERCE	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		91.29				1			20 40 00		
U I		TOPSOIL - (CI/CH) SILTY CLAY to CLAY, trace sand; dark brown (SM/ML) SILTY SAND to sandy SILT; grey brown; non-cohesive, moist to wet, loose		0.00 91.04 0.25	1	SS 7							∑ Bentonite Seal
1		(Cl/CH) SILTY CLAY to CLAY, trace sand; grey brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff		0.91	2	SS 3						МН	Silica Sand
3	v Stem)	(CI/CH) SILTY CLAY to CLAY; grey, contains silty sand seams; cohesive, w>PL, firm		89.16 2.13	4	SS W	Φ	+ +					38 mm Diam. PVC #10 Slot Screen
4	Power Auger 200 mm Diam. (Hollow Stem)				5	SS PI		+ + +					Cave
7				83.67	(6	SSPI	++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<l< td=""><td>+ + +</td><td></td><td></td><td>0</td><td></td><td></td></l<>	+ + +			0		
8		End of Borehole		7.62									WL in screen at Elev. 91.10 m on April 30, 2019
9													
10		CALE						GOLI		_			OGGED: RA

RECORD OF BOREHOLE: 18-06

SHEET 1 OF 1

LOCATION: N 5012825.6 ;E 361270.4

BORING DATE: November 7, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.25 TOPSOIL - (CL/CU) SILTY CLAY; brown ∇ Native Backfill (CI/CH) SILTY CLAY to CLAY; grey brown (WEATHERED CRUST); cohesive, w>PL, stiff to firm 0.15 SS 3 Bentonite Seal 2 SS 6 Silica Sand Ф SS 2 38 mm Diam. PVC #10 Slot Screen (CI/CH) SILTY CLAY to CLAY; grey; ST РМ 5 SS lwн SS Cave End of Borehole WL in screen at Elev. 91.07 m on April 30, 2019 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 9 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RA 1:50 CHECKED:

1:50

RECORD OF BOREHOLE: 18-07

SHEET 1 OF 1

CHECKED:

LOCATION: N 5012600.1 ;E 361205.1

BORING DATE: November 7, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH OW Wp F (m) GROUND SURFACE 91.43 TOPSOIL - (CI/CH) SILTY CLAY to CLAY, trace to some sand 91.13 SS 5 (CI/CH) SILTY CLAY to CLAY, trace to some sand; grey brown, contain silty sand seams (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 2 0 Silica Sand 3 ss WH 2 38 mm Diam. PVC #10 Slot Screen 'B' Φ (CI/CH) SILTY CLAY to CLAY; grey, 3.05 contains silty sand seams; cohesive, SS w>PL, firm lwн d æ Ф Power Auger 5 TP РМ Native Backfill À Φ 6 Bentonite Seal Ф Silica Sand (SM) gravelly SILTY SAND: grey (GLACIAL TILL); non-cohesive, wet, compact to loose SS 11 Ö 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 38 mm Diam. PVC #10 Slot Screen 'A' SS 5 End of Borehole WL in screen 'A' at Elev. 90.92 m on April 30, 2019 WL in screen 'B' at Elev. 91.18 m on April 30, 2019 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RI

1:50

RECORD OF BOREHOLE: 18-08

SHEET 1 OF 1

CHECKED:

LOCATION: N 5012701.2 ;E 361309.6

BORING DATE: November 8, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.48 TOPSOIL - (CI/CH) SILTY CLAY to 0.00 CLAY, some sand; dark brown 91.12 SS 3 (CI/CH) SILTY CLAY to CLAY, trace to some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff Bentonite Seal SS 2 Silica Sand SS 2 (CI/CH) SILTY CLAY to CLAY, trace 38 mm Diam. PVC #10 Slot Screen sand; grey, contains silty sand seams; cohesive, w>PL, firm \oplus Silica Sand SS lwн \oplus Ф SS РМ Cave 85.99 (SM) gravelly SILTY SAND; grey (GLACIAL TILL); non-cohesive, wet, very loose to loose 0 6 7 šs End of Borehole WL in screen at Elev. 91.16 m on April 30, 2019 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 9 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RI

1:50

RECORD OF BOREHOLE: 18-09

SHEET 1 OF 1

CHECKED:

LOCATION: N 5012730.1 ;E 361453.5

BORING DATE: November 8, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.12 TOPSOIL - (CL/CI) SILTY CLAY; brown (CI/CH) SILTY CLAY to CLAY; grey SS 8 Native Backfill brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff Bentontie Seal SS 2 Silica Sand 3 SS 2 38 mm Diam. PVC #10 Slot Screen Ф (CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, soft to firm Ф ss wh 0 Power Auger Ф SS Cave 6 l⊕ Ф End of Borehole WL in screen at Elev. 91.05 m on April 30, 2019 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 9 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RA

RECORD OF BOREHOLE: 18-10

SHEET 1 OF 1

DATUM: CGVD28

LOCATION: N 5012493.1 ;E 361243.6

BORING DATE: November 7, 2018

TRE			<u> </u>	NUMBER	۶	DYNAMI RESISTA				``\		k, cm/s	6	-4	, ₂ ₹	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA (w) DEDLH TETEN TO STATE TO		TYPE BLOWS/0.30m	SHEAR Cu, kPa		GTH n	at V. + em V. ⊕	Q - • U - O	10 WA Wp 20	TER CO	NTENT	PERCEI	ADDITIC	OR STANDPIPE INSTALLATION
0 —		GROUND SURFACE TOPSOIL - (CI/CH) SILTY CLAY to CLAY, trace to some sand; dark brown (CI/CH) SILTY CLAY to CLAY, trace to some sand; grey brown (WEATHERED CRUST); cohesive, w>PL, stiff to firm	91.24 0.00 91.01 0.23		SS 4	20	40					40		0 0		∑
1				2	SS 1											Silica Sand
2		(CI/CH) SILTY CLAY to CLAY; grey, contains silty sand seams; cohesive, w>PL, firm	89.11 2.13	3	SS WH	⊕			+			Za				38 mm Diam. PVC 2.#10 Slot Screen
3	w Stem)			4	SS PM	Φ		+								
4 Power Auger	200 mm Diam. (Hollow					Ф Ф	+ +		7/							
5				5	SS PM		+					(0			Cave
6				6	SS PM	\oplus	*									
7		End of Borehole	83.62 7.62			Φ Φ	+ + +									
8		2 0. 2010100	7.32													WL in screen at Elev. 91.06 m on April 30, 2019
9																
10																

RECORD OF BOREHOLE: 18-11

SHEET 1 OF 1

LOCATION: N 5012581.7 ;E 361340.0

BORING DATE: November 8, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 91.26 TOPSOIL - (CI/CH) SILTY CLAY to CLAY, some sand; dark brown 90.96 SS (CI/CH) SILTY CLAY to CLAY, trace to some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff SS 2 **a** МН Silica Sand 3 SS 2 38 mm Diam. PVC #10 Slot Screen \oplus Silica Sand (CI/CH) SILTY CLAY to CLAY, trace 3.05 sand; grey, contains silty sand seams; cohesive, w>PL, firm 87.91 SS 12 3.35 (CI/CH) SILTY CLAY to CLAY, some gravel; grey; cohesive, w>PL, firm (CI/CH) SILTY CLAY to CLAY, trace sand; grey, contains silty sand seams; cohesive, w>PL, firm SS WH SS WH 0 End of Borehole WL in screen at Elev. 91.21 m on April 30, 2019 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 9 10 MIS-BHS 001 DEPTH SCALE GOLDER LOGGED: RI 1:50 CHECKED:

RECORD OF BOREHOLE: 18-12

SHEET 1 OF 1

LOCATION: N 5012613.5 ;E 361486.7

BORING DATE: November 8, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES **PIEZOMETER** STRATA PLOT 80 NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F - WI (m) GROUND SURFACE 91.14 TOPSOIL - (CL/CI) SILTY CLAY; brown 98:96 (CI/CH) SILTY CLAY to CLAY; grey 0.18 SS 8 Native Backfill brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff Bentontie Seal SS 2 Silica Sand 3 SS 3 2 38 mm Diam. PVC #10 Slot Screen 'A' \oplus æ (CI/CH) SILTY CLAY; grey; cohesive, 3.05 w>PL< firm ss wh Ф Ф Power Auger SS WH IC Native Backfill 6 Bentontie Seal \oplus Silica Sand SS lwн 18108333.GPJ GAL-MIS.GDT 19-5-10 ZS 38 mm Diam. PVC #10 Slot Screen 'B' \oplus + 82.00 End of Borehole WL in screen 'A' at Elev. 91.06 m on April 30, 2019 WL in screen 'B' at Elev. 91.10 m on April 30, 2019 10 MIS-BHS 001 GOLDER DEPTH SCALE LOGGED: RA 1:50 CHECKED:

RECORD OF BOREHOLE: 18-13

SHEET 1 OF 1

LOCATION: N 5012467.9 ;E 361426.7

BORING DATE: November 8, 2018

DATUM: CGVD28

SE	THO	SOIL PROFILE		Н	MPLES	DYNAMIC F RESISTANO 20		6/0.3m 60 80	`	HYDRAULIC CONDUCTIV k, cm/s 10 ⁻⁸ 10 ⁻⁶ 10 ⁻⁴	10°2 JANC	PIEZOMETER OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (w) H1dad .vala	NUMBER	TYPE BLOWS/0.30m	SHEAR STI Cu, kPa	RENGTH	nat V. + Crem V. ⊕ U	Q - ●	WATER CONTENT P Wp I OW 20 40 60		STANDPIPE INSTALLATION
0 -		GROUND SURFACE TOPSOIL - (CI/CH) SILTY CLAY to CLAY, some sand; dark brown (CI/CH) SILTY CLAY to CLAY, trace to some sand; grey brown, contains silty sand seams (WEATHERED CRUST); cohesive, w>PL, stiff	91.07 0.00 90.79 0.28		SS 3							Bentonite Seal
1		Gordon (4, 11-1-12, cum		2	SS 3					⊩a		Silica Sand
2		(CI/CH) SILTY CLAY to CLAY; grey, contains silty sand seams; cohesive,	88.78 2.29		ss w	⊕	+					38 mm Diam. PVC #10 Slot Screen
3	w Stem)	w>PL, firm [^]		4	TP PI	⊕	+					
4	Power Auger 200 mm Diam. (Hollow Stem)					Φ -	+	7/				
5				5	SS PI	#				0		Cave
6				6	SS PI		>					
7		End of Borehole	83.45 7.62			Ð ⊢	+ + + +					
8												WL in screen at Elev. 90.57 m on April 30, 2019
9												
10												

RECORD OF BOREHOLE: 18-14

SHEET 1 OF 1

LOCATION: N 5012533.4 ;E 361557.7

BORING DATE: November 9, 2018

DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ا	원	SOIL PROFILE	1. 1	SA	MPLES		IIC PENE TANCE, B	LOWS/).3m	IIIDI	AULIC CONDUC k, cm/s	211VII 1,	무일	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) H1dad (m)	NUMBER	TYPE	SHEAF Cu, kP	R STRENC	STH n	at V. + Q - € m V. ⊕ U - C	W	0° 10° // /ATER CONTEN		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	В		R (m)	_		2	0 40	6	80		20 40	60 80		
0	\blacksquare	GROUND SURFACE TOPSOIL - (CL/CI) SILTY CLAY; dark	91.38		+					+			+	×
		brown (CI/CH) SILTY CLAY to CLAY; brown (WEATHERED CRUST); cohesive, w>PL, very stiff to stiff	0.15	1	SS									Native Backfill
1				2	ss :									Bentonite Seal
				3	ss :	!				I	 		МН	Silica Sand
2					-	•			+					38 mm Diam. PVC #10 Slot Screen
3	tem)	(CI/CH) SILTY CLAY to CLAY; grey; cohesive, w>PL, firm	88.33 3.05	4	sslw	Ψ			+					
4	Power Auger 200 mm Diam. (Hollow Stem)			4	-	⊕	+/							
4	200 mm					Φ	+		7	7				
5				5	ss w	H								Cave
6			85.28			B	*	_/						
		(ML) gravelly sandy SILT; grey (GLACIAL TILL); non-cohesive, wet, very loose to compact	8.10	6	SSW	H					0		МН	
7				7	SS 1	1								
		End of Borehole	83.91 7.47		1									<u></u> ₩
8														WL in screen at Elev. 91.01 m on April 30, 2019
9														
J														
10														
	PTH S	CALE	1 1				-	IГ	ER	-				OGGED: RA

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name				
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL				
(ss)	, 5 mm)	GRAVELS 1% by mass of irse fraction is r than 4.75 mm)	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL				
by ma	SOILS an 0.07	GRAVELS (>50% by mass of coarse fraction is riger than 4.75 mm	Gravels with >12% fines (by mass)	with >12% fines	Below A Line			n/a				GM	SILTY GRAVEL			
3ANIC t ≤30%	AINED	G (>50% coars larger t			Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL			
INORGANIC (Organic Content ≤30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	of is mm)	Sands with ≤12%	Poorly Graded		<6		≤1 or ≥	:3	330 70	SP	SAND				
ganic (COAR(COARS COARS SANDS SANDS Se fraction than 4.75 pt (ps) was selected than 4.75 pt (ps) was selected than 5.15 pt (ps) was sele		Well Graded		≥6		1 to 3	3		SW	SAND				
Ō.	%09<)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm	Sands with >12%	Below A Line			n/a				SM	SILTY SAND				
		sma	fines (by mass)	Above A Line			n/a				sc	CLAYEY SAND				
Organic	Soil	Type of Soil						Labaustaur	Field Indicators						LICCE Crown	Primary
or Inorganic	Group			Laboratory Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Organic Content	USCS Group Symbol	Name				
		L plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT				
(ss	75 mm	SILTS (Non-Plastic or Pl and LL plot below ALine on Plasticity Chart below)	and Line Line city low)	rand Ll Line city Iow)	SILIS SILIS c or PI and L ow A-Line I Plasticity art below)	city (solo)	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT		
by ma	OILS Ian 0.0		SILTS	SILTS ic or PI		c or PI ow A-L Plastic art bel		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT	
INORGANIC (Organic Content ≤30% by mass)	FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)			h-Plasti bel on Chk	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT			
INORGANIC	-GRAII	ioN)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT				
ganic (FINE	olot	e on nart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY				
(O	>50% k	CLAYS	A-Line icity Ch	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY				
		C (Plai	above A-Line on Plasticity Chart below)	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY				
ALY LS LS	anic t >30% ass)	Peat and mineral soil mixtures			1	1	•	•	1	30% to 75%		SILTY PEAT, SANDY PEAT				
HIGHLY ORGANIC SOILS	(Organic Content >30% by mass)	may con mineral so	nantly peat, tain some il, fibrous or ous peat				,	Dual Sum		75% to 100%	PT PT	PEAT				

Note 1 – Fine grained materials with PI and LL that plot in this area are named (ML) SILT with slight plasticity. Fine-grained materials which are non-plastic (i.e. a PL cannot be measured) are named SILT

Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/Cl, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to indicate a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (i.e., SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q_i), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); N_d : The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

PH: Sampler advanced by hydraulic pressure PM: Sampler advanced by manual pressure WH: Sampler advanced by static weight of hammer WR: Sampler advanced by weight of sampler and rod

SAMPLES

AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
TO	Thin-walled, open – note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

W	water content
PL, w _p	plastic limit
LL , W _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
DR	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU.

NON-COHESIVE (COHESIONLESS) SOILS

Compactness²

Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

COHESIVE SOILS

Consistency

Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

- SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure
- SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct measurement of undrained shear strength or other manual observations.

Water Content

Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
	2.4440	W	water content
π	3.1416	w _i or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	I _p or PI	plasticity index = $(w_l - w_p)$
g	acceleration due to gravity	NP	non-plastic
t	time	Ws	shrinkage limit
		l _L	liquidity index = $(w - w_p) / I_p$
		Ic	consistency index = (w _I – w) / I _p void ratio in loosest state
		e _{max}	void ratio in loosest state
		e _{min} I _D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	·U	(formerly relative density)
		41.)	H. L. P. B. L. Mar
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
3	linear strain	q	rate of flow
εv	volumetric strain	V	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ_1 , σ_2 , σ_3		(-)	
	minor)	(c)	Consolidation (one-dimensional)
	mean stress or octahedral stress	Cc	compression index (normally consolidated range)
σoct		C_r	recompression index
_	= $(\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress	O _r	(over-consolidated range)
τ		Cs	swelling index
u E	porewater pressure modulus of deformation	C _α	secondary compression index
G	shear modulus of deformation	Oα m _v	coefficient of volume change
K	bulk modulus of compressibility	C _V	coefficient of consolidation (vertical
	bank modulae of compressionity	ov.	direction)
		Ch	coefficient of consolidation (horizontal
			direction)
		T_v	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		σ'_{p}	pre-consolidation stress
(a)	Index Properties	OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ)	bulk density (bulk unit weight)*	4 B	
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
$\rho_{w}(\gamma_{w})$	density (unit weight) of water	τ _p , τ _r	peak and residual shear strength
$\rho_s(\gamma_s)$	density (unit weight) of solid particles	φ′ δ	effective angle of internal friction
γ'	unit weight of submerged soil	O	angle of interface friction
_	$(\gamma' = \gamma - \gamma_W)$	μ	coefficient of friction = tan δ
DR	relative density (specific gravity) of solid	c′	effective cohesion
0	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio	p '	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	porosity	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
3	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		q _u S _t	compressive strength (σ_1 - σ_3) sensitivity
. –			•
	ity symbol is ρ . Unit weight symbol is γ	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
	e $\gamma = \rho g$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
accel	eration due to gravity)		

TECHNICAL MEMORANDUM

DATE July 16, 2018

Project No. 18100364/2000

TO Andrew Finnson, CAIVAN Communities

CC

FROM Stephane Sol, Christopher Phillips

EMAIL ssol@golder.com; cphillips@golder.com

NBCC SEISMIC SITE CLASS TESTING RESULTS BORRISOKANE RD, OTTAWA, ONTARIO

This technical memorandum presents the results of four Multichannel Analysis of Surface Waves (MASW) tests performed for the National Building Code of Canada (NBCC 2015). The seismic testing was carried out near Cedarview Rd/Borrisokane Rd in Ottawa, Ontario and location of each MASW line is shown on Figure 1. The geophysical testing was performed by Golder Associates Ltd. (Golder) personnel on May 16 and 17 and June 26, 2018.

Figure 1: MASW Location Site Map (MASW Lines in red)

Project No. 18100364/2000 nities July 16, 2018

Methodology

The MASW method measures variations in surface-wave velocity with increasing distance and wavelength and can be used to infer the rock/soil types, stratigraphy and soil conditions.

A typical MASW survey requires a seismic source, to generate surface waves, and a minimum of two geophone receivers, to measure the ground response at some distance from the source. Surface waves are a special type of seismic wave whose propagation is confined to the near surface medium.

The depth of penetration of a surface wave into a medium is directly proportional to its wavelength. In a non-homogeneous medium, surface waves are dispersive, i.e., each wavelength has a characteristic velocity owing to the subsurface heterogeneities within the depth interval that particular wavelength of surface wave propagates through. The relationship between surface-wave velocity and wavelength is used to obtain the shear-wave velocity and attenuation profile of the medium with increasing depth.

The seismic source used can be either active or passive, depending on the application and location of the survey. Examples of active sources include explosives, weight-drops, sledge hammer and vibrating pads. Examples of passive sources are road traffic, micro-tremors, and water-wave action (in near-shore environments).

The geophone receivers measure the wave-train associated with the surface wave travelling from a seismic source at different distances from the source.

The participation of surface waves with different wavelengths can be determined from the wave-train by transforming the wave-train results into the frequency domain. The surface-wave velocity profile with respect to wavelength (called the 'dispersion curve') is determined by the delay in wave propagation measured between the geophone receivers. The dispersion curve is then matched to a theoretical dispersion curve using an iterative forward-modelling procedure. The result is a shear-wave velocity profile of the tested medium with depth, which can be used to estimate the dynamic shear-modulus of the medium as a function of depth.

Field Work

The MASW field work was conducted on May 16 and 17 and June 26, 2018, by personnel from the Golder Mississauga and Ottawa office. For the three MASW lines, a series of 24 low frequency (4.5 Hz) geophones were laid out at 3 metre intervals. Both active and passive readings were recorded along the MASW line. For the active investigation, a seismic drop of 45 kg and a 9.9 kg sledge hammer were used as seismic sources. Active seismic records were collected with seismic sources located 5, 10, and 15 metres from and collinear to the geophone array. Examples of active seismic record collected along each MASW line are shown on Figures 2, 3, 4, and 5 below.

Figure 2: Typical seismic record collected at the site of the MASW Line 1.

Project No. 18100364/2000 July 16, 2018

Figure 3: Typical seismic record collected at the site of the MASW Line 2.

July 16, 2018

Figure 4: Typical seismic record collected at the site of the MASW Line 3.

Project No. 18100364/2000

July 16, 2018

Figure 5: Typical seismic record collected at the site of the MASW Line 4.

Data Processing

Processing of the MASW test results consisted of the following main steps:

- 1) Transformation of the time domain data into the frequency domain using a Fast-Fourier Transform (FFT) for each source location;
- 2) Calculation of the phase for each frequency component;
- 3) Linear regression to calculate phase velocity for each frequency component;
- 4) Filtering of the calculated phase velocities based on the Pearson correlation coefficient (r2) between the data and the linear regression best fit line used to calculate phase velocity;
- 5) Generation of the dispersion curve by combining calculated phase velocities for each shot location of a single MASW test; and,

6) Generation of the stiffness profile, through forward iterative modelling and matching of model data to the field collected dispersion curve.

Processing of the MASW data was completed using the Seislmager/SW software package (Geometrics Inc.). The calculated phase velocities for a seismic shot point were combined and the dispersion curve generated by choosing the minimum phase velocity calculated for each frequency component as shown on Figures 6, 7, 8 and 9 for MASW Lines 1, 2, 3, and 4, respectively. Shear wave velocity profiles were generated through inverse modelling to best fit the calculated dispersion curves. The active survey of MASW Lines provided a dispersion curve with a suitable frequency range as summarized in Table 1, below.

Table 1: Summary of Dispersion Curves with Suitable Frequency Ranges

MASW Line	Minimum Frequency (Hz)	Maximum Frequency (Hz)
MASW Line 1	3	38
MASW Line 2	4	26
MASW Line 3	3	35
MASW Line 4	4	22

Figure 6: Active MASW Dispersion Curve Picks (red dots) along the MASW Line 1

Figure 7: Active MASW Dispersion Curve Picks (red dots) along the MASW Line 2

Figure 8: Active MASW Dispersion Curve Picks (red dots) along the MASW Line 3

Figure 9: Active MASW Dispersion Curve Picks (red dots) along the MASW Line 4

Results

The MASW test results are presented in Figures 10, 11, 12, and 13 for MASW Lines 1, 2, 3, and 4, respectively. These results present the calculated shear wave velocity profiles derived from the field testing along each MASW line. The field collected dispersion curves are compared with the model generated dispersion curves on Figures 14, 15, 16 and 17 for MASW Lines 1, 2, 3, and 4, respectively. There is a satisfactory correlation between the field collected and model calculated dispersion curves, with a root mean squared error of less than 3% along each MASW line.

Figure 10: MASW Modelled Shear-Wave Velocity Depth profile along the MASW Line 1

Figure 11: MASW Modelled Shear-Wave Velocity Depth profile along the MASW Line 2

Figure 12: MASW Modelled Shear-Wave Velocity Depth profile along the MASW Line 3

Figure 13: MASW Modelled Shear-Wave Velocity Depth profile along the MASW Line 4

Figure 14: Comparison of Field (red dots) vs. Modelled Data (blue line) along the MASW Line 1

Figure 15: Comparison of Field (red dots) vs. Modelled Data (blue line) along the MASW Line 2

Figure 16: Comparison of Field (red dots) vs. Modelled Data (blue line) along the MASW Line 3

July 16, 2018

Project No. 18100364/2000 July 16, 2018

Figure 17: Comparison of Field (red dots) vs. Modelled Data (blue line) along the MASW Line 4

To calculate the average shear-wave velocity as required by the National Building Code of Canada (NBCC 2015), the results were modelled to 30 metres below ground surface. The average shear-wave velocity along MASW Line 1 was found to be 211 m/s (Table 2). The average shear-wave velocity along MASW Line 2 was found to be 198 m/s (Table 3). The average shear-wave velocity along MASW Line 3 was found to be 176 m/s (Table 4). The average shear-wave velocity along MASW Line 4 was found to be 268 m/s (Table 5).

The NBCC 2015 requires special site specific evaluation if certain soil types are encountered on the site, so the site classification stated here should be reviewed, and modified if necessary, according to borehole stratigraphy, standard penetration resistance results, and undrained shear strength measurements, if available for this site.

Table 2: Shear-Wave Velocity Profile along the MASW line 1

Model Layer (mbgs) Layer Thickness				Shear Wave Travel Time Through
Тор	Bottom	(m)	Shear Wave Velocity (m/s)	Layer (s)
0.00	1.07	1.07	93	0.011498
1.07	2.31	1.24	93	0.013267
2.31	3.71	1.40	98	0.014353
3.71	5.27	1.57	90	0.017329
5.27	7.01	1.73	100	0.017316
7.01	8.90	1.90	97	0.019599
8.90	10.96	2.06	170	0.012140
10.96	13.19	2.23	312	0.007123
13.19	15.58	2.39	432	0.005528
15.58	18.13	2.55	509	0.005023
18.13	20.85	2.72	547	0.004975
20.85	23.74	2.88	559	0.005163
23.74	26.79	3.05	723	0.004217
26.79	30.00	3.21	727	0.004420
			Vs Average to 30 mbgs (m/s)	211

Table 3: Shear-Wave Velocity Profile along the MASW line 2

Model Layer (mbgs) Layer Thickness				Shear Wave Travel Time Through
Тор	Bottom	(m)	Shear Wave Velocity (m/s)	Layer (s)
0.00	1.07	1.07	126	0.008475
1.07	2.31	1.24	126	0.009779
2.31	3.71	1.40	106	0.013266
3.71	5.27	1.57	94	0.016742
5.27	7.01	1.73	100	0.017247
7.01	8.90	1.90	125	0.015147
8.90	10.96	2.06	173	0.011895
10.96	13.19	2.23	248	0.008989
13.19	15.58	2.39	269	0.008896
15.58	18.13	2.55	330	0.007747
18.13	20.85	2.72	336	0.008092
20.85	23.74	2.88	339	0.008512
23.74	26.79	3.05	340	0.008967
26.79	30.00	3.21	433	0.007423
			Vs Average to 30 mbgs (m/s)	198

Table 4: Shear-Wave Velocity Profile along the MASW line 3

Model Layer (mbgs) Layer Thickness				Shear Wave Travel Time Through
Тор	Bottom	(m)	Shear Wave Velocity (m/s)	Layer (s)
0.00	1.07	1.07	91	0.011826
1.07	2.31	1.24	91	0.013646
2.31	3.71	1.40	87	0.016153
3.71	5.27	1.57	113	0.013867
5.27	7.01	1.73	98	0.017616
7.01	8.90	1.90	101	0.018731
8.90	10.96	2.06	100	0.020696
10.96	13.19	2.23	155	0.014399
13.19	15.58	2.39	276	0.008661
15.58	18.13	2.55	343	0.007453
18.13	20.85	2.72	388	0.007012
20.85	23.74	2.88	414	0.006976
23.74	26.79	3.05	426	0.007158
26.79	30.00	3.21	555	0.005790
			Vs Average to 30 mbgs (m/s)	176

Table 5: Shear-Wave Velocity Profile along the MASW line 4

		Layer Thickness		Shear Wave Travel Time Through
Тор	Bottom	(m)	Shear Wave Velocity (m/s)	Layer (s)
0.00	1.07	1.07	94	0.011341
1.07	2.31	1.24	94	0.013085
2.31	3.71	1.40	101	0.013903
3.71	5.27	1.57	114	0.013779
5.27	7.01	1.73	150	0.011561
7.01	8.90	1.90	262	0.007243
8.90	10.96	2.06	337	0.006109
10.96	13.19	2.23	458	0.004864
13.19	15.58	2.39	481	0.004964
15.58	18.13	2.55	487	0.005242
18.13	20.85	2.72	567	0.004800
20.85	23.74	2.88	562	0.005131
23.74	26.79	3.05	562	0.005424
26.79	30.00	3.21	729	0.004411
			Vs Average to 30 mbgs (m/s)	268

Project No. 18100364/2000

July 16, 2018

Limitations

This technical memorandum is based on data and information collected by Golder Associates Ltd. and is based solely on the conditions of the properties at the time of the work, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this memo.

Golder Associates Ltd. has relied in good faith on all information provided and does not accept responsibility for any deficiency, misstatements, or inaccuracies contained in the reports as a result of omissions, misinterpretation, or fraudulent acts of the persons contacted or errors or omissions in the reviewed documentation.

The services performed, as described in this memo, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this memo, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this memo.

The findings and conclusions of this memo are valid only as of the date of this memo. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this memo, and to provide amendments as required.

Closure

We trust that this technical memorandum meets your needs at the present time. If you have any questions or require clarification, please contact the undersigned at your convenience.

GOLDER ASSOCIATES LTD.

Stephane Sol, Ph.D., P. Geo. Senior Geophysicist

SS/CRP/jl

Christopher Phillips, M.Sc., P. Geo. Senior Geophysicist, Principal

c:\users\jrlee\desktop\general\18100364 borisokane rd masw july 2018.docx

TABLE 2 - SHRINKAGE LIMIT DETERMINATIONS

Borehole Number	1	8-08
Sample Number		4
Depth, m	3.0	5-3.66
Shrinkage Dish Number	1	2
Mass of the dry soil pat, g	17.68	17.48
Mass of dry soil pat + shrinkage dish, g	40.84	39.71
Mass of shrinkage dish, g	23.16	22.23
Volume of shrinkage dish, cm ³	13.40	13.33
Mass of wet soil + shrinkage dish, g	47.81	46.61
Moisture content of the soil	39.42	39.47
Mass of dry soil pat before waxing, g	17.68	17.48
Volume of dry soil pat + wax, cm ³	14.46	15.79
Mass of dry soil pat + wax in air, g	22.22	23.28
Mass of dry soil pat + wax in water, g	7.76	7.49
Mass of wax, g	4.54	5.80
Volume of wax, cm ³	4.91	6.27
Specific gravity of wax	0.925	0.925
Volume of dry soil pat, cm ³	9.55	9.52
SHRINKAGE LIMIT, SL	17.66	17.68
SHRINKAGE RATIO, R	1.85	1.84
Project Numb 18108333 (2000)	Date Tested	December 3, 2018
Tested By X. Meng	Checked By	Ш

Notes:

Shrinkage limits of samples determined according to ASTM D4943-18 standard.

Test carried out using wax method.

Microsere Wax 5214.

Certificate of Analysis

Environment Testing

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Mr. Alex Meacoe

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1821076
Date Submitted: 2018-11-20
Date Reported: 2018-11-27
Project: 18108333/1000
COC #: 838159

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1400203 Soil 2018-11-01 18-24 sa3/5-7'	1400204 Soil 2018-10-29 18-25 sa3/5-7'	1400205 Soil 2018-10-30 18-29 sa3/5-7'	1400206 Soil 2018-11-07 18-06 sa3A/5.5-6'8"
Group	Analyte	MRL	Units	Guideline				
Anions	Cl	0.002	%		<0.002	<0.002	<0.002	<0.002
	SO4	0.01	%		<0.01	<0.01	<0.01	0.05
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.30	0.18	0.19	0.24
	Hq	2.00			7.43	7.96	8.00	7.15
	ριι	2.00						1

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1400207 Soil 2018-11-08 18-09 sa3/5-7'
Anions	Cl	0.002	%	Guiadinio	<0.002
Allions					
	SO4	0.01	%		0.01
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.18
	рН	2.00			7.97
	Resistivity	1	ohm-cm		5560

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Certificate of Analysis

Environment Testing

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Kim MacDonald

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1702391

Date Submitted: 2017-02-17

Date Reported: 2017-02-22

Project: 1771847

COC #: 815762

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1281581 Soil 2017-02-02 BH 17-1 SA 1/2.5-4.5	1281582 Soil 2017-02-03 BH 17-10 SA2/2.5-4.5	1281583 Soil 2017-02-14 BH 17-14 SA1/2.5-4.5
Group	Analyte	MRL	Units	Guideline			
General Chemistry	Cl	0.002	%		0.003	0.003	0.004
	Electrical Conductivity	0.05	mS/cm		0.20	0.15	0.18
	рН	2.0			7.4	7.1	6.9
	Resistivity	1	ohm-cm		5000	6670	5560
	SO4	0.01	%		0.01	<0.01	<0.01

Certificate of Analysis

Environment Testing

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Mr. Steve Dunlop

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1705915

Date Submitted: 2017-04-21

Date Reported: 2017-04-28

Project: 1771847

COC #: 817524

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1289218 Soil 2017-03-30 BH17-19 sa2 5-7	1289219 Soil 2017-03-30 BH17-29 sa2 5-7	1289220 Soil 2017-03-30 BH17-37 sa2 5-7	1289221 Soil 2017-03-30 BH17-47 sa2 5-7
Group	Analyte	MRL	Units	Guideline				
Agri Soil	рН	2.0			8.0	8.0	8.0	8.1
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.22	0.19	0.20	0.19
	Resistivity	1	ohm-cm		4540	5260	5000	5260
	SO4	0.01	%		<0.01	<0.01	<0.01	<0.01
Subcontract	Cl	0.002	%		<0.002	0.003	0.002	<0.002

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1289222 Soil 2017-03-30 BH17-57 sa2 5-7
Agri Soil	рН	2.0			8.0
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.16
	Resistivity	1	ohm-cm		6250
	SO4	0.01	%		<0.01
Subcontract	Cl	0.002	%		<0.002

Guideline =

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 TO 5 - SLOPE STABILITY ANALYSIS SECTIONS

DRAWING PG5036-4 - TEST HOLE LOCATION PLAN

DRAWING PG5036-5 - PERMISSIBLE GRADE RAISE PLAN

DRAWING PG5036-6 - TREE PLANTING SETBACK RECOMMENDATIONS

FIGURE 1

KEY PLAN

