Stormwater Management Report – Bachman Terrace Residential Development

Project # 160401069

Prepared for: Tega Developments

Prepared by: Stantec Consulting Ltd.

Sign-off Sheet

This document entitled Stormwater Management Report – Bachman Terrace Residential Development was prepared by Stantec Consulting Ltd. for the account of Tega Developments. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

	front	
Prepared by		
•	(signature)	

Dustin Thiffault, P.Eng.

Table of Contents

1.0	INTRODU	CTION AND BACKGROUND	1.1
1.1	OVERVIE	W	1.1
2.0	CRITERIA	AND CONSTRAINTS	2.2
2.1	OBJECTIV	/ES	2.2
2.2	SWM CRI	TERIA AND CONSTRAINTS	2.2
2.3	GEOTECH	HNICAL CONSIDERATIONS	2.2
3.0	STORMW	ATER MANAGEMENT DESIGN	3.3
3.1	DESIGN N	//ETHODOLOGY	3.3
3.2	WATERQ	UANTITY CONTROL	3.3
	3.2.1	Allowable Release Rate	3.3
	3.2.2	Storage Requirements	3.4
	3.2.3	Results	3.6
3.3	WATERQ	UALITY CONTROL	3.6
4.0	EROSION	AND SEDIMENT CONTROL	4.7
5.0	CONCLU	SIONS AND RECOMMENDATIONS	5.8
LISTO	F TA BLES		
Table	1: Target F	Release Rates	3.3
	•	00 Year Discharge From Uncontrolled Catchments	
		ry of Rooftop Storage (5-Year)	
		ry of Rooftop Storage (100-Year)	
Table	5:5 and 1	00 Year Peak Surface Volume and Controlled Discharge Summary	3.5
Table	6: Summa	ry of Total 5 and 100 Year Event Release Rates	3.6
LISTO	FFIGURES		
Figure	1: Approx	kimate Location of Proposed Residential Development	1.1
LISTO	F A PPENDI	CES	
A PPEN	IDIX A	: MODIFIED RATIONAL METHOD STORAGE CALCULATIONS	Д 1
A PPEN	IDIX B	: CULVERT DESIGN SHEET	B.2
A PPEN	IDIX C	: ZURN ROOF DRAIN DATA	C.3

Introduction and Background June 3, 2015

1.0 Introduction and Background

1.1 OVERVIEW

Stantec Consulting Ltd. has been commissioned by Tega Developments to prepare the following stormwater management report in support of the proposed 25 unit residential development at 19 & 23 Bachman Terrace. The subject property is located within the City of Ottawa (formerly Kanata) and is currently zoned Residential (R1M). The development is bordered by Bachman Terrace to the north and east, existing residential to the south, and Irwin Gate Park to the west. The property comprises approximately 0.34ha of land and is indicated in Figure 1.

Figure 1: Approximate Location of Proposed Residential Development

Criteria and Constraints June 3, 2015

2.0 Criteria and Constraints

2.1 OBJECTIVES

The City of Ottawa has required that the post-development peak rate of site runoff not exceed the predevelopment release rate for the site. Stormwater may be detained, if necessary, to ensure that the allowable release rate is not exceeded.

Stormwater management facilities currently do not exist on-site. This design aims to provide on-site storage to ensure that the allowable site release rate has not been exceeded in accordance with the criteria and constraints listed below to suit the revised site layout.

2.2 SWM CRITERIA AND CONSTRAINTS

The stormwater management criteria for the proposed site are based on City of Ottawa Sewer Design Guidelines (2004) and on a pre-consultation meeting with City of Ottawa Staff. The following summarizes the criteria used in the preparation of this stormwater management plan:

- Maximum discharge during the 5 and 100 year storms to be restricted to that of predevelopment conditions.
- Maximum 100 yr ponding depth of 0.30 m in parking and access areas.
- Provide adequate emergency overflow conveyance off-site.
- Size storm sewers to convey 5 yr storm event, assuming only roof controls are imposed (i.e. provide capacity for system without inlet-control devices installed).
- Size storm culverts to convey 50 yr storm event (local urban road, over 6m culvert span).
- Size storm sewers using an inlet time of concentration (Tc) of 10 minutes.
- On-site quality control not required for development (pre-consultation meeting).

2.3 GEOTECHNICAL CONSIDERATIONS

A geotechnical investigation titled Geotechnical Investigation – Proposed Redevelopment – 19 and 23 Bachman Terrace has been prepared for the subject site (Houle Chevrier, June 2014). The report indicates the presence of bedrock within approximately 1.0m from the surface of the existing site. In consideration of this and the lack of storm sewers within the Bachman Terrace ROW, subsurface storage has not been considered for use within the subject site.

Stormwater Management Design June 3, 2015

3.0 Stormwater Management Design

3.1 DESIGN METHODOLOGY

The intent of the stormwater management plan presented herein is to mitigate any negative impact that the proposed development will have on the existing storm sewer infrastructure, while providing adequate levels of service to the proposed buildings and access areas. The proposed stormwater management plan is designed to detain runoff on the rooftop and the surface to ensure that peak flows after construction will not exceed the predevelopment flow rates from the site.

3.2 WATER QUANTITY CONTROL

The Modified Rational Method was employed to assess the quantity and volume of runoff generated during post-development conditions. The site was subdivided into subcatchments (subareas) tributary to stormwater controls as defined by the location of inlet control devices, and used in culvert design (see Appendix B). A summary of subareas and runoff coefficients is provided in Appendix A, and Drawing SD-1 indicates the stormwater management subcatchments.

3.2.1 Allowable Release Rate

The predevelopment release rate for the area has been determined using the rational method. Existing buildings and access areas were considered as hard surfaces (C=0.9), while the remainder of the site is grassed (C=0.2). A time of concentration for the predevelopment area (15 minutes) was assigned during a pre-consultation meeting with City of Ottawa staff. C coefficient values have been increase by 25% for the 100-year storm event per City of Ottawa guidelines. Peak flow rates have been calculated using the rational method as follows:

Q = 2.78 CiA

Where: Q = peak flow rate, L/s

A = drainage area, ha

I = rainfall intensity, mm/hr (per Ottawa IDF curves)

C = site runoff coefficient

Target release rates for the site are summarized in the table below:

Table 1: Target Release Rates

Design Storm	Target Flow Rate (L/s)			
5-Year	22.7			
100-Year	48.6			

Stormwater Management Design June 3, 2015

3.2.2 Storage Requirements

The site requires quantity control measures to meet the restrictive stormwater release criteria. It is proposed that an inlet-control device in combination with surface grading (for ponding) and rooftop drain restrictions be used to reduce the peak flow. To provide the necessary controls, surface and roof storage were maximized across the site.

3.2.2.1 Uncontrolled Catchments

Due to grading constraints, one catchment has been designed without a storage component (Uncon). This area flows offsite to the Bachman Terrace ROW uncontrolled. Areas that discharge offsite without entering the proposed stormwater management system must be compensated for in areas with controls. Table 2 summarizes the peak uncontrolled 5 and 100 year catchment release rates for catchments that are released to Bachman Terrace uncontrolled.

Table 2: 5 and 100 Year Discharge From Uncontrolled Catchments

Catch m ent ID	5-Year Peak Discharge (L/s)	100-Year Peak Discharge (L/s)
Uncon	9.2	19.7

Peak 5 and 100 year discharge values in Table 2 are based on minimum time of concentration values (10 minutes).

3.2.2.2 Rooftop Storage

It is proposed to retain stormwater on the rooftops by installing restricted flow roof drains. The following calculations assume the roof will be equipped with a standard Zurn Model Z-105-5 Control-Flow Single Notch Roof Drain, see Appendix C for details.

Zurn Industries Ltd. "Control-Flo" roof drain data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Control-Flo" roof drain has been used as an example only, and that other products may be specified for use, provided that the roof release rate is restricted to match the maximum rate of release indicated in Table 3 and Table 4 for the rooftops, and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater.

Table 3 and Table 4 provide details regarding the retention of stormwater on the proposed rooftops during the 5 and 100 year storm events. Refer to Appendix A for details. Both buildings are tributary to the upstream control (via roof leader) for area A-1 and as such their discharges are further controlled at that location.

Stormwater Management Design June 3, 2015

Table 3: Summary of Rooftop Storage (5-Year)

Location	Depth (mm)	Discharge (L/s)	Vrequired (m ³)	Drawdown Time (h)	Vavailable (m ³)
Block 1	90	2.7	7	1.1	20
Block 2	87	4.0	9	0.9	26
Block 3	72	3.3	3	0.3	12

^{1.} Buildings 1 and 3 are tributary to the upstream control at A-1.

Table 4: Summary of Rooftop Storage (100-Year)

Location	Depth (mm)	Discharge (L/s)	Vrequired (m ³)	Drawdown Time (h)	Vavailable (m ³)
Block 1	133	4.0	16	1.7	20
Block 2	129	5.9	19	1.4	26
Block 3	109	5.0	7	0.5	12

^{1.} Buildings 1 and 3 are tributary to the upstream control at A-1.

3.2.2.3 Surface Storage

In addition to rooftop storage, it is proposed to detain stormwater on the surface in parking and landscape areas. The modified rational method was employed to determine the peak volume stored in surface ponding areas. Inlet control devices were sized based on the available storage volumes during the 5 and 100 year storm events.

Table 5 summarizes the estimated storm release rates and storage volumes during the 5 and 100 events.

Table 5: 5 and 100 Year Peak Surface Volume and Controlled Discharge Summary

			5-Year Event		100-Year Event			
Tributary Area ID	ICD (mm)	Discharge (L/s)	V _{required} (m ³)	Vavailable (m ³)	Discharge (L/s)	V _{required} (m ³)	Vavailable (m ³)	
A-1	135	11.6	17.4	23.4	21.2	20.7	23.4	

^{1. 100-}year volume available based on surface storage and a maximum spill depth not to exceed 0.30m, where required.

The inlet control device (ICD) was sized with the following orifice equation:

$$Q = C_d A (2gh)^{1/2}$$

Where, $C_d = 0.61$

A = Area of Orifice (m2)

Stormwater Management Design June 3, 2015

> g = 9.81 m/s2h = design head (m)

The design head used to determine restricted flow rates through the proposed orifices was measured from the downstream water level up to the level of surface ponding in the catchment area. Downstream water levels were considered to be at the obvert of the receiving culvert within the Bachman Terrace ROW. Refer to Appendix A for details.

3.2.3 Results

Table 6 demonstrates that the proposed stormwater management plan provides adequate attenuation storage to meet the target peak outflow rates for the site.

Table 6: Summary of Total 5 and 100 Year Event Release Rates

	5-Year Peak Discharge (L/s)	100-Year Peak Discharge (L/s)
Uncontrolled	9.2	19.7
Controlled – Roof	10.0	14.9
Controlled - Surface	11.6	21.2
Total	24.8	46.8
Target	22.7	48.6

^{*}Note that roof discharge rates may not be summed directly to the total site peak discharge, as the release rates of Blocks 1 and 3 are included within the controlled surface discharge values due to downstream controls.

3.3 WATER QUALITY CONTROL

Conversations with City of Ottawa staff have not identified the need for on-site stormwater quality control measures. As roof leaders and controlled discharge areas are routed to grassed swales at the perimeter of the property, and site drainage is routed in its entirety to grassed swales and culverts within the Bachman Terrace ROW over the entire site frontage, it is assumed that suspended solids within runoff generated by the site will not have a deleterious impact on downstream watercourses (Watt's Creek).

Erosion and Sediment Control June 3, 2015

4.0 Erosion and Sediment Control

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit extent of exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with plastic or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Plan construction at proper time to avoid flooding.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- 9. Verification that water is not flowing under silt barriers.
- 10. Clean and change silt traps at catch basins.

Refer to Drawing EC-1 for the proposed location of silt fences, straw bales and other erosion control structures.

Conclusions and Recommendations June 3, 2015

5.0 Conclusions and Recommendations

Based on the preceding report update, the following conclusions can be drawn:

- Quantity control is provided via a combination of rooftop and surface storage.
- The site discharges stormwater to the existing storm sewer infrastructure without exceeding the calculated allowable 100-year release rate.
- 100 year ponding depths have been maintained at a maximum of 0.055 m on rooftops and 0.30 m in surface catchments within parking areas.
- 100 year volumes for controlled catchments are contained on-site.
- Major overland flow paths have been provided to relieve the parking and access areas during emergency conditions or extreme rainfall events.
- Additional stormwater quality control measures are not required.

Based on the findings of the report, the following recommendations are provided:

 The proposed stormwater management measures provided in this report be implemented for the development.

Appendix A: Modified Rational Method Storage Calculations June 3, 2015

Appendix A: Modified Pational Method Storage Calculations

yr Intensity						Storr	nwater Managem	ent Design F	arameters						
City of Ottawa	l =	= a/(t + b)°	a = b =	998.071 6.053	3			10 Ci	0 yr Intensity ty of Ottawa	I	= a/(t + b)°	a = b =	6.014		
	_	_	C =	0.814								C =			
5-Year Predevel (ha):		ase Rate						10	0-Year Predeve Area (ha):	o.338	elease Rate				
C:									C:	0.36					
	tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	(L/s)	Vstored (m³)				tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m³)
	15	83.6	22.7	22.7	0.0	0.0		1,	00-yr Target =	15 48.6 L	142.9	48.6	48.6 f + External F	0.0	0.0
								<u> </u>		40.0 1		Site Ruiloi	I + External F	turion	
						Pro	pposed Stormwate	er Managem	ent Plan						
Area ID:	: Uncon					<u></u>			Area ID:	Uncon					
Area (ha): C:	0.065								Area (ha): C:						
	tc (min)	I (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m³)				tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m³)
	10	104.2	9.2	9.2	0.0	0.0				10	178.6	19.7	19.7	0.0	0.0
							Controlle	ed Areas							
Area ID: Area (ha):	0.126		*All Roof dra		ocks 1 and 3				Area ID: Area (ha):			*All Roof dr	ains from Blo	cks 1 and 3	
Ċ	: 0.56	1/5	tributary to A	rea A-1					Ć:	0.70	1/200	tributary to	Area A-1		Marin 1
	tc (min)	I (5 yr) (mm/hr) 104.2	Qactual (L/s) 30.4	Qrelease (L/s) 11.6	Qstored (L/s) 18.8	Vstored (m³) 11.3				tc (min)	I (100 yr) (mm/hr) 178.6	Qactual (L/s) 52.8	(L/s) 21.2	Qstored (L/s) 31.6	Vstored (m³) 18.9
	15 20	83.6 70.3	26.4 23.8	11.6 11.6	14.8 12.2	13.3 14.6				15 20	142.9 120.0	44.0 38.4	21.2 21.2	22.8 17.2	20.6 20.7
	30 40	53.9 44.2	20.6 18.6	11.6 11.6	9.0 7.0	16.1 16.9				30 40	91.9 75.1	31.5 27.4	21.2 21.2	10.3 6.2	18.6 15.0
	50 60	37.7 32.9	17.4 16.4	11.6 11.6	5.8 4.8	17.3	<			50 60	64.0 55.9	24.7 22.7	21.2 21.2	3.5 1.5	10.5 5.5
	70 80	29.4 26.6	15.7 15.2	11.6	4.1	17.4				70 80	49.8 45.0	21.2	21.2	0.0	0.1
	90	24.3	14.7	11.6	3.1	17.0				90	41.1 37.9	19.1	19.1	0.0	0.0
	110 120	20.8	14.1	11.6	2.5	16.3				110	35.2	17.6 17.1	17.6 17.1	0.0	0.0
	130	18.3	13.6	11.6	2.0	15.8 15.4				130	32.9 30.9	16.6	16.6	0.0	0.0
Orifice Orifice	e Equation: Q e Diameter:	$= C_d A (2gh)^{1/3}$ 135	mm	Where C=	0.610				Orifice Orifice	Equation: 0 Diameter:	Q = C _d A(2gh)	1/2 5 mm	Where C=	0.610	
Control Inve	rt Elevation G Elevation:	118.00 118.00	m m					İ	Control Invert	t Elevation Elevation:	118.0 118.0	0 m 0 m			
	tream W/L:	118.00		*Obvert of o	outlet sewer					ream W/L:	118.0		*Obvert of o	utlet sewer	
	Ponding		Discharge ³	V _{required} ⁴	V _{available} 5	Volume Check		0	ontrol Location	Ponding Elev. ¹	Head ²	Discharge ³	V _{required} 4	V _{available} 5	Volume Check
Control Location	Floy 1	Head ²		(m ³)	(m³) 23.4	ok			A-1	(m) 118.30	(m) 0.30	(L/s) 21.2	(m³) 20.7	(m³) 23.4	ok
	Elev.1 (m) 118.09	(m)	(L/s)	17.4				i –				ı			
Control Location A-1		(m) 0.09		17.4				İ							
	(m) 118.09 Inlet Contro 1. Max allowa	(m) 0.09 I Notes: ble water depti	(L/s) 11.6	17.4 event	less the great		o 'Orifice Invert Elevatio	on' or 'Downstre	am W/L'						
	(m) 118.09 Inlet Contro 1. Max allowa 2. Based on tl 3. Based on tl 4. Volume req	(m) 0.09 I Notes: ble water depti the difference be the orifice equal puired per Modi	(L/s) 11.6 h during storm etween the 'Station as shown a lifed Rational N	event orage Depth' above. Method.	less the great		e 'Orifice Invert Elevation	on' or 'Downstre	am W/L'						
	(m) 118.09 Inlet Contro 1. Max allowa 2. Based on tl 3. Based on tl 4. Volume req	(m) 0.09 I Notes: ble water depti the difference be the orifice equal	(L/s) 11.6 h during storm etween the 'Station as shown a lifed Rational N	event orage Depth' above. Method.	less the great				am W/L'						
	(m) 118.09 Inlet Contro 1. Max allowa 2. Based on tl 3. Based on tl 4. Volume req	(m) 0.09 I Notes: ble water depth the difference be the orifice equal uired per Modi ailable as illustr	(L/s) 11.6 h during storm etween the 'Ste tion as shown a filed Rational M ated on dwg S	event orage Depth' above. Method.	less the great			on' or 'Downstre.	am W/L'	Area	Depth	Discharge	Vrea	Est.	Vavail
	(m) 118.09 Inlet Contro 1. Max allowa 2. Based on tl 3. Based on tl 4. Volume req 5. Volume ava	(m) 0.09 I Notes: ble water depti the difference be the orifice equal puired per Modi	(L/s) 11.6 h during storm etween the 'Station as shown a lifed Rational N	event orage Depth' above. Method. ID-1.		ter of either the			am W/L*	Area (ha) 0.051	Depth (mm) 133	Discharge (L/s) 4.0	Vreq (m³) 16	Est. Drawdown 1.7	Vavail (m³) 20
	(m) 118.09 Inlet Contro 1. Max allowa 2. Based on ti 4. Volume reg 5. Volume ava Area (ha) 0.051	(m) 0.09 I Notes: ble water depth e difference b he orifice equal uired per Modi- ailable as illustr Depth (mm) 90 Depth	(L/s) 11.6 h during storm etween the 'Stitute as shown stiffed Rational Matted on dwg S Discharge (L/s) 2.7 Discharge	event orage Depth' above. Method. (D-1.	Est. Drawdown 1.1	Vavail (m³) 20			am W/L'	(ha) 0.051 Area	(mm) 133 Depth	(L/s) 4.0 Discharge	(m³) 16	Drawdown 1.7 Est.	(m³) 20 Vavail
	(m) 118.09 118.09 118.01 118.02 1. Max allowa 2. Based on the second of	(m) 0.09 I Notes: ble water depther be difference be ne orifice equal uired per Modi uired per Modi uired per Modi uired per Modi uired per Modi uired per Modi uired per Modi uired per Modi uired per Modi uired per Modi	(L/s) 11.6 11.6 h during storm etween the 'Ste tion as shown a sife Rational Material Material (L/s) 2.7 Discharge (L/s) 2.7	event orage Depth' above. dethod. D-1. Vreq (m³) 7 Vreq (m³) 9	Est. Drawdown 1.1 Est. Drawdown 0.9	Vavail (m³) 20			am W/L'	(ha) 0.051 Area (ha) 0.065	(mm) 133 Depth (mm) 129	(L/s) 4.0 Discharge (L/s) 5.9	(m³) 16 Vreq (m³) 19	Est. Drawdown 1.4	(m³) 20 Vavail (m³) 26
	(m) 118.09 Inlet Contro Inlet Contro Index allowa 2. Based on It 3. Based on It 4. Votume exp 5. Volume ava Area (ha) 0.051 Area (ha) 0.065 Area (ha)	(m) 0.09 I Notes: ble water deptil e difference be e difference be e orifice equalitied per Modified in the end of the en	(L/s) 11.6 h during storm etween the 'Sti on as shown in the late of the lat	event orage Depth' above. fethod. D-1. Vreq (m³) 7 Vreq (m³) 9 Vreq (m³)	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26			am W.L.	(ha) 0.051 Area (ha) 0.065 Area (ha)	(mm) 133 Depth (mm) 129 Depth (mm)	(L/s) 4.0 Discharge (L/s) 5.9 Discharge (L/s)	(m³) 16 Vreq (m³) 19 Vreq (m³)	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)
	(m) 118.09 Inlet Contro In. Max allowa 2. Based on It 4. Volume req 5. Volume ava Area (ha) 0.051 Area (ha) 0.065	(m) 0.09 I Notes: ble water deptil the difference be crifice equalities of the crific equal	(L/s) 11.6 11.6 1 during storm etween the 'St tion as shown in tion as shown attend on dwg S Discharge (L/s) 2.7 Discharge (L/s) 4.0 Discharge (L/s)	17.4 event orage Depth' above. tethod. iD-1. Vreq (m³) 7 Vreq (m³) 9	Est. Drawdown 1.1 Est. Drawdown 0.9 Est.	Vavail (m²) 26			am W/L⁺	(ha) 0.051 Area (ha) 0.065	(mm) 133 Depth (mm) 129	(L/s) 4.0 Discharge (L/s) 5.9 Discharge	(m³) 16 Vreq (m³) 19	Est. Drawdown 1.4 Est.	(m³) 20 Vavail (m³) 26
	(m) 118.09 Inlet Contro Inlet Contro Index allowa 2. Based on It 3. Based on It 4. Votume exp 5. Volume ava Area (ha) 0.051 Area (ha) 0.065 Area (ha)	(m) 0.09 I Notes: ble water deptil e difference be e difference be e orifice equalitied per Modified in the end of the en	(L/s) 11.6 h during storm etween the 'Sti on as shown in the late of the lat	event orage Depth' above. fethod. D-1. Vreq (m³) 7 Vreq (m³) 9 Vreq (m³)	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26		trol Areas		(ha) 0.051 Area (ha) 0.065 Area (ha)	(mm) 133 Depth (mm) 129 Depth (mm)	(L/s) 4.0 Discharge (L/s) 5.9 Discharge (L/s)	(m³) 16 Vreq (m³) 19 Vreq (m³)	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)
A-1	(m) Inlet Contro I. Max allows 2. Based on the I. Max allows 2. Based on the I. Max allows 2. Based on the I. Max allows 3. Based on the I. Max allows 2. Ba	(m) 0.09 I Notes: blo water depth be attremed be office equal to the critical equal equal equal to the critical equal (L/s) 11.6 h during storm etween the 'St tion as shown stilling as shown stilling as shown stilling as the stilling as shown stilling as shown stilling as shown stilling as shown stilling as shown stilling as shown stilling as shown as	17.4 event orage Depth' above. Vreq (m³) 7 Vreq (m³) 3	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26	Roof Con	trol Areas	Site	(ha) 0.051 Area (ha) 0.065 Area (ha) 0.031	(mm) 133 Depth (mm) 129 Depth (mm)	(L/s) 4.0 Discharge (L/s) 5.9 Discharge (L/s) 5.0 a 0.065	(m³) 16 Vreq (m³) 19 Vreq (m²) 7	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)	
A-1	(m) 118.09 118.	(m) 0.09 1 Notes: blo water depth be difference be edifference be edifference be indicated per Mode uitred per	L(L/s) 11.6 h during storm etween the 'St tion as shown difficed Rational Matter on dwg S Discharge (L(s) 2.7 Discharge (L(s) 3.3 Discharge (L(s) 4.0 Discharge (L(s) 4.0 Discharge (L(s) 1.1	event event orage Depth above. Vreq (m³) 7 Vreq (m³) 3 Vreq (m³) 3 L'S ha m³	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26	Roof Con	trol Areas	100-y	(ha) 0.051 Area (ha) 0.065 Area (ha) 0.031 Total Uncontrol (rear Uncontrol Control	(mm) 133 Depth (mm) 129 Depth (mm) 109 controlled Are- rolled Release Controlled Are- torage Volume	(L/s) 4.0 Discharge (L/s) 5.9 Discharge (L/s) 5.0 Discharge (L/s) 5.0	(m²) 16 Vreq (m²) 19 Vreq (m²) 7	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)
A-1	m) I18.09	(m) 0.09 1 Notes: blo water depth to difference be collice qualitative and the collice and the	L(L/s) 11.6 h during storm etween the 'St tion as shown difficed Rational Matter on dwg S Discharge (L(s) 2.7 Discharge (L(s) 3.3 0.065 9.2 0.126 17.4 11.6	event orage Depth' above. Vreq (m³) 7 Vreq (m³) 3 Vreq (m³) 1 L'S	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26	Roof Con	trol Areas	100-3	(ha) 0.051 Area (ha) 0.065 Area (ha) 0.065 Total Uncyear Uncont Total C St St 0-year Cont	(mm) 133 Depth (mm) 129 Depth (mm) 109 Controlled Are- rolled Releas- controlled Are- torage Volum- rolled Release-	(L/s) 4.0 Discharge (L/s) 5.9 Discharge (L/s) 5.0 a 0.0658 a 0.1266 a 0.1266 a 21.22	(m²) 16 Vreq (m²) 19 Vreq (m²) 7	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)
A-1	m) Intercontrol In	(m) 0.09 1 Notes: blo water depth to difference be edifference edifferen	L(s) 11.6 h during storm etween the 'St tion as shown differ lational h dated on dwg S Discharge (L(s) 2.7 Discharge (L(s) 3.3 Discharge (L(s) 1.4 Discharge (L(s) 1.4 Discharge (L(s) 1.4 1.1 Discharge (L(s) 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	event orage Depth' above. Vreq (m²) Vreq (m²) 3 Vreq (m²) 3 L/s ha m³ L/s	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26	Roof Con	trol Areas	100- ₃	(ha) 0.051 Area (ha) 0.065 Area (ha) 0.065 Total Unc (vear Uncont) Total C St 0-year Cont Fotal Contro Roof St	(mm) 133 133 133 133 133 133 133 133 134 134	(L/s) 4.0 Discharge (L/s) 5.9 Discharge (L/s) 5.0 Discharge (L/s) 5.0 2 0.0655 a 0.126 e 20.7 a 0.126 e 2 1.2 a 0.147 e 42.1	(m²) 16 Vreq (m²) 19 Vreq (m²) 7	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)
A-1	m) Inlet Control 118.09 Inlet Control 1. Max allowa 2. Based on th 4. Volume req (ha) 0.051 Area (ha) 0.065 Area (ha) 0.031 Total Unccyear Uncontrol Sto 5-year Control Total Controll Controll	(m) 0.09 1 Notes: blo water depth e difference b e criffice equation in the criffice equation general performance Beth (mm) 72 Depth (mm) 72 Depth (mm) 72 Depth (mm) 72	L(s) 11.6 h during storm etween the 'St tion as shown differ lational h dated on dwg S Discharge (L(s) 2.7 Discharge (L(s) 3.3 0.065 9.2 0.126 17.4 11.6 0.147 19.3 10.0	event orage Depth' above. Vreq (m²) Vreq (m²) 3 Vreq (m²) 3 L/s ha m³ L/s ha m³ L/s	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26	Roof Con	trol Areas	100- ₃	(ha) 0.051 Area (ha) 0.065 Area (ha) 0.065 Total Unc (vear Uncont) Total C St 0-year Cont Fotal Contro Roof St	(mm) 129 Depth (mm) 129 Depth (mm) 129 Depth (mm) 109 109	(L/s) (L/s) Discharge (L/s) 5.9 Discharge (L/s) 5.0 Discharge (L/s) 4.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0	(m²) 16 16 17 18 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)
A-1	m) Inlet Contro 1. Max allows 2. Based on the 1. Max allows 3. Based on the 1. Max allows 4. Volume req. 6. Volume ava Area (ha) 0.051 Area (ha) 0.031 Total Uncc year Uncontro Total Control Roof Sic 5-year Control Roof Sic ar Controlled fr	(m) 0.09 1 Notes: blo water depth to difference be edifference edifferen	(L/s) 11.6 h during storm etween the 'St tion as shown ifficed Rational Matter on dwg S Discharge (L/s) 2.7 Discharge (L/s) 4.0 Discharge (L/s) 1.10	event orage Depth' above. Vreq (m³) 7 Vreq (m³) 3 Vreq (m²) 3 L/s ha m³ L/s ha ha ha ha ha ha ha ha ha ha ha ha ha	Est. Drawdown 1.1 Est. Drawdown 0.9 Est. Drawdown	Vavail (m³) 20 Vavail (m³) 26 Vavail (m°) 26	Roof Con	trol Areas	100- ₃	(ha) 0.051 Area (ha) 0.065 Area (ha) 0.065 Area (ha) 0.031 Total Uncontrol Total Control Roof St r Controlled	(mm) 133 133 133 133 133 133 133 133 134 134	(L/s) Discharge (L/s) 5.9 Discharge (L/s) 5.9 Discharge (L/s) 5.0 a 0.066 e 19.7 a 0.126 e 20.7 a 0.147 e 42.1 e 42.1 d 0.448 d 638	(m²) 16 Vreq (m²) 19 Vreq (m²) 7 Vret (m²) 7 L/s i ha m² L/s i ha m² L/s i ha m² L/s	Est. Drawdown 1.4 Est. Drawdown 1.4 Est. Drawdown	(m³) 20 Vavail (m³) 26 Vavail (m³)

Proposed Bachman Terrace Building (Block 1)

	Rating	Cuno			Volumo Ectin	nation (Conic	al)	1
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area		me (m³)	Water Depth
(m)	(m³/s)	(m ³ /s)	(m³)	(m)	(m²)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0.0	0.000	0	0	0	0.000
0.025	0.0004	0.0008	0.6	0.025	68	0.6	0.6	0.025
0.050	0.0008	0.0015	2.3	0.050	136	1.7	2.3	0.050
0.075	0.0011	0.0023	5.1	0.075	204	2.8	5.1	0.075
0.100	0.0015	0.0030	9.1	0.100	272	4.0	9.1	0.100
0.125	0.0019	0.0038	14.2	0.125	340	5.1	14.2	0.125
0.150	0.0023	0.0046	20.4	0.150	408	6.2	20.4	0.150

Stantec								
Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(m ³)	(sec)	(m ³)	Time (hr)					
0.6	746	0.6	0.2					
2.3	1,104	1.7	0.5					
5.1	1,243	2.8	0.9					
9.1	1,305	4.0	1.2					
14.2	1,342	5.1	1.6					
20.4	1,367	6.2	2.0					

-	
Roof-top Storage Summary	
Total Building Area (ha)	0.051
Total Building Area (m ²)	510
Assume Available Roof Area (m ²) 80%	408
Roof Imperviousness	100%
Roof Drain Requirement (m ² /notch)	232
Number of Roof Notches*	2
Maximum Allowable Depth of Roof Ponding (m)	0.15
Maximum Available Storage (m3)	20
Estimated 100 Year Drawdown Time (h)	1.7

^{*} Note: Number of drains can be reduced if multiple-notch drain used

Modelling Results

	5yr	100yr	Available
Qresult (m ³ /s)	0.0027	0.0040	-
Depth (m)	0.090	0.133	0.15
Volume (m3)	7	16	20
Draintime (hrs)	1.1	1.7	-

					Modif	Rational Method Calculations						
5 yr Intensity		$I = a/(t + b)^{c}$	a =	998.071			1	100 yr Intensity	,	$I = a/(t + b)^c$	a =	1735.688
City of Ottawa			b =	6.053				City of Ottawa			b =	6.014
•			C =	0.814				•			C =	0.820
Area (ha):	0.051	ı					Area (ha):	0.051				
C:	0.90)					C:	1.00				
tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored		tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)		(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	13.3		10.6	6.3		10	178.6	25.3		21.3	12.8
15	83.6	10.7		7.9	7.1		15	142.9	20.3		16.2	14.6
20	70.3	9.0		6.2	7.5		20	120.0	17.0		13.0	15.6
30	53.9	6.9		4.1	7.5		30	91.9	13.0		9.0	16.2
40	44.2	5.6		2.9	7.0		40	75.1	10.7	4.0	6.6	15.9
50	37.7	4.8		2.1	6.2		50	64.0	9.1	4.0	5.0	15.1
60	32.9	4.2		1.5	5.3		60	55.9	7.9		3.9	14.0
70	29.4	3.7		1.0	4.3		70	49.8	7.1	4.0	3.0	12.7
80	26.6	3.4		0.7	3.1		80	45.0	6.4	4.0	2.3	11.2
90	24.3	3.1		0.4	2.0		90	41.1	5.8		1.8	9.7
100	22.4	2.9		0.1	0.7		100	37.9	5.4		1.3	8.0
110	20.8	2.7		0.0	0.0		110	35.2	5.0		1.0	6.3
120	19.5	2.5		0.0	0.0		120	32.9	4.7	4.0	0.6	4.5
130	18.3	2.3		0.0	0.0		130	30.9	4.4	4.0	0.3	2.7
140	17.3	2.2	2.2	0.0	0.0		140	29.2	4.1	4.0	0.1	0.8
	Depth	Head	Discharge	Vreq	Vavail	charge		Depth	Head	Discharge	Vreq	Vavail
	(mm)	(m)	(L/s)	(m ³)	(m ³)	heck		(mm)	(m)	(L/s)	(m ³)	(m ³)
-vear Water Level	90	0.090	2.74	7	20	0.0	vear Water Level	133	0.133	4.04	16	20

Proposed Bachman Terrace Building (Block 2)

r	Rating	Cuno			Volumo Ectin	nation (Conic	al)	
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area		Volume (m³)	
(m)	(m³/s)	(m ³ /s)	(m³)	(m)	(m²)	Increment	Accumulated	Water Depth (m)
0.000	0.0000	0.0000	0.0	0.000	0	0	0	0.000
0.025	0.0004	0.0011	0.7	0.025	87	0.7	0.7	0.025
0.050	0.0008	0.0023	2.9	0.050	173	2.2	2.9	0.050
0.075	0.0011	0.0034	6.5	0.075	260	3.6	6.5	0.075
0.100	0.0015	0.0046	11.6	0.100	347	5.1	11.6	0.100
0.125	0.0019	0.0057	18.1	0.125	433	6.5	18.1	0.125
0.150	0.0023	0.0068	26.0	0.150	520	7.9	26.0	0.150

			Stantec					
Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(m ³)	(sec)	(m ³)	Time (hr)					
0.7	634	0.7	0.2					
2.9	938	2.2	0.4					
6.5	1,056	3.6	0.7					
11.6	1,109	5.1	1.0					
18.1	1,140	6.5	1.4					
26.0	1,161	7.9	1.7					

Roof-top Storage Summary	
Total Building Area (ha)	0.065
Total Building Area (m²)	650
Assume Available Roof Area (m²) 80	% 520
Roof Imperviousness	100%
Roof Drain Requirement (m²/notch)	232
Number of Roof Notches*	3
Maximum Allowable Depth of Roof Ponding (m)	0.15
Maximum Available Storage (m³)	26
Estimated 100 Year Drawdown Time (h)	1.4

^{*} Note: Number of drains can be reduced if multiple-notch drain used

Modelling Results

	5yr	100yr	Available
Qresult (m ³ /s)	0.0040	0.0059	-
Depth (m)	0.087	0.129	0.15
Volume (m3)	9	19	26
Draintime (hrs)	0.9	1.4	-

					Modif	al Method Calculations					
5 yr Intensity		$= a/(t + b)^{c}$	a =	998.071			100 yr Intensity		$I = a/(t + b)^{c}$	a =	1735.688
City of Ottawa			b =	6.053			City of Ottawa			b =	6.014
•			C =	0.814			•			C =	0.820
Area (ha):	0.065					Area (ha):	0.065				
C:	0.90					C:					
tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored	tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	1	6.9 4.0	13.0	7.8	10	178.6	32.3	5.9	26.4	15.8
15	83.6	1	3.6 4.0	9.6	8.7	15	142.9	25.8	5.9	19.9	17.9
20	70.3	1	1.4 4.0	7.5	8.9	20	120.0	21.7	5.9	15.8	19.0
30	53.9		3.8 4.0	4.8	8.6	30	91.9	16.6	5.9	10.7	19.3
40	44.2		7.2 4.0	3.2	7.7	40	75.1	13.6	5.9	7.7	18.5
50	37.7		6.1 4.0	2.2	6.5	50	64.0	11.6	5.9	5.7	17.0
60	32.9		5.4 4.0	1.4	5.0	60		10.1	5.9	4.2	15.2
70	29.4		4.8 4.0	0.8	3.4	70		9.0	5.9	3.1	13.1
80	26.6		4.3 4.0	0.3	1.7	80		8.1	5.9	2.2	10.8
90	24.3		4.0 4.0	0.0	0.0	90		7.4	5.9	1.5	8.4
100	22.4		3.6 3.6	0.0	0.0	100		6.8	5.9	1.0	5.8
110	20.8		3.4 3.4	0.0	0.0	110		6.4	5.9	0.5	3.2
120	19.5		3.2 3.2	0.0	0.0	120		5.9	5.9	0.1	0.5
130	18.3		3.0 3.0	0.0	0.0	130		5.6	5.6	0.0	0.0
140	17.3		2.8 2.8	0.0	0.0	140	29.2	5.3	5.3	0.0	0.0
	Depth	Head	Discharge	Vreq	Vavail	7	Depth	Head	Discharge	Vreq	Vavail
	(mm)	(m)	(L/s)	(m ³)	(m ³)		(mm)	(m)	(L/s)	(m ³)	(m ³)

Proposed Bachman Terrace Building (Block 3)

	Rating	Curve						
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volui	me (m³)	Water Depth
(m)	(m ³ /s)	(m ³ /s)	(m³)	(m)	(m ²)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0.0	0.000	0	0	0	0.000
0.025	0.0004	0.0011	0.3	0.025	41	0.3	0.3	0.025
0.050	0.0008	0.0023	1.4	0.050	83	1.0	1.4	0.050
0.075	0.0011	0.0034	3.1	0.075	124	1.7	3.1	0.075
0.100	0.0015	0.0046	5.5	0.100	165	2.4	5.5	0.100
0.125	0.0019	0.0057	8.6	0.125	207	3.1	8.6	0.125
0.150	0.0023	0.0068	12.4	0.150	248	3.8	12.4	0.150

			Stantec					
Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(m ³)	(sec)	(m ³)	Time (hr)					
0.3	302	0.3	0.1					
1.4	447	1.0	0.2					
3.1	504	1.7	0.3					
5.5	529	2.4	0.5					
8.6	544	3.1	0.6					
12.4	554	3.8	0.8					

Roof-top Storage Summary	
Total Building Area (ha) Total Building Area (m²)	0.031 310
Assume Available Roof Area (m²) 80%	248
Roof Imperviousness	100%
Roof Drain Requirement (m²/notch)	232
Number of Roof Notches*	3
Maximum Allowable Depth of Roof Ponding (m)	0.15
Maximum Available Storage (m ³)	12
Estimated 100 Year Drawdown Time (h)	0.5

^{*} Note: Number of drains can be reduced if multiple-notch drain used

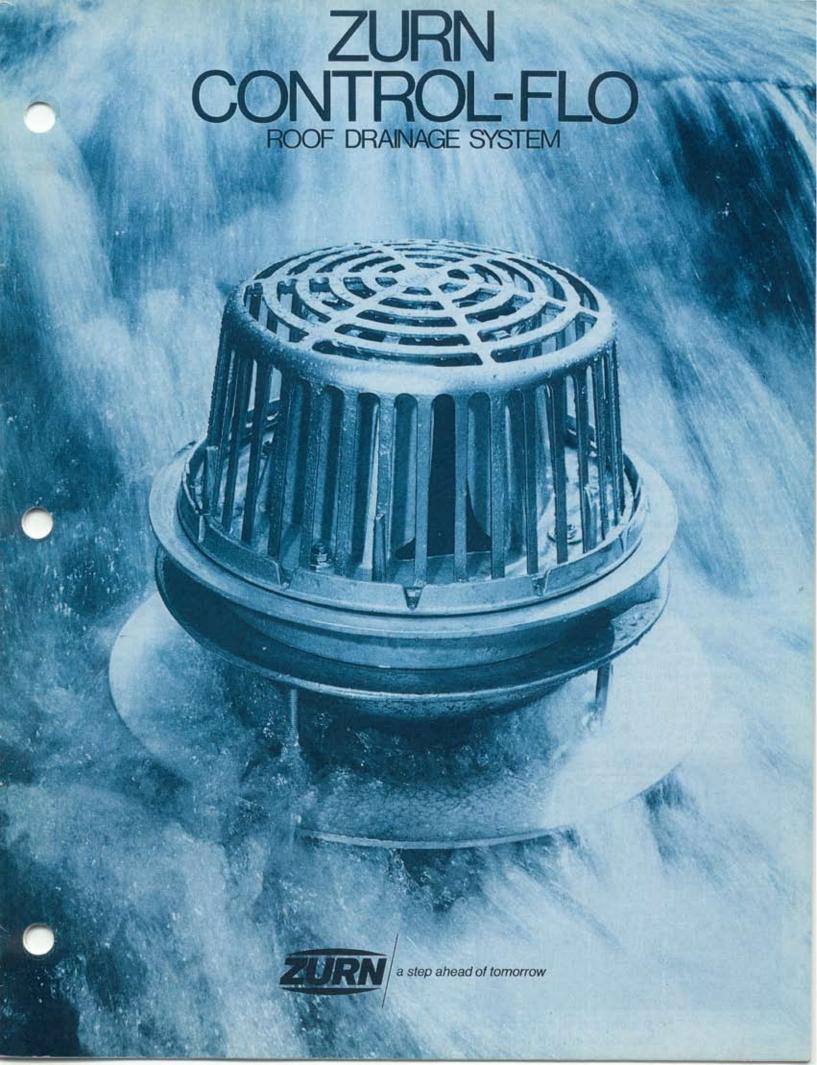
lina	Resu	lte

	5yr	100yr	Available
Qresult (m ³ /s)	0.0033	0.0050	-
Depth (m)	0.072	0.109	0.15
Volume (m3)	3	7	12
Draintime (hrs)	0.3	0.5	-

						Modif	onal Method Calculations						
5 yr Intensity		$I = a/(t + b)^c$		a =	998.071				100 yr Intensity		$I = a/(t + b)^{c}$	a =	1735.688
City of Ottawa				b =	6.053				City of Ottawa			b =	6.014
,				C =	0.814							C =	0.820
Area (ha):	0.031						Are	ea (ha):	0.031				
C:	0.90							C:	1.00				
tc	I (5 yr)	Qactual	-	Qrelease	Qstored	Vstored	to	С	l (100 yr)	Qactual	Qrelease	Qstored	Vstored
(min)	(mm/hr)	(L/s)		(L/s)	(L/s)	(m ³)	(m	in)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2		8.1	3.3	4.8	2.9	<u>, </u>	10	178.6	15.4	5.0	10.4	6.3
15	83.6		6.5	3.3	3.2	2.9		15	142.9	12.3	5.0	7.3	6.6
20	70.3		5.4	3.3	2.2	2.6		20	120.0	10.3	5.0	5.4	6.4
30	53.9		4.2	3.3	0.9	1.6		30	91.9	7.9	5.0	3.0	5.3
40	44.2		3.4	3.3	0.2	0.4		40	75.1	6.5	5.0	1.5	3.6
50	37.7		2.9	2.9	0.0	0.0		50	64.0	5.5	5.0	0.5	1.6
60	32.9		2.6	2.6	0.0	0.0		60	55.9	4.8	4.8	0.0	0.0
70	29.4		2.3	2.3	0.0	0.0		70	49.8	4.3	4.3	0.0	0.0
80	26.6		2.1	2.1	0.0	0.0		80	45.0	3.9	3.9	0.0	0.0
90	24.3		1.9	1.9	0.0	0.0		90	41.1	3.5	3.5	0.0	0.0
100	22.4		1.7	1.7	0.0	0.0		100	37.9	3.3	3.3	0.0	0.0
110	20.8		1.6	1.6	0.0	0.0		110	35.2	3.0	3.0	0.0	0.0
120	19.5		1.5	1.5	0.0	0.0		120	32.9	2.8	2.8	0.0	0.0
130	18.3		1.4	1.4	0.0	0.0		130	30.9	2.7	2.7	0.0	0.0
140	17.3		1.3	1.3	0.0	0.0		140	29.2	2.5	2.5	0.0	0.0
	Depth	Head	1	Discharge	Vreq	Vavail	ge	Γ	Depth	Head	Discharge	Vreq	Vavail
	(mm)	(m)		(L/s)	(m ³)	(m ³)			(mm)	(m)	(L/s)	(m ³)	(m ³)

Appendix B: Culvert Design Sheet June 3, 2015

Appendix B: Culvert Design Sheet


96	BAC REVISION		TERRAC	CE	-		DESIGI	ORM N SHE f Ottawa)			DESIGN S DESIGN S I = a /(tc+l		_	Years(Cu	lverts)			
Stantec	DATE: DESIGNEI CHECKED		6/4/20 SG(DC	G	FILE:		160401069				a= b= c=	1569.58 6.014 0.8200	MANNING'S TIME OF EN		0.024 10	CMP (unpaved) min		
LOCATIO	ON						DRAINAGE AREA							Cl	ULVERT PRO	PERTIES		
STREET	FROM	ТО	AREA (ha)	С	ACCUM. AREA	A x C (ha)	ACCUM. AxC (ha)	T of C (min)	l (mm/h)	Q* (I/s)	LENGTH (m)	Pipe Size (mm)	MATERIAL	SLOPE	Q _{CAP} (FULL) (L/s)	Q _{ACT} Q _{CAP} % FULL	VELOCITY (m/s)	TIME OF FLOW (min)
Bachman Terrace *NOTE: Peak flow rate in	A ncludes 5.88	B L/s max	0.185 roof releas	0.55 e rate fr	0.185 om Block :	0.10 2	0.102	10.00 10.30	161.47	51.52	8.0	400.0	CSP	0.25	56.40	91.34%	0.45	0.30

1 of 1

Appendix C: Zurn Roof Drain Data June 3, 2015

Appendix C: Zurn Roof Drain Data

THE ZURN "CONTROL-FLO CONCEPT"

Originally, Zurn introduced the scientifically-advanced "Control-Flo" drainage principle for dead-level roofs. Today, after thousands of successful applications in modern, large dead-level roof areas, Zurn engineers have adapted the comprehensive "Control-Flo" data to sloped roof areas.

WHAT IS "CONTROL-FLO"?

It is an advanced method of removing rain water off deadlevel or sloped roofs. As contrasted with conventional drainage practices, which attempt to drain off storm water as quickly as it falls on the roof's surface, "Control-Flo" drains the roof at a controlled rate. Excess water accumulates on the roof under controlled conditions . . . then drains off at a lower rate after a storm abates.

CUTS DRAINAGE COSTS

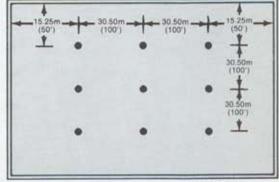
Fewer roof drains, smaller diameter piping, smaller sewer sizes, and lower installation costs are possible with a "Control-Flo" drainage system because roof areas are utilized as temporary storage reservoirs.

REDUCES PROBABILITY OF STORM DAMAGE

Lightens load on combination sewers by reducing rate of water drained from roof tops during severe storms thereby reducing probability of flooded sewers, and consequent backflow into basements and other low areas.

THANKS TO EXCLUSIVE ZURN "AQUA-WEIR" ACTION

Key to successful "Control-Flo" drainage is a unique, scientifically-designed weir containing accurately calibrated notches with sides formed by parabolic curves which provide flow rates directly proportional to the head. Shape and size of notches are based on predetermined flow rates, and all factors involved in roof drainage to assure permanent regulation of drainage flow rates for specific geographic locations and rainfall intensities.


Dimensions and other measurements given in metric and imperial forms.

DEFINITION

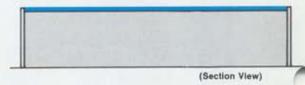

DEAD LEVEL ROOFS

DIAGRAM "A"

A dead-level roof for purposes of applying the Zurn "Control-Flo" drainage principle is one which has been designed for zero slope across its entire surface. Measurements shown are for maximum distances.

(Plan View)

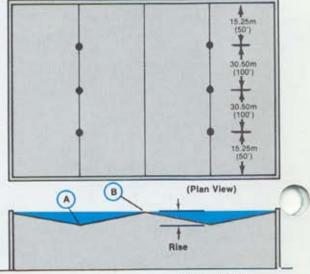
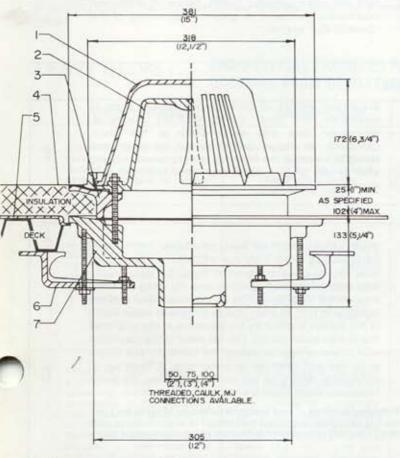

SLOPED ROOFS

DIAGRAM "B"

A sloped roof is one designed commonly with a shallow slope. The Zurn "Control-Flo" drainage system can be applied to any slope which results in a total rise up to 152mm(6").


The total rise of a roof as calculated for "Control-Flo" application is defined as the vertical increase in height in inches, from the low point or valley of a sloping roof (A) to the top of the sloping section (B). (Example: a roof that slopes 3mm(1/8") per foot having a 7.25m(24') span would have a rise of 7.25m x 3mm or 76mm (24' x 1/8" or 3")).

Measurements shown are for maximum distances

Economical Roof Drainage Installations

SPECIFICATION DATA

PART

DESCRIPTION

- I POLY-DOME
- 2 CONTROL FLO WEIR WITH INTEGRAL CLAMP COLLAR AND GRAVEL GUARD
- 3 E-EXTENSION WITH GASKET (WHEN SPECIFIED)
- 4 ROOFING MEMBRANE(BY OTHERS)
- 5 R-ROOF SUMP RECEIVER (WHEN SPECIFIED)
- 6 C-UNDERDECK CLAMP (WHEN SPECIFIED).
- 7 BODY

Z-105-5-ERC "Control-Flo" Dura-Coated Cast Iron Body, Aluminum Parabolic Weir With Integral Clamping Collar And Gravel Guard, Poly Dome. Extension, Roof Sump Receiver, Under Deck Clamp, Aluminum Dome Available When Specified.

ROOF DESIGN RECOMMENDATIONS

Basic roofing design should incorporate protection that will prevent roof overloading by installing adequate overflow scuppers in parapet walls.

GENERAL INFORMATION

The "Control-Flo" roof drainage data is tabulated for four areas (232.25m²(2500 sq. ft.), 464.50m²(5000 sq. ft.), 696.75m²(7500 sq. ft.), 929m²(10,000 sq. ft.) notch areas ratings) for each locality. For each notch area rating the maximum discharge in L.P.M.(G.P.M.) — draindown in hours, and maximum water depth at the drain in inches for a dead level roof — 51mm(2 inch) rise — 102mm(4 inch) rise and 152mm(6 inch) rise — are tabulated. The rise is the total change in elevation from the valley to the peak. Values for areas, rise or combination thereof other than those listed, can be arrived at by extrapolation. All data listed is based on the fifty-year return frequency storm. In other words the maximum conditions as listed will occur on the average of once every fifty years.

NOTE: The tabulated "Control-Flo" data enables the individual engineer to select his own design limiting condition. The limiting condition can be draindown time, roof load factor, or maximum water depth at the drain. If draindown time is the limiting factor because of possible freezing conditions, it must be recognized that the maximum time listed will occur on the average of once every 50 years and would most likely be during a heavy summer thunder storm. Average winter drain down times would be much shorter in duration than those listed.

GENERAL RECOMMENDATIONS

On sloping roofs, we recommend a design depth referred to as an equivalent depth. An equivalent depth is the depth of water attained at the drains that results in the same roof stresses as those realized on a dead-level roof. In all cases this equivalent depth is almost equal to that attained by using the same notch area rating for the different rises to 152mm(6"). With the same depth of water at the drain the roof stresses will decrease with increasing total rise. Therefore, it would be possible to have a depth in excess of 152mm(6") at the drain on a sloping roof without exceeding stresses normally encountered in a 152mm(6") depth on a dead-level roof. However, it is recommended that scuppers be placed to limit the maximum water depth on any roof to 152mm(6") to prevent the overflow of the weirs on the drains and consequent overloading of drain piping. In the few cases where the data shows a flow rate in excess of 136 L.P.M.(30 G.P.M.) if all drains and drain lines are sized according to recommendations, and the one storm in fifty years occurs, the only consequence will be a brief flow through the scuppers or over-flow drains.

NOTE: An equivalent depth is that depth of water attained at the drains at the lowest line or valley of the roof with all other conditions such as notch area and rainfall intensity being equal. For Toronto, Ontario a notch area rating of 464.50m²(5,000 square feet) results in a 74mm(2.9 inch) depth on a dead level roof for a 50-year storm. For the same notch area and conditions, equivalent depths for a 51mm(2"), 102mm(4") and 152mm(6") rise respectively on a sloped roof would be 86mm(3.4"), 104mm(4.1") and 124mm(4.9"). Roof stresses will be approximately equal in all cases.

ZURN Control-Flo Drain Selection is Quick and Easy.

The exclusive Zurn "Selecta-Drain" Chart (pages 8, 9, 10, 11) tabulates selection data for 34 localities in Canada. Proper use of this chart consitutes your best assurance of sure, safe, economical application of Zurn "Control-Flo" systems for your specific geographical area. If the "Selecta-Drain" Chart does not cover your

specific design criteria, contact Zurn Drainage and Control Systems Ltd., Weston, Ontario, for additional data for your locality. Listed below is additional information pertinent to proper engineering of the "Control-Flo" system.

ROOF USED AS TEMPORARY RETENTION

The key to economical "Control-Flo" is the utilization of large roof areas to temporarily store the maximum amount of water without overloading average roofs or creating excessive draindown time during periods of heavy rainfall. The data shown in the "Selecta-Drain" Chart enables the engineer to select notch area ratings from 232.25m2(2,500 ft.2) to 929m2(10,000 ft.2) and to accurately predict all other design factors such as maximum roof load, L.P.M. (G.P.M.) discharge, draindown time and water depth at the drain. Obviously, as design factors permit the notch area rating to increase the resulting money saved in being able to use small leaders and drain lines will also increase.

ROOF LOADING AND RUN-OFF RATES

The four values listed in the "Selecta-Drain" Chart for notch area ratings for different localities will normally span the range of good design. If areas per notch below 232.25m2(2,500 ft.2) are used considerable economy of the "Control-Flo" concept is being lost. The area per notch is limited to 929m2(10,000 square feet) to keep the draindown time within reasonable limits. Extensive studies show that stresses due to water load on a sloping roof for any fixed set of conditions are very nearly the same as those on a dead-level roof. A sloping roof tends to concentrate more water in the valleys and increase the water depth at this point. The greater

depth around the drain leads to a faster run-off rate, particularly a faster early run-off rate. As a result, the total volume of water stored on the roof is less, and the total load on the sloping roof is less. By using the same area on the sloping roof as on the dead-level roof the increase in roof stresses due to increased water depth in the valleys is offset by the decrease in the total load due to less water stored. The net result is the maximum roof stress is approximately the same for any single span rise and fixed set of conditions. A fixed set of conditions, would be the same notch area, the same frequency storm, and the same locality.

SPECIAL CONSIDERATIONS FOR STRUCTURAL SAFETY: Normal practice of roof design is based on 18kg(40 lbs.) per 929cm2 (square ft.) (subject to local codes and by-laws.) Thus it is extremely important that design is in accordance with normal load factors so deflection will be slight enough in any bay to prevent progressive deflection which could cause water depths to load the roof beyond its design limits.

ADDITIONAL NOTCH RATINGS

The "Selecta-Drain" Chart along with Tables I and II enables the engineer to select "Control-Flo" Drains and drain pipe sizes for most Canadian applications. These calculations are computed for a proportional flow weir that is sized to give a flow of 23 L.P.M. (5 G.P.M.) per inch of head. The 23 L.P.M. (5 G.P.M.) per inch of head. notch opening, is selected as the basis of design as it

offers the most economical installation as applied to actual rainfall experienced in Canada.

Should you require design criteria for locations outside of Canada, or for special project applications please contact Zurn Drainage and Control Systems Ltd., Weston, Ontario.

LEADER AND DRAIN PIPE SIZING

Since all data in the "Selecta-Drain" Chart is based on the 50-year storm it is possible to exceed the water depth listed in these charts if a 100-year or 1000-year storm would occur. Therefore, for good design it is recommended that scuppers or other methods be used to limit water depth to the design depth and tables I and II be used to size the leaders and drain pipes. If the roof

is capable of supporting more water than the design depth it is permissible to locate the scuppers or other overflow means at a height that will allow a greater water depth on the roof. However, in this case the leader and drain pipes should be sized to handle the higher flow rates possible based on a flow rate of 23 L.P.M. (5 G.P.M.) per inch of depth at the drain.

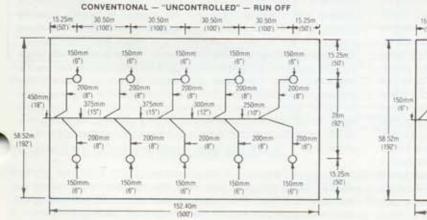
PROPER DRAIN LOCATION

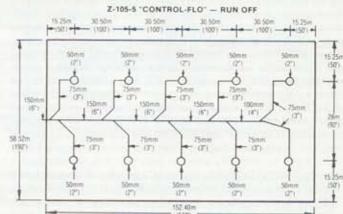
The following good design practice is recommended for selecting the proper number of "Control-Flo" drains for a given area. On dead-level roofs, drains should be located no further than 15.25m(50 feet) from edge of roof and no further than 30.50m(100 feet) between drains. See diagram "A" page 2. On sloping roofs,

drains should be located in the valleys at a distance no greater than 15.25m(50 feet) from each end of the valleys and no further than 30.50m(100 feet) between drains. See diagram "B" page 2. Compliance with these recommendations will assure good run off regardless of wind direction.

Saves Specification Time, Assures Proper Application

QUICK, EASY SELECTION


Using the "Selecta-Drain" Chart (pages 8, 9, 10, 11) in combination with the steps and examples appearing below, should save you countless hours in engineering specification time. This vast compilation of data is related to the proper selection of drains for 34 cities. All cities in alphabetical order by Provinces. If a specific city does not appear in this tabulation, choose the city nearest your area and select the proper drain using these factors.


3 EASY STEPS ...

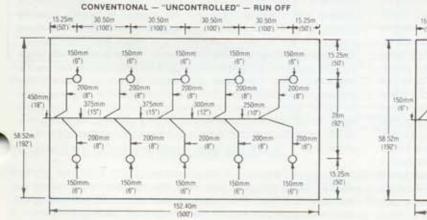
AND 3 TYPICAL EXAMPLES FOR APPLICATION OF SURE, SCIENTIFIC CONTROL OF DRAINAGE FROM DEAD-LEVEL AND SLOPING ROOFS WITH THE ZURN CONCEPT

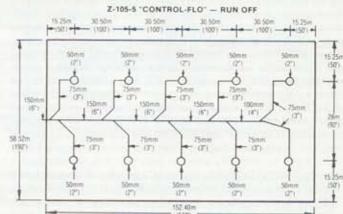
	TORONTO, ONTARIO	DEAD-LEVEL ROOF	102mm(4 INCH) SLOPE	152mm(6 INCH) SLOPE
1	Determine total roof area or individual areas when roof is divided by expansion joints or peaks in the case of sloping roof.	Roof Area: 58.52m x 152.40m = 8918.40m ² (192ft x 500ft = 96,000 sq.ft.) (See Z-105-5 layout bottom this page.)	3 Individual Roof Areas: 19.50m x 152.40m = 2972.80m ² (64ft x 500ft = 32,000 sq.ft.) Valleys 152.40m (500 ft.) long 3 x 2972.80 = 8918.40m ² (3 x 32,000 = 96,000 sq.ft.)	2 Individual Roof Areas. 29.87m × 152.40m = 4552m ² (98 ft. × 500 ft. = 49,000 sq. ft.) Valleys 152.40m (500 ft.) long 2 × 4552 = 9104m ² (2 × 49,000 = 98,000 sq.ft.)
2	Divide roof area or individual areas by Zurn Notch Area Rating selected to obtain the total number of notches required.	Zurn Notch Area Rating selected for Toronto=464.50m² (5,000 sq.ft.) from "Selecta- Drain" Chart, page 11. Total Roof Area= 8918.40m² (96,000 sq.ft.) Entire roof. 464.50m² (5,000 sq.ft.) notch area = 19.2 notches - USE 20	Zurn Notch Area Rating selected for Toronto=464.50m² (5,000 sq.ft.) from "Selecta- Drain" Chart, page 11. Total Roof Area=2972.80m² (32,000 sq.ft.) Each area. 464.50m² (5,000 sq.ft.) notch area = 6.4 notches - USE 7 PER AREA	Zurn Notch Area Rating selected for Toronto=464.50m² (5,000 sq.ft.) from "Selecta-Drain" Chart, page 11. Total Roof Area=4552m² (49,000 sq.ft.) Each area 464.50m² (5,000 sq.ft.) notch area = 9.8 notches - USE 10 PER AREA
3	Determine total number of drains required by not exceeding maximum spacing dimensions in the preceding instructions. See Diagrams "A" or "B", page 2. Divide total number of notches required to determine the number of notches per drain. Note maximum water depth at drain and use this dimension to determine scupper height. Maximum scupper height to be used is 152mm(6"). Use this flow rate to size leaders and drain lines. "See Diagram "A" page 2 for recom "See Diagram "B" page 2 for recom		"5 drains per area required located in the valleys 15.25m(50 ft.) from each end with 3 in the middle at 30.50m(100ft.) spacings. Two drains on ends with two notches—3 drains in middle one notch each for a total of 7 notches. Maximum flow rate 93 L.P.M. (20.5 G.P.M.) per notch. Leader size 50mm(2") for single notch weirs—75mm(3") notch weirs. Maximum water depth and scupper height is 104mm(4.1 inches). Requires 11 hrs. draindown time max. For drain, vertical, and horizontal pipe sizing data see Tables I and II on pages 6 and	"5 drains per area required located in the valleys 15.25m(50 ft.) from each end with 3 at 30.50m(100 ft.) spacing in the middle 10 notches are required therefore all drains must have two notches. Flow rate is 111 L.P.M. (24.5 G.P.M.) per notch. Size all leaders for 2 notch weirs 75mm(3 inch) pipe size required. Maximum water depth and scupper height is 124mm (4.9 inches). Requires 9 hrs. draindown time max. For drain, vertical, and horizontal pipe sizing data see Tables I and II on pages 6 and 7.

DEAD LEVEL ROOF 6mm(1/4") PER FT. SLOPE STORM DRAIN

Saves Specification Time, Assures Proper Application

QUICK, EASY SELECTION


Using the "Selecta-Drain" Chart (pages 8, 9, 10, 11) in combination with the steps and examples appearing below, should save you countless hours in engineering specification time. This vast compilation of data is related to the proper selection of drains for 34 cities. All cities in alphabetical order by Provinces. If a specific city does not appear in this tabulation, choose the city nearest your area and select the proper drain using these factors.


3 EASY STEPS ...

AND 3 TYPICAL EXAMPLES FOR APPLICATION OF SURE, SCIENTIFIC CONTROL OF DRAINAGE FROM DEAD-LEVEL AND SLOPING ROOFS WITH THE ZURN CONCEPT

	TORONTO, ONTARIO	DEAD-LEVEL ROOF	102mm(4 INCH) SLOPE	152mm(6 INCH) SLOPE
1	Determine total roof area or individual areas when roof is divided by expansion joints or peaks in the case of sloping roof.	Roof Area: 58.52m x 152.40m = 8918.40m ² (192ft x 500ft = 96,000 sq.ft.) (See Z-105-5 layout bottom this page.)	3 Individual Roof Areas: 19.50m x 152.40m = 2972.80m ² (64ft x 500ft = 32,000 sq.ft.) Valleys 152.40m (500 ft.) long 3 x 2972.80 = 8918.40m ² (3 x 32,000 = 96,000 sq.ft.)	2 Individual Roof Areas. 29.87m × 152.40m = 4552m ² (98 ft. × 500 ft. = 49,000 sq. ft.) Valleys 152.40m (500 ft.) long 2 × 4552 = 9104m ² (2 × 49,000 = 98,000 sq.ft.)
2	Divide roof area or individual areas by Zurn Notch Area Rating selected to obtain the total number of notches required.	Zurn Notch Area Rating selected for Toronto=464.50m² (5,000 sq.ft.) from "Selecta- Drain" Chart, page 11. Total Roof Area= 8918.40m² (96,000 sq.ft.) Entire roof. 464.50m² (5,000 sq.ft.) notch area = 19.2 notches - USE 20	Zurn Notch Area Rating selected for Toronto=464.50m² (5,000 sq.ft.) from "Selecta- Drain" Chart, page 11. Total Roof Area=2972.80m² (32,000 sq.ft.) Each area. 464.50m² (5,000 sq.ft.) notch area = 6.4 notches - USE 7 PER AREA	Zurn Notch Area Rating selected for Toronto=464.50m² (5,000 sq.ft.) from "Selecta-Drain" Chart, page 11. Total Roof Area=4552m² (49,000 sq.ft.) Each area 464.50m² (5,000 sq.ft.) notch area = 9.8 notches - USE 10 PER AREA
3	Determine total number of drains required by not exceeding maximum spacing dimensions in the preceding instructions. See Diagrams "A" or "B", page 2. Divide total number of notches required to determine the number of notches per drain. Note maximum water depth at drain and use this dimension to determine scupper height. Maximum scupper height to be used is 152mm(6"). Use this flow rate to size leaders and drain lines. "See Diagram "A" page 2 for recom "See Diagram "B" page 2 for recom		"5 drains per area required located in the valleys 15.25m(50 ft.) from each end with 3 in the middle at 30.50m(100ft.) spacings. Two drains on ends with two notches—3 drains in middle one notch each for a total of 7 notches. Maximum flow rate 93 L.P.M. (20.5 G.P.M.) per notch. Leader size 50mm(2") for single notch weirs—75mm(3") notch weirs. Maximum water depth and scupper height is 104mm(4.1 inches). Requires 11 hrs. draindown time max. For drain, vertical, and horizontal pipe sizing data see Tables I and II on pages 6 and	"5 drains per area required located in the valleys 15.25m(50 ft.) from each end with 3 at 30.50m(100 ft.) spacing in the middle 10 notches are required therefore all drains must have two notches. Flow rate is 111 L.P.M. (24.5 G.P.M.) per notch. Size all leaders for 2 notch weirs 75mm(3 inch) pipe size required. Maximum water depth and scupper height is 124mm (4.9 inches). Requires 9 hrs. draindown time max. For drain, vertical, and horizontal pipe sizing data see Tables I and II on pages 6 and 7.

DEAD LEVEL ROOF 6mm(1/4") PER FT. SLOPE STORM DRAIN

ZURN Select The Proper Vertical Drain Leaders

ROOF DRAINAGE DATA

The flow rate for any design condition can be easily read from the data contained on the following pages; the tabulations shown below (and on the opposite page) can be used to simplify selection of drain line sizes.

TABLE 1 -SUGGESTED RELATION OF DRAIN OUTLET AND VERTICAL LEADER SIZE TO ZURN CONTROL-FLO ROOF DRAINS (BASED ON NATIONAL PLUMBING CODE ASA-A40.8 DATA ON VERTICAL LEADERS).

	Max. Flow p	er Notch in L.	P.M. (G.P.N			
No. of Notches		Pipe Size				
in Drain	50mm (2")	75mm (3")	100mm (4")			
1	136° (30°)	-	-			
2	68 (15)	136* (30*)	140			
3	45 (10)	136° (30°)	-			
1 4	-	105 (23)	136° (30°)			
5	-	82 (18)	136° (30°)			
6	-	68 (15)	136° (30°)			

^{&#}x27;Maximum flow obtainable from 1 notch with 152mm(six inch) water depth at

Table 1 should be used to select vertical drain leaders which at the same time establishes the drain outlet size. This table illustrates the maximum flow per notch in L.P.M. (G.P.M.) Since the Z-105-5 drain is available with a minimum of one and a maximum of six notches, calculations have already been made and are listed in this table for any quantity of weir notch openings established in your design. It was determined ten drains with two notches each weir would be required in Dead-Level Roof example on page 5: A 66 L.P.M. (14.5 G.P.M.) discharge per notch flow rate was also established

Once this design criteria has been determined it will be the key to the proper selection of all drain outlet sizes, vertical and horizontal storm drain sizes in Table I and II. Enter the column "Number of Notches in Drain", Table I, read down the column to the figure 2 which indicates two notches in weir, then read across until you reach a figure equal to or closest figure in excess of 66 L.P.M. (14.5 G.P.M.) You will find fifteen in the column under 50mm(2") which represents the pipe size. Therefore all drain outlets and vertical leaders are 50mm(2") size.

Let us digress for a moment assuming a specific structure requires a total of six drains each containing a weir with a different number of notches. One with 1, one with 2, etc. Table 1 discloses the pipe size for one notch is 50mm(2"), two notch is 50mm(2"), three notch is 75mm(3"), four notch is 75mm(3"), five notch is 75mm(3") and six notch is 75mm(3") as they all equal or closely exceed the 66 L.P.M. (14.5 G.P.M.) design.

NOTE: Although pipe size calculations should be based on accumulated flow rate, local by-laws should be referred to for minimum pipe size requirements and roof drain spacing.

Table II should be used to select horizontal storm drain piping. Use the same flow rate 66 L.P.M. (14.5 G.P.M.) used to establish the vertical leaders to size the storm drainage system and main storm drain. Let us assume the ten drains each with two notch weirs were actually on the roof in two separate lines of five drains each and joined at a common point before leaving the building. Since Table II includes 3mm(1/8"), 6mm(1/8") and 13mm(1/8") per foot slope, let us use 6mm("4") as our basis for selection which will take us to the centre section. Starting with the first of five drains we enter the extreme left column in Table II and read down to the figure 2 since this drain has two notches in weir, read across horizontally and the size of first section of horizontal storm drain is 75mm(3") between 1st and 2nd drain, return to left hand column proceed reading down until you reach figure 4 then read across horizontally and the pipe size will be 100mm(4") between 2nd and 3rd drain, 100mm(4") between 3rd and 4th and 125mm(5") (if available) between 4th and 5th. If not available use 150mm(6") (You may be tempted to use 100m(4") since the capacity is close. We recommend you go to the larger size.) Pipe

size leaving 5th drain would be 150mm(6"). The same sizing would hold true for the second line of five drains. Since both columns of five drains each are being joined together before leaving the building there will be a total of twenty notches discharging into the main building storm sewer. Enter left hand column Table II, read down until you reach the figure twenty, then read across horizontally to the 6mm(1/4") per 305mm(foot) slope column and you will see a 150mm(6") storm drain will handle the job adequately. The same procedure should be followed for sloped roof installations. The above method of sizing was done to better acquaint you with Table II and its use. The more economical and practical way of laying out and installing this same job is illustrated in the control-flo layout shown on bottom of page 5.

NOTE: Although pipe size calculations should be based on accumulated flow rates, local by-laws should be referred to for minimum pipe size requirements and roof drain spacing.

Select Proper Horizontal Storm Drain Piping

TABLE II —SUGGESTED RELATION OF HORIZONTAL STORM DRAIN SIZE TO ZURN CONTROL-FLO ROOF DRAINAGE

Total No. of Notches		MA	X. FLOW	PER NOT	TCH IN L	P.M. (6.)	P.M.I			MAX. FL	OW PER	NOTCH	N L.P.M	[E.P.M.]			MAX. FLO	W PER	NOTCH I	LP.M.	[E.P.M.]	
Discharging		Storm	Drain Siz	# 3mm(1	/8") per	305mm(t.) slope		St	orm Drai	n Size 6	mm('\-') ;	per 305m	nm(It.) sto	pe	Stor	m Drain	Size 13s	um(\v^*) p	er 305m	m(ft.) slo	pe
to Storm Drain	75 3"	100	125 (5°)	150	200	250	300	375 [15"]	75 [3"]	100	125 (5°)	150 (61)	200	250 10"	300 [12"]	75 (3°)	100	125	150	200	250	300
1	136*(30*)		-	-	-	-	-	-	136*(30*)	-	-	_	-	-	-	136*(30*)		-	_	-		-
2	77(17)	136+(30+		100	-	-	-	-3	109024	135*(30*)	-	-	1	-	2	136+00+1	-	2	12		1	-
3	50(11)	118(26)	136*(30*)	-	-	-	-	-	73(16)	136*(30*)	-	-	-	-	1	100(22)	136*(30*)	-	14			
4	36(8)	85(19)	136*(30*)		-	100		200	55(12)	127(29)	136+30+	-		0.00	-	40,177,227,0	136*(30*)	-	-		3	
- 5		58(15)	127-(28-)	136*(30*)	-	100	-	-	-	100(22)	136*(30*)	-	-	-	2	59(13)	136*(30*)		100		20	
6	_	59(13)	105(23)	136*(30*)	-		-			82/18	136+(30+	_	_	-		50(11)	118(26)	1361(301)			-	
7	-	50(11)	91(20)	136*(30*)		-	100	-	- 1	73/16		136+(30+)			2	3000	100(22)	136*(30*			1	
8	12	-	77(17)		136+30+	172		-	-	54(14)	114(25)	136+(30+)			2	2	86(19)	136+(30+				
9	-	-	68(15)		136*(30*)	-	-	-	_	55/121	100(22)	136+(30+)	-	-	_		77(17)	136+(30+		241	3	100
10		-	64(14)	111111111111111111111111111111111111111	136+(30+	105		2	2	-	91(20)	136+(30+			8	-	58(15)	200	136+30+		6	1
11	-	_	55(12)	100000000	136*(30*)	-	-	-	-	_	82(18)		136*00*	-	_		64(14)	114(25)	136 • (30 •			
12	-	-	-		136+(30+)	2		-	-	-	73(16)	0.0000000000000000000000000000000000000	136*(30*)			2	59(13)	105(23)	136 - (30 -		18	100
13	-	-	1	77(17)	136+00+		in.	-	2	-	68(15)	17/10/20/20/20	136*(30*)			-	55(12)	95(21)	136*(30*)		18	
14		-		73(16)	136*(36*)			900	-	-	64(14)	100(22)	136+(30+)	-000	-	-	-	8619	136+(30+)			
15	-	-	523	68(15)	136-130-	-	-	-	-	-	59(13)	95(21)	136+(30+)	-	-	-		82/18	13229	136*00*	- 22	
16	_	=	22	54(14)	136+00+	-	-	-	-	-	-	- 1375-317	136+(30+	-	-	-	-	THIT	123(27)	136*(30*)	_	
17	-	_	-	59(13)	127(28)	136*(30*)	100	-	-	- 040	-	82(18)	136*(30*)	-	22	2	-	73(16)		136*(30*)		
18	-	-	-	55(12)	118(26)	136*(30*)	-	-	-	-	-	100000000000000000000000000000000000000	136*(30*)			12	-	6815	109(24)	136*(30*)	2	
19				300	114(25)	136*(30*)	-	-		-		73(16)	136*(30*)			340	700	5414	105(23)	136+30+		
20	- 000	-	-	-	109(24)	136*(30*)	-	-	-	2	1	68(15)	136*(30*)		=	-		5913	100(22)	136*(30*)	2	
23	-	-	-	in.	91/20	136+(30+)	-	-	- 1	-	-	54(14)	132(29)	136+(30+)	-	-		55(12)	86/19	136*(30*)	-	-
25	-	-	-	-	86/19	136+(30+)	-	-	-	-	-	59(13)	10 edit (21)	136*(30*)			-	NATIONAL PROPERTY.	0.7731779	136*(30*)		
30	-	-	-	-	73(16)	1000000000000	136+00+	2	-		-	_	- PORTO (**)	136+(30+)	1	72	-	-	54(14)	135*(30*)	00	
35	-	-		-	59(13)	- CONTROL OF 1	136*(30*)	-					86(19)	136*(30*)	_	-	-	-	55(12)	C55685518	136-(30-)	1
40	-	-	22	-	55(12)	95(21)	136*(30*)	-	-	-	-	_	77(17)	136+(30+)	-	View.		2	-	Land To Street In	136*(30*)	
45	-	-	22	2	7	86(19)	136*(30*)	-	-	32	-	22	88(15)	123(27)	136+(30+)	12	_	_		100000000000000000000000000000000000000	136*(30*)	
50	-	-	-	-	-	77(17)		136+(30+)	-	-	-	-	59(13)		136+(30+)	-	-	-	-	111111111111111111111111111111111111111	136+00+	
55	-	-	-	-900	2	88(15)	114(25)	136*(30*)	0		-	=		100(22)	136+(30+)	100	-	-	-	1,000,000	136+(30+)	
60	-	-	-	-	_	54(14)	105(23)	136*(30*)	_	-	Tr.	-	-		136+(30+)	-	_	-	-	68(15)	127(28)	ALC: NO. 1
65	-	-	-	-	-	59(13)		136*(30*)	_	-	1		-	0.000	136*(30*)	-	-	-	-	64(14)	11826	220,000
70	-	_	-	-	2	55(12)	THE RESERVE TO A STATE OF THE PARTY OF THE P	136+(30+)	1			2	125	77/17)	127(2B)	72		3	7.0	5913		135*(30

^{&#}x27;Maximum flow obtainable from 1 notch with 152mm(six inch) water depth at drain.

TABLE III —TO BE USED WHEN ROOF STORM WATER RUN OFF AND OTHER SURFACE WATER RUN OFF IS BEING CONSOLIDATED INTO ONE COMMON MAIN HORIZONTAL STORM SEWER.

Flow capacity of vertical leaders litres per minute (gallons per minute)

Pipe Size	Maximum Capacity L.P.M.(G.P.M.)
50mm(2")	136(30)
75mm(3")	409(90)
100mm(4")	864(190)
†125mm(5")	1582(348)
150mm(6")	2550(561)

[†]In some areas 125mm(5") drainage pipe may not be available

Flow capacity of horizontal storm sewers litres per minute (gallons per minute).

Pipe	Sic	ope per 305mm(Per Foo	t)
Size	3mm(1/8")	6mm(¼")	13mm(%")
75mm(3")	163(36)	232(51)	327(72)
100mm(4°)	355(78)	505(111)	714(157)
†125mm(5")	646(142)	914(201)	1291(284)
150mm(6")	1050(231)	1487(327)	2100(462)
200mm(8")	2264(498)	3205(705)	4528(996)
250mm(10")	4100(902)	5796(1275)	8201(1804)
300mm(12")	6669(1467)	9437(2076)	13338(2934
375mm(15")	12120(2666)	17157(3774)	24239(5332)

Note: Although pipe size calculations should be based on accumulated flow rate, local by-laws should be referred to for minimum pipe size requirements and roof drain spacing.

SCUPPERS AND OVERFLOW DRAINS

Roofing members and understructures, weakened by seepage and rot resulting from improper drainage and roof construction can give away under the weight of rapidly accumulated water during flash storms. Thus, it is recommended, and often required by building codes, to install scuppers and overflow drains in parapet-type roofs. Properly selected and sized scuppers and overflow drains are vital to a well-engineered drainage system to prevent excessive loading, erosion, seepage and rotting.

	SQUARE METRE						TOT	AL RC	OF SL	OPE				
	(SQUARE)		DI	EAD-LEVEL		510	nm (2") RIS	SE	102	mm (4") RI	SE	152	mm (6") RI	SE
LOCATION	NOTCH AREA RATING	ROOF LOAD FACTOR KGS (LBS.)	L.P.M. (G.P.M.) Discharge	Draindown Time Hrs.	(In.) Water Depth	L.P.M. (G.P.M.) Discharge	Draindown Time Hrs.	mm (In.) Water Depth		Draindown Time Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	Draindown Time Hrs.	(in, Wate Depti
	(2,500)	4.7 (10.4)	45.5 (10)	7	51 (2)	57 (12.5)	6	63.5	72.5 (16)	4	81.5 (3.2)	86.5	3.2	96.5
Calgary,	465 (5,000)	5.9 (13)	57 (12.5)	17	63.5	66 (14.5)	14	73.5	82 (18)	9	91.5	97.5	7.5	109
Alberta	697 (7,500)	6.4	61.5 (13.5)	28	68.5 (2.7)	72.5 (16)	22	81.5 (3.2)	88.5 (19.5)	15	(3.9)	104.5	12	117
	929 (10,000)	6.8 (15.1)	66 (14.5)	38	73.5 (2.9)	77,5	31	86.5	93 (20.5)	22	104	109 (24)	17	12
	(2,500)	4.5 (9.9)	43 (9.5)	7	48.5 (1.9)	57 (12.5)	6	63.5	72.5 (16)	4	81.5 (3.2)	82 (18)	3	91. (3.6
Edmonton,	465 (5,000)	5.9 (13)	57 (12:5)	17	63.5	68 (15)	14.5	76 (3)	84 (18.5)	9,5	(3.7)	97.5	7.5	10:
Alberta	697 (7,500)	6.6 (14.5)	63.5	28	(2.8)	75 (16.5)	24	(3.3)	97.5 (21.5)	16	104	107 (23.5)	12	119.
	929 (10,000)	7.1 (15.6)	68 (15)	38	(3.0)	79.5 (17.5)	32	(3.5)	100	22	112	113.5	18	12
	(2,500)	3.8 (8.3)	36.5	6	40.5	38.5 (8.5)	4	(1.7)	52.5 (11.5)	3	58.5 (2.3)	61.5	2.3	68.1
Penticton.	465 (5,000)	4.0 (8.8)	38.5	13	(1.7)	41 (9)	9	45.5 (1.8)	57 (12.5)	6	63.5	68 (15)	5	(3.0
British Columbia	697 (7,500)	4.2 (9.3)	41 (9)	21	45.5 (1.8)	43 (9.5)	14.5	48.5 (1.9)	61.5	10.5	68.5	72.5 (16)	8	81.
	929 (10,000)	4.2 (9.3)	41 (9)	27	45.5 (1.8)	45.5 (10)	20	(2.0)	63.5	14	(2.8)	75 (16.5)	11	(3.3
	(2,500)	3.3 (7.3)	32	5.5	35.5 (1.4)	38.5 (8.5)	4	(1.7)	47.5 (10.5)	2.8	53.5	57 (12.5)	2	63.
Vancouver,	465 (5,000)	4.0 (8.8)	38.5 (8.5)	13	(1.7)	45.5 (10)	10	51	57 (12.5)	6	63.5	68 (15)	5	70
British Columbia	697 (7,500)	4.5 (9.9)	43 (9.5)	22	48.5 (1.9)	50 (11)	17	(2.2)	63.5	11	(2.8)	75 (16.5)	8.5	(3.3
	929 (10,000)	4.9 (10.9)	47.5 (10.5)	30	53.5	54.5	24	(2.4)	68	15	76 (3)	79.5 (17.5)	12	(3.5
	(2,500)	3.3 (7.3)	32 (7)	5.5	35.5 (1.4)	38.5 (8.5)	4	(1.7)	43 (9.5)	2.5	48.5	54.5	2	(2.4
Victoria,	465 (5,000)	4.0 (8.8)	38.5 (8.5)	13	(1.7)	45.5 (10)	10	51 (2)	54.5	6	(2.4)	68 (15)	5	7 (3
British Columbia	697 (7,500)	4.5 (9.9)	43 (9.5)	22	48.5 (1.9)	50 (11)	16	56 (2.2)	59 (13)	10	66 (2.6)	75 (16.5)	8	(3.3
	929 (10,000)	4.7	45.5 (10)	30	51 (2)	54.5	23	(2.4)	63.5	14	(2.8)	79,5 (17.5)	12	(3.5
	(2,500)	5.9 (13)	57 (12.5)	8		68 (15)	7	76 (3)	82 (18)	4.5		95.5 (21)	3.5	106.
Brandon,	465 (5,000)	7.3 (16.1)	73 (16)	20	81.5 (3.2)	84 (18.5)	17	94 (3.7)	97.5 (21.5)	11	109 (4.3)	113.5 (25)	8.5	12
Manitoba	697 (7,500)	8.3 (18.2)	79.5 (17.5)	32	(3.5)	93 (20.5)	27	104	107 (23.5)	19	119.5 (4.7)	125 (27.5)	15	139.
	929 (10,000)	9.0 (19.8)	86.5	43	96.5 (3.8)	100 (22)	38	112	113.5	26	127 (5.0)	132 (29)	21	147.
	232 (2,500)	4.7 (10.4)	45.5 (10)	7	51 (2)	57 (12.5)	6	63.5	75 (16.5)	4	(3.3)	86.5 (19)	3.2	96. (3.8
Winnipeg.	465 (5,000)	5.9 (13)	57 (12.5)	17	63.5	68 (15)	15	76 (3)	84 (18.5)	10	94 (3.7)	100 (22)	7.5	(4.4
Manitoba	697 (7,500)	6.6 (14.5)	63.5	28	(2.8)	75 (16.5)	24	(3.3)	93 (20.5)	16	104	107 (23.5)	12	119.
	929 (10,000)	7.1 (15.6)	68 (15)	39	76 (3)	82 (18)	32	91.5 (3.6)	97.5 (21.5)	22	109 (4.3)	113.5	17	12
14,15	232	6.4	62 (13.5)	9	68.5	70.5 (15.5)	7	78.5 (3.1)	79.5 (17.5)	4.5	(3.5)	91 (20)	3.5	101.
Campbellton,	465 (5,000)	9.0 (19.8)	86.5 (19)	22	96.5 (3.8)	91 (20)	18	101.5	102.5 (22.5)	12	115 (4.5)	113.5	9	12
New Brunswick	697 (7,500)	10.4 (22.9)	100 (22)	35	112 (4.4)	102.5 (22.5)	28	114.5 (4.5)	118 (26)	20	132 (5.2)	132 (29)	15	147.5
	929 (10,000)	11.3	109 (24)	47	122	111.5 (24.5)	40	124.5	127.5	29	142 (5.6)	141 (31)	22	157.1

	SOUARE						тот	AL R	OOFSL	OPE				
	(SQUARE)		D	EAD LEVE	L	51n	nm (2") RI	SE	102	2mm (4") RI	SE	152	mm (6") R	ISE
LOCATION	NOTCH AREA RATING	ROOF LOAD FACTOR KGS (LBS.)	L.P.M. (G.P.M.) Discharge	Draindown Time Hrs.	mm (In.) Water Depth	L.P.M.	Draindown Time Hrs.	mm (In.) Water Depth	L,P,M. (G.P.M.) Discharg	Draindown Time Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	Oraindown Time Hrs.	(In.) Water Depth
10.0	(2,500)	4.5 (9.9)	43 (9.5)	7	48.5 (1.9)	52.5 (11.5)	5.5	58.5	63.5	3.5	71 (2.8)	77.5 (17)	2.9	86.5 (3.4)
Chatham,	(5,000)	5.7 (12.5)	54.5 (12)	16	(2.4)	63.5	13	(2.8)	77.5 (17)	9	86.5 (3.4)	91 (20)	7	101.5
New Brunswick	(7,500)	6.4 (14)	61.5 (13.5)	27	68.5 (2.7)	68 (15)	22	76 (3)	84 (18.5)	14	94	102.5	12	114.5
	929 (10,000)	(6.6 (14.6)	63.5	37	(2.8)	75 (16,5)	30	(3.3)	91 (20)	20	101.5	107 (23.5)	16	119.5
	(2,500)	(9.4) (9.4)	41 (9)	7	45.5 (1.8)	54.5 (12)	6	(2.4)	63.5	3.5	(2.8)	72.5 (16)	2.7	81.5
Moncton,	(5,000)	5.9	57 (12.5)	17	63.5	68 (15)	14	76 (3)	82 (18)	9	91.5	93 (20.5)	7	104
New Brunswick	697 (7,500)	6.6 (14.6)	63.5	28	(2.8)	79.5 (17.5)	24	(3.5)	93 (20.5)	16	104	104.5	12	(4.1)
	929 (10,000)	7.5 (16.6)	72.5 (16)	39	81.5	84 (18.5)	34	94	100	23	112	(23)	17	(4.6) 127 (5.0)
	(2,500)	5.7	54.5	8	(2.4)	57 (12.5)	6	63.5	75 (16.5)	4	(4.4)	86.5	3	96.5
Saint John,	465 (5,000)	7.5 (16.6)	72.5	20	81.5 (3.2)	79.5 (17.5)	16	(3.5)	95.5	11	(3.3)	104.5	8	(3.8)
New Brunswick	697 (7,500)	8.7	84 (18,5)	32	94 (3.7)	93 (20.5)	27	104	107	19	(4.2)	118	13.5	(4.6)
	929 (10,000)	9.7 (21.3)	93 (20.5)	44	104	104.5	38	(4.1)	(23.5)	27	(4.7)	127.5	20	(5.2)
	(2.500)	3.5	34 (7.5)	5.5	38	45.5 (10)	5	(4.6)	(25) 57 (12.5)	3.5	(5.0)	68	2.5	(5.6)
Gander,	465 (5,000)	4.7	45.5	15	(2.0)	57 (12.5)	12	(2.0) 63.5 (2.5)	72.5	8	(2.5)	(15)	6.5	(3.0)
Newfoundland	697 (7,500)	5.7	54.5	25	61	63.5	21	71	79.5 (17.5)	13.5	(3.2) 89 (3.5)	93	11	(3.6)
	929 (10,000)	6.1 (13.5)	59 (13)	35	(2.4)	70.5	29	78.5	84	19	94	100	15	(4.1)
	(2.500)	3.5	34 (7.5)	5.5	(2.6)	(15.5) 45.5	5	(3.1)	(18.5)	3,5	(3.7)	63.5	2.5	(4.4)
St. Andrews.	465 (5,000)	5.2	47.5 (10.5)	15	(1.5) 53.5 (2.1)	(10)	13	(2.0)	72.5	8	(2.6)	79.5	6	(2.8)
Newfoundland	697 (7,500)	5.9	57 (12.5)	26	63.5	(13)	21	(2.6)	(16)	14	91.5	(17.5) 88.5	10	(3.5)
	929 (10,000)	6.6	63.5	36	71	(14.5) 72.5	30	(2.9)	(18) 86.5	20	(3.6)	(19.5)	14.5	(3.9)
	232	(14.6)	57	8	63.5	(16)	7	(3.2)	(19) 77.5	4.5	(3.8)	(21) 86.5	3.2	96.5
St. John's,	465	(13) 8.5 (18.7)	(12.5) 82 (18)	21	91.5 (3.6)	91	18	101	100	11	(3.4)	(19)	9	(3.8)
Newfoundland	(5,000)	10.6 (23.4)	102.5 (22.5)	34	(3.6) 114.5 (4.5)	(20) 109 (24)	29	(4.0)	100 (22)	21	(4.4)	(25)	15	(5.0) 147.5
	(7,500)	11.8	113.5	48	1000000	LANG-YOU	43	122 (4.8)	122.5 (27)	33	(5.4)	132 (29)	24	(5.8)
	(10,000) 232 (2,500)	4.9	47,5	7.5	(5.0) 53.5	129.5 (28.5)	6.5	(5.7)	(31.5) 75	4	(6.3)	(33)	3	167.5 (6.6)
***************************************	465	(10.9)	(10.5)	18	1222000	61,5 (13.5)	15.5	(2.7)	(16.5) 88.5	10	(3.3)	(18.5)	8	(3.7)
Torbay, Newfoundland	(5,000)	7.3	70.5	29	3 /4/2007	75 (16.5)	25	(3.3)	(19.5)	17.5		102.5 (22.5)	13	114.5 (4.5)
	(7,500)	(16.1)	77.5	40	100 M / HILL	84 (18.5)	34		100 (22)	24	(4.4)	113.5 (25)	19	127 (5)
	929 (10,000) 232	(17,7)	57	8		88.5 (19.5)	7		107 (23.5)	4.5	(4.7)	122.5	3.2	(5.4)
L AMERICAN	(2,500) 465	(13)	(12.5) 82	21		68 (15)	18		77.5 (17)	11	(3.4)	86.5	9	96.5 (3.8)
Halifax, Nova Scotia	(5,000) 697	(18.7)	(18)	34	(3.6)	91 (20)	29		100	21	(4.4)	113.5 (25)		(5.0)
THE REST	(7,500) 929	10.6 (23.4)	102.5 (22.5)	48		109 (24)	43	anabate.	122.5 (27)	33	A REPORT OF THE	132 (29)	15	147.5 (5.8)
	(10,000)	11,8 (26)	113,5 (25)		(5.0)	129.5 (28.5)	390	(5.7)	143 (31.5)	33	160 (6.3)	150 (33)	24	167.5

	SQUARE, METRE,						TOTA	AL RO	OF SL	OPE				
	(SQUARE)		DE	AD-LEVEL		51n	ım (2") RIS	E	102	mm (4") RI	SE	1521	nm (6") RI	SE
LOCATION	NOTCH AREA RATING	ROOF LOAD FACTOR KGS (LBS.)	L.P.M. (G.P.M.) Discharge	Oraindown Time Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	Draindown Time Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	Oraindown Time Hrs.	mm (In.) Water Depth		Oraindown Time Hrs.	(In. Wate Depti
	(2,500)	4.3	41 (9)	6.5	45.5 (1.8)	45.5 (10)	5	51 (2.0)	57 (12.5)	3.5	63.5	68 (15)	2.5	(3.0
Sydney,	465	5.7 (12.5)	54.5	16	61 (2.4)	59 (13)	13	66 (2.6)	75 (16.5)	8	(3.3)	84 (18.5)	6.5	(3.7
Nova Scotia	697	6.4	61.5	28	68.5	68 (15)	22	76	84 (18.5)	14	94 (3.7)	97.5	11	10
	929 (10,000)	7.1 (15.6)	68 (15)	38	76 (3.0)	75 (16.5)	30	84	91 (20)	20	101.5	104.5	16	11
	232	6.4	61.5 (13.5)	9	68.5	70.5 (15.5)	7.5	78.5 (3.1)	82 (18)	4.5	91.5	91 (20)	3.5	101
Yarmouth.	465 (5,000)	8.3 (18.2)	79.5 (17.5)	21	89	88.5 (19.5)	18	99 (3.9)	104.5	12	117	116 (25.5)	9	129
Nova Scotia	697	9.4 (20.8)	91 (20)	34	101.5	102.5	29	114,5	118 (26)	21	132	132	15	147
	929	10.4	100	45	112	109 (24)	41	122 (4.8)	129.5 (28.5)	29	145	141 (31)	22	157
	(10,000)	(22.9)	47.5	7.5	53.5	61.5	6.5	68.5	75	4	84	88.5 (19.5)	3.5	91
	(2,500)	(10.9)	(10.5)	18	(2.1)	(13.5) 72.5	15	81.5	(16.5) 86.5	9.5	96,5	102.5	7.5	114
Thunder Bay, Ontario	(5,000)	(13.5)	63.5	28	(2.6)	77.5	24	(3.2) 86.5	93	16	(3.8)	109	13	(4
	929	7.1	68	38	(2.8)	(17)	33	(3.4)	97.5	22	109	116	18	129
	(10,000)	(15.6)	(15) 54.5	В	(3.0)	(18.5)	7	(3.7)	(21.5) 86.5	5	(4.3) 96.5	(25.5)	3.7	(5
	(2,500)	(12.5)	63.5	19	(2.4)	75	15.5	(2.8)	97.5	11	(3.8)	116	9	12
Guelph, Ontario	(5,000)	(14.6)	70.5	29	(2.8)	(16.5)	25	91.5	(21.5)	18	(4.3)	(25.5)	14	13
	(7,500)	(16.1)	(15.5)	40	(3.1)	(18)	34	(3.6)	109	26	(4.6)	(27.5)	20	14
	(10,000)	(17.7)	(17)	8.5	(3.4)	(18.5) 72.5	7.5	(3.7)	93	5	(4.8)	(29)	4	(5
	(2,500) 465	(13)	(12.5)	19	(2.5)	(16) 79.5	16	(3.2)	(20.5)	12	(4.1)	122.5	9	(4
Hamilton, Ontario	(5,000)	(14.6)	(14)	28	73.5	(17.5)	26	(3.5)	(23)	20	(4.6)	(27)	15	(5
	(7,500)	6.8 (15.1)	(14.5)	39	(2.9)	(18.5)	34	96.5	(24.5)	27	(4.9)	(28)	21	(1
	929 (10,000)	(15.6)	68 (15)	9	(3.0)	86.5	8	(3.8)	(25.5)	5	(5.1)	(29.5)	4	(6
	(2,500)	6.4 (14)	61.5 (13.5)	20	68.5	77.5	18	86.5		12	(4.0)	(24)	9.5	- (4
Kingston, Ontario	465 (5,000)	7.5 (16.6)	72.5 (16)	31	81.5 (3.2)	86.5	28	96.5	(23)	20	(4.6)	122.5	15	14
Cittario	697 (7,500)	8.5 (18.7)	82 (18)	- Carrie	91.5 (3.6)	93 (20.5)	38	104 (4.1)	111.5 (24.5)	27	124.5 (4.9)	132 (29)	21	(8
	929 (10,000)	8.7 (19.2)	86.5	42	96.5 (3.8)	97.5 (21.5)		109 (4.3)	116 (25.5)	5	129.5 (5.1)	68 (15)	4	15
	(2,500)	6.1 (13.5)	59 (13)	8.5	(2.6)	72.5 (16)	7.5	81.5 (3.2)	88.5 (19.5)		(3.9)	(23,5)	9.5	11
London,	465 (5,000)	7.1 (15.6)	68 (15)	20	76 (3.0)	84 (18.5)	17	(3.7)	102.5 (22.5)	12	114.5 (4.5)	122.5 (27)		(1
Ontario	697 (7,500)	8.0 (17.7)	77.5 (17)	30	86.5 (3.4)	88.5 (19.5)	27	(3.9)	109 (24)	19	122 (4.8)	129.5 (28.5)	15	(!
	929 (10,000)	8.5 (18.7)	82 (18)	41	91.5 (3.6)	91 (20)	36	101.5 (4.0)	113.5 (25)	27	127 (5.0)	134 (29.5)	21	(1
	(2,500)	5.7 (12.5)	54.5 (12)	8	61 (2.4)	68 (15)	7	76 (3.0)	86.5 (19)	5	96.5 (3.8)	100 (22)	3.8	(4
North Bay,	465 (5,000)	6.6 (14.6)	63.5 (14)	19	71 (2.8)	79.5 (17.5)	16	89 (3.5)	97.5 (21.5)	11	109 (4.3)	113.5 (25)	9	(8
Ontario	697 (7,500)	7.5 (16.6)	72.5 (16)	30	81.5 (3.2)	86.5 (19)	26	96.5 (3.8)	107 (23.5)	19	119.5 (4.7)	122.5 (27)	14	(5
	929 (10,000)	8.3 (18.2)	77.5 (17)	40	86.5 (3,4)	93 (20.5)	36	104	111.5 (24.5)	26	124.5 (4.9)		20	(1
	232	4.7 (10.4)	45.5 (10)	7	51 (2.0)	59 (13)	6.5	66	77.5	4.5	86.5	86.5	3.2	9(3
Ottawa,	465	5.9 (13)	57 (12.5)	17	63.5		14	76	86.5	10	96.5	100	7.5	(4
Ontario	697	6.4	61.5	27	68.5	75 (16.5)	23	84	93 (20.5)	16	104	107	12	11
	929 (10,000)	(14) 6.6 (14.6)	(13.5) 63.5 (14)	36	71 (2.8)	79.5 (17.5)	32	(3.5)	97.5	22	109	113.5	18	(5

		SQUARE						1017	t no	OF SLC					
4		METRE (SQUARE) FOOT		DEAD-LEVEL			51mm	(2") RIS	E	102n	nm (4") RI:	SE	152mm (6") RISE		
	LOCATION	NOTCH AREA RATING	ROOF LOAD FACTOR KGS (LBS.)	L.P.M. (G.P.M.) Discharge	Draindown Time Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	aindown me Hrs.	mm (In.) Water Depth	L.P.M. (G.P.M.) Discharge	Praindown Time Hrs.	mm (in.) Water Depth	L.P.M. (G.P.M.) Discharge		mm (In.) Water Depth
	St. Thomas, Ontario	(2,500)	5.7 (12.5)	54.5 (12)	8	61 (2.4)	68 (15)	7	76 (3.0)	86.5 (19)	5	96.5 (3.8)	104.5 (23)	4	117 (4.6)
		465 (5,000)	6.6 (14.6)	63.5	19	(2.8)	77,5	16	86.5 (3.4)	97.5 (21.5)	11	109 (4.3)	118 (26)	9	132 (5.2)
		697 (7,500)	7.1 (15.6)	68 (15)	29	76 (3.0)	82 (18)	26	91.5 (3.6)	102.5 (22.5)	18	114.5 (4.5)	125 (27.5)	15	139.5 (5.5)
		929 (10,000)	7.5 (16.6)	72.5 (16)	40	81.5 (3.2)	86.5 (19)	34	96.5 (3.8)	107 (23.5)	24	119.5 (4.7)	132 (29)	20	147.5 (5.8)
	Timmins, Ontario	(2,500)	4.3 (9.4)	41 (9)	7	45.5 (1.8)	57 (12.5)	6	63.5 (2.5)	72.5 (16)	4	81,5 (3.2)	86.5 (19)	3.3	96.5 (3.8)
		465 (5,000)	5.7 (12.5)	54.5 (12)	16	61 (2.4)	63.5 (14)	14	71 (2.8)	82 (18)	9	91.5 (3.6)	97.5 (21.5)	7.5	109 (4.3)
		697 (7,500)	6.4	61.5 (13.5)	27	68.5 (2.7)	70.5 (15.5)	22	78.5 (3.1)	86.5 (19)	15	96.5 (3.8)	104.5 (23)	12	117 (4.6)
		929 (10,000)	6.6 (14.6)	63.5 (14)	36	(2.8)	72.5 (16)	30	81.5 (3.2)	91 (20)	21	101.5 (4.0)	109 (24)	17	122 (4.8)
	Toronto, Ontario	(2,500)	5.7 (12.5)	54.5 (12)	8	61 (2.4)	66 (14.5)	7	73.5 (2.9)	82 (18)	4.5	91.5 (3.6)	97.5 (21.5)	3.5	109 (4.3)
		465 (5,000)	6.8 (15.1)	66 (14.5)	19	73.5 (2.9)	77.5 (17)	16	86.5 (3.4)	93 (20.5)	11	104 (4.1)	111.5 (24.5)	9	124.5 (4.9)
		697 (7,500)	8.0 (17.7)	77.5 (17)	30	86.5 (3.4)	84 (18.5)	26	94 (3.7)	100 (22)	18	112 (4.4)	120.5 (26.5)	14	134.5 (5.3)
		929 (10,000)	8.7 (19.2)	82 (18)	42	91.5 (3.6)	86.5 (19)	34	96.5 (3.8)	104.5 (23)	24	117 (4,6)	127.5 (28)	20	142 (5.6)
	Windsor, Ontario	232	6.1 (13.5)	59 (13)	8.5	66 (2.6)	70,5 (15.5)	7.5	78.5 (3.1)	84 (18.5)	4.5	(3.7)	107 (23.5)	4	119.5 (4.7)
		465 (5,000)	7.1 (15.6)	68 (15)	20	76 (3.0)	79.5 (17.5)	16	89 (3.5)	97.5 (21.5)	11	109 (4.3)	118 (26)	9	132 (5.2)
		697 (7,500)	8.0 (17.7)	77.5	30	86.5 (3.4)	86.5 (19)	26	96.5 (3.8)	107 (23.5)	18	119.5 (4.7)	125 (27.5)	15	139,5 (5.5)
		929 (10,000)	8.7 (19.2)	82 (18)	42	91,5 (3.6)	91 (20)	36	101.5	113.5 (25)	26	127 (5.0)	129.5 (28.5)	20	145 (5.7)
	Charlottetown, P.E.I.	(2,500)	4.9 (10.9)	47.5 (10.5)	7.5	53.5 (2.1)	57 (12.5)	6	63.5 (2.5)	68 (15)	3,8	76 (3.0)	79.5 (17.5)	3	(3.5)
		465 (5,000)	6.6 (14.6)	63.5 (14)	19	(2.8)	75 (16.5)	15.5	(3.3)	88,5 (19.5)	10	(3.9)	100 (22)	7.5	112 (4.4)
		697 (7,500)	7.8 (17.2)	75 (16.5)	31	(3.3)	86.5 (19)	26	96.5 (3.8)	102.5 (22.5)	18	114.5 (4.5)	113.5 (25)	13	(5.0)
		929 (10,000)	8.7 (19.2)	84 (18.5)	42	(3.7)	97.5 (21.5)	37	106.5	111.5 (24.5)	26	124.5 (4.9)	125 (27.5)	20	139.5 (5.5)
	Montreal, Quebec	(2,500)	5.2 (11,4)	50 (11)	7.5	(2.2)	61.5 (13.5)	7	68.5 (2.7)	79.5 (17.5)	4.5	(3.5)	97.5 (21.5)	3.5	109 (4.3)
		465 (5,000)	5.9 (13)	57 (12.5)	17	63.5	70.5 (15.5)	15	78.5 (3.1)	88.5 (19.5)	10	99 (3.9)	109 (24)	8	122 (4.8)
		697	6.1 (13.5)	59 (13)	27	66 (2.6)	72.5 (16)	23	81.5 (3.2)	93 (20.5)	16	104 (4.1)	113.5 (25)	13	127 (5.0)
		929 (10,000)	6.4	61.5 (13.5)	36	68.5 (2.7)	77.5 (17)	31	86.5 (3.4)	95.5 (21)	22	106.5 (4.2)	120.5 (26.5)	19	134.5 (5.3)
	Quebec City, Quebec	(2,500)	5.4 (12)	52,5 (11.5)	8	58,5 (2.3)	63.5 (14)	7	71 (2.8)	79.5 (17.5)	4.5	(3.5)	97.5 (21.5)	3,5	109 (4.3)
		465 (5,000)	6.4 (14)	61.5 (13.5)	18	68,5 (2.7)	70.5 (15.5)	15	78.5 (3.1)	84 (18.5)	10	(3.7)	104.5 (23)	8	117 (4.6)
		697	6.6 (14.6)	63.5	28	(2.8)	72.5 (16)	23	81.5 (3.2)	86.5 (19)	15	96.5 (3.8)	107 (23.5)	12	119.5 (4.7)
		929 (10,000)	7.1 (15.6)	68 (15)	37	76 (3.0)	77.5 (17)	31	86.5 (3.4)	88.5 (19.5)	20	(3.9)	109 (24)	17	122 (4.8)
	Regina, Saskatchewan	(2,500)	4.5 (9.9)	43 (9.5)	7	48.5 (1.9)	54.5 (12)	6	61 (2.4)	72.5 (16)	4	81.5 (3.2)	79.5 (17.5)	3	(3.5)
		465 (5,000)	6.4	61.5	18	68,5 (2.7)	68 (15)	14	(3.0)	86.5 (19)	10	96.5 (3.8)	97.5 (21.5)	7.5	109 (4.3)
		697 (7,500)	7.3 (16.1)	70.5 (15.5)	29	78.5 (3.1)	77.5 (17)	24	86.5 (3.4)	100 (22)	17	112 (4.4)	109 (24)	12	122 (4.8)
		929 (10,000)	8.3 (18.2)	79.5 (17.5)	40	89 (3.5)	82 (18)	32	91,5 (3.6)		24	117 (4.6)		18	132 (5.2)
1	Saskatoon, Saskatchewan	(232 (2,500)	4.0 (8.8)	38.5 (8.5)	6	43	57 (12.5)	6	63.5 (2.5)		3.8	73.5 (2.9)		2.8	86.5 (3.4)
1		465 (5,000)	5,7 (12.5)	54.5 (12)	16	61 (2.4)	The second second	14.5	76 (3.0)	all report from	9	91.5 (3.6)	THE RESERVE OF THE PERSON NAMED IN	7	106,5 (4.2)
		697 (7,500)	6.6 (14.6)	63.5 (14)	28	71 (2.8)	B428-8	24	(3.3)	100000000000000000000000000000000000000	16	101.5	SERVICE VIII	12	117 (4.6)
		929 (10,000)	7.1 (15.6)	68 (15)	38	76 (3.0)	2000	32	91.5 (3.6)	1000000	22	109	to account to the same	18	127 (5.0)

ZURN Control-Flo Roof Drains

the most advanced drainage control available, lets you design roof drainage systems with confidence

Check These ZURN Engineered Features

Large 955cm2(148 Square-Inch) Open Area Dome permits unobstructed flow. Dome is made of lightweight, shock-resistant aluminum and is bayonet-locked to gravel guard on weir. Aluminum Dome supplied when specified. Poly-Dome supplied standard.

Multi-weir Barrier provides flow rates directly proportional to the head. Available with 1 to 6 inverted parabolic notches to meet varying requirements.

Gravel-

Insulation

Integral Clamping-Collar at bottom of weir provides positive clamping action without puncturing roof or flashing. Also provides integral gravel guard.

Bayonet-type Locking Device on dome holds dome firmly in place with weir yet allows dome to be easily removed.

Broad Plane Surface combines with clamping collar to hold flashing and roofing felts in tight vise-like grip.

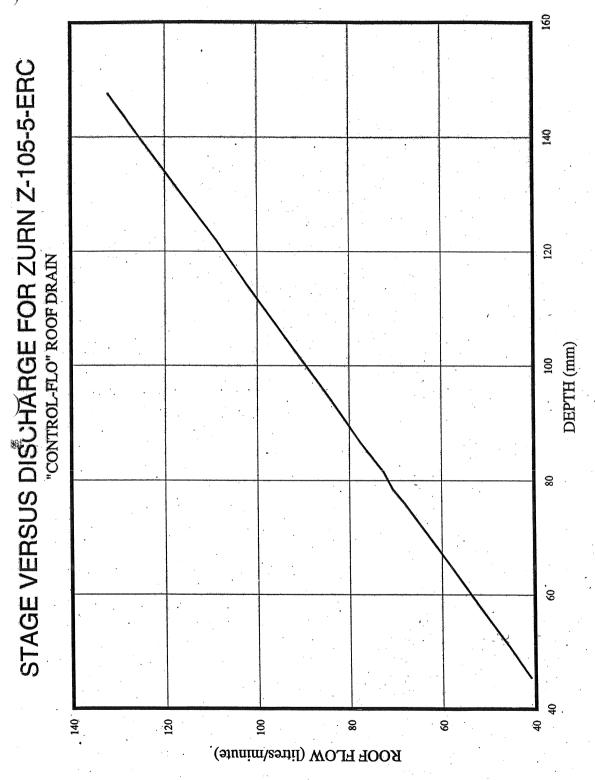
Roof Sump Receiver Distributes Weight of drain over 3716cm2(4 square feet). Supports the drain body and assures flush, roof-level placement.

Underdeck Clamp For Rigid Mounting stabilizes the entire assembly and renders it an integral part of the roof structure.

Waterproofing Membrane

Metal Roof Deck

Extension Sleeve Accommodates the Addition of Insulation to a roof deck. Height as required by thickness of insulation.


Threaded, caulk, M. J. connections available. (Z-105-5-ERC w/Aluminum dome illustrated.)

ZURN DRAINAGE AND CONTROL SYSTEMS LTD.

Telephone: (416) 741-8260

Fax: (416) 741-7477

Juicle Me Hood!

For Roof Load Factor of 232.4.7kg & notchase rating & 232 m² (highest Slow)

(Dead low) -> release rate = 0.0033 L/s/m² (roof area) or 0.2 L/min/m²)

(i.e. 45.5 L/min/232 m²)