

Hydrogeological Investigation & Terrain Analysis Proposed Newill Subdivision 2727 Carp Road Ottawa, Ontario

Submitted to:

1384341 Ontario Ltd 9094 Cavanagh Road Ashton, Ontario K0A 1B0

Hydrogeological Investigation & Terrain Analysis Proposed Newill Subdivision 2727 Carp Road Ottawa, Ontario

> August 21, 2019 Project: 61318.15

TABLE OF CONTENTS

1.0	INTF	ODUCTION	1
1.	1 B	ackground Information	1
1.		bjectives of Investigation	
2.0		IEW OF BACKGROUND INFORMATION	2
-			
2.		vailable Background Reports	
	2.1.1	Community Design Plan Report (City of Ottawa, 2004)	
	2.1.2 2.1.3	Groundwater Study Report (Dillon, 2004) Mississippi Valley Source Protection Region Report (MVSPR, 2011)	
	2.1.3	ARIP 191 Report	
	2.1.5	Carp Road Corridor Zoning Study	
	2.1.6	McGee Meadow Estates Subdivision	
2	2 L	and Use	7
	2.2.1	Technical Safety and Standards Authority (TSSA)	
	2.2.2	Permit to Take Water and Environmental Compliance Approvals	
	2.2.3	Former Carp Road Landfill (WESA 2014a & WESA 2014b)	9
2.	3 Т	opography	10
2.		rainage	
2.		Intario Ministry of Environment and Climate Change Water Well Records	
~ ~			
3.0		RAIN EVALUATION	
3.0 3.	1 F	egional Geology	11
	1 F 2 F	egional Geology ield Procedure	11 12
3.	1 F 2 F	egional Geology ield Procedure oil Conditions	11 12 13
3. 3.	1 F 2 F 3 S 3.3.1	egional Geology ield Procedure oil Conditions General	11 12 13 13
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2	egional Geology ield Procedure oil Conditions General Topsoil	11 12 13 13 13
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3	legional Geology ield Procedure oil Conditions General Topsoil Sand	11 12 13 13 13 13
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4	legional Geology ield Procedure oil Conditions General Topsoil Sand Silty Sand	11 12 13 13 13 13 13
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3	legional Geology ield Procedure oil Conditions General Topsoil Sand	11 12 13 13 13 13 13 13 13
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	legional Geology ield Procedure oil Conditions General Topsoil Sand Silty Sand Silty Clay	11 12 13 13 13 13 13 13 13 14
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	legional Geology ield Procedure oil Conditions General Topsoil Sand Silty Sand Silty Clay Clayey Silt Clay Sand and Gravel	11 12 13 13 13 13 13 13 14 14 14
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9	legional Geology ield Procedure oil Conditions	11 12 13 13 13 13 13 13 14 14 14
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10	legional Geology ield Procedure oil Conditions	11 12 13 13 13 13 13 13 13 14 14 14 14 14
3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10 4 G	Tegional Geology ield Procedure	11 12 13 13 13 13 13 13 13 14 14 14 14 14 14
3. 3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.1(4 C 3.4.1	legional Geology ield Procedure	11 12 13 13 13 13 13 13 13 14 14 14 14 14 15 15
3. 3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.1(4 C 3.4.1 3.4.2	legional Geology ield Procedure	11 12 13 13 13 13 13 13 13 14 14 14 14 14 15 15 16
3. 3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.1(4 G 3.4.1 3.4.2 3.4.3	legional Geology ield Procedure	11 12 13 13 13 13 13 13 13 14 14 14 14 14 15 15 16 17
3. 3. 3.	1 F 2 F 3 S 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.1(4 G 3.4.1 3.4.2 3.4.3	legional Geology ield Procedure	11 12 13 13 13 13 13 13 13 13 14 14 14 14 14 15 15 15 16 17 18

4.0	HY	DROGEOLOGICAL CONCEPTUAL MODEL	20
4.	1 I	Background Information	20
4.	2 3	Site Specific Geology	20
4.	3 I	Hydrogeological Conceptual Model	20
5.0	IMP	PACT ASSESSMENT	22
5.	1 1	Hydrogeological Sensitivity	22
5.	2 3	Sewage Disposal Systems	22
	5.2.1	Class IV Septic Sewage Disposal Systems	22
	5.2.2	2 Tertiary Septic Systems	23
5.	3 (Groundwater Impacts	24
	5.3.1	Three-Step Assessment: Step 1 - Lot Size Considerations	24
	5.3.2		
	5.3.3	Three-Step Assessment: Step 3 - Nitrate Dilution Calculations	25
5.	4 I	Background Nitrate Conditions	27
5.		Aquifer Vulnerability	
~ ~	0.0		
6.0	GR	OUNDWATER SUPPLY	30
6.	1 -	Test Well Construction	30
6.	2 I	Pumping Tests Field Procedure	31
	6.2.1	Water Level Measurements	32
	6.2.2		
	6.2.3	Groundwater Sampling	33
6.	3 -	Test Well Water Quality	34
	6.3.1		34
	6.3.2		
	6.3.3		
	6.3.4	I	
	6.3.5 6.3.6	3	
	6.3.7	5	
	6.3.8		
6.		Off-Site Water Quality	
0.	6.4.1	•	
	6.4.2		
	6.4.3	y	
6.		Pumping Test Analysis	
0.	6.5.1		
	6.5.2		
	6.5.3	, ,	
6.		Hydraulic Interference Effects	

iii

6.	.6.1	Bedrock Observation Wells4	
6.	.6.2	Overburden Observation Wells4	9
6.	.6.3	Interference Effects from Neighbouring Subdivisions4	9
	.6.4	Computer Model Simulations	
6.7	Long	g Term Well Yields5	51
7.0 0	CONCL	USIONS5	52
8.0 F	RECON	MENDATIONS	53
8.1	Wel	I Construction Recommendations5	53
8.2	Wel	I Ownership Recommendations5	54
8.3		tic System Construction Recommendations5	
8.4	Sep	tic Ownership Recommendations5	57
8.5	Site	Phasing and Performance Reviews	57
9.0 L		TIONS OF REPORT5	57
10.0 F	REFER	ENCES5	59

LIST OF TABLES

Table 2.1 – Summary of Land Use in Study Area	8
Table 2.2 – Summary of Water Well Records Search Results	10
Table 3.1 – Overburden Groundwater Conditions in Monitoring Wells	15
Table 3.2 – Bedrock Groundwater Conditions in Test Wells	16
Table 3.3 – Long Term Groundwater Level Measurements	17
Table 3.4 – Summary of Overburden Hydraulic Testing	18
Table 3.5 – Summary of Results for Overburden Hydraulic Testing	19
Table 3.6 – Calculated Overburden Hydraulic Conductivities	19
Table 4.1 – Framework of Hydrogeological Conceptual Model	21
Table 5.1 - Allowable Sewage Flow per Commercial Lot (assuming 40% hard surfaced area	and
tertiary treatment)	25
Table 5.2: Nitrate Concentrations in Overburden monitoring wells	28
Table 5.3: Nitrate Concentrations Summary (Northern Portion of Site)	28
Table 5.4: Nitrate Concentrations in Surface Water (refer to Figure 2 for sample locations)	29
Table 6.1 – Summary of Test Well Construction Details	31
Table 6.2 – Pump Test Flow Rates	32
Table 6.3 – Field Equipment Overview	33
Table 6.5 –2003 and 2016/2017 ODWS Exceedances Test Wells TW 1 and TW 4	38
Table 6.4 - Comparison of Test Well and Private Well Exceedances	40
Table 6.6 – Pumping Tests Details (2003)	41
Table 6.7 – Pumping Tests Details (2016-2017)	42
Table 6.8 – Summary of Aquifer Parameters	48

LIST OF FIGURES (FOLLOWING TEXT OF THIS REPORT)

Figure	1 –	Key	Plan
--------	-----	-----	------

- Figure 2 Detailed Site Plan
- Figure 3 Overburden Groundwater Flow Direction
- Figure 4 Hydrogeological Cross Section A A'
- Figure 5 Hydrogeological Cross Section B B'

LIST OF APPENDICES

Appendix A	Lot Development Plan
Appendix B	Mississippi Valley Conservation Authority (MVCA) Comments
Appendix C	Land Use Maps and Background Documents
Appendix D	Borehole and Test Pit Logs
Appendix E	Grain Size Analyses
Appendix F	Water Level Data
Appendix G	Hydraulic Testing – Monitoring Wells
Appendix H	Nitrate Dilution Calculations
Appendix I	Water Well Records and Certificates of Well Compliance
Appendix J	Drawdown and Transmissivity Estimates
Appendix K	Pumping Test Water Quality Summary (Field and Lab)
Appendix L	Laboratory Certificates of Analysis – Onsite Test and Monitoring Wells
Appendix M	Langelier Saturation Index (LSI) Calculations
Appendix N	Laboratory Certificates of Analysis – Private Wells
Appendix O	Well Interference Modelling

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by 1384341 Ontario Ltd to conduct an updated hydrogeological investigation and terrain evaluation at the site of a proposed residential/commercial subdivision located at 2727 Carp Road, Ottawa, Ontario.

The proposed residential and commercial development (hereafter referred to as 'the subject site') will be comprised of a 69.76-hectare (172.4 acre) parcel of land located at 2727 Carp Road in Ottawa, Ontario (refer to Kay Plan, Figure 1). The proposed development will consist of 78 residential lot and 4 commercial lots along Carp Road.

The majority of the subject site is currently vacant and portions of it have been previously used for agricultural purposes. There is also one commercial property located along Carp Road (northeastern portion of the subject site) which is used for trailer storage. Residential properties with private services along Sentinel Pine Way, William Mooney Drive and Huntley Manor are situated on the southeast, south and west borders of the site. The majority of the site consists of open fields with the exception of the southern portion where mature trees exist and in the northern portion where a stream bisects the northern portion of the site, flowing from northwest to southeast.

The proposed development at the subject site will consist of 78 residential estate lots serviced with on-site septic disposal systems and water supply wells. The proposed lots will be accessed by an internal roadway system and will have an average lot size of 0.84 hectares, with a minimum lot size of 0.4 hectares. The proposed layout of the development is shown on the proposed Lot Development Plan, prepared by Novatech Engineering Consultants Ltd. located in Appendix A.

1.1 Background Information

This current report is a revision of our previous hydrogeological investigation entitled "Hydrogeological Investigation and Terrain Analysis, Proposed Residential Subdivision, Part Lots 7 and 8, Concession 3, Huntley, City of Ottawa, Ontario" prepared by Morey Houle Chevrier Engineering Ltd. (MHC) and dated March 27, 2003.

This current revised hydrogeological report was completed to address comments prepared by the Rideau Valley Conservation Authority (RVCA) entitled "Hydrogeological Impact Assessment, Newill (Rump) residential subdivision, part of lots 7 & 8, con. III, City of Ottawa (Huntley)" dated August 30, 2005. It should be noted that the previous hydrogeological report prepared by MHC, dated March 27, 2003 was recommended for approval by the RVCA for a limited number of lots only, i.e. phased approach, provided that certain conditions are applied/considered (refer to Appendix B). Our updated report is intended to address these conditions.

1.2 Objectives of Investigation

The objectives of this investigation are as follows:

- To review available background information to assist in characterization of subsurface conditions in the vicinity of the subject site and develop a hydrogeological conceptual model;
- To identify and characterize the shallow subsurface conditions on the subject site as they relate to the design of septic sewage disposal systems under the Ontario Building Code (OBC);
- To assess the potential for impact on the receiving aquifer(s) and any nearby surface water features from on-site septic disposal systems;
- To investigate the potential quantity and quality of groundwater available from drilled test wells on the subject site for potential domestic supply; and,
- To assess the long-term impacts on groundwater supply from existing developments on drilled water supply wells in the vicinity of the subject site.

Following a review of available background information and analysis of the results of the field investigation, conclusions and recommendations for the proposed residential development of the subject site are provided.

2.0 REVIEW OF BACKGROUND INFORMATION

2.1 Available Background Reports

A number of available background reports were reviewed as part of the revised investigation:

- "Carp Road Corridor, Community Design Plan" prepared by the City of Ottawa and dated June 2004 (Publication No. 3-08). This report is referred to herein as the "CDP Report".
- "Carp Road Corridor, Groundwater Study" prepared by Dillon Consulting Limited and dated November 30, 2004 (ref: 04-3219). This report will herein be referred to as the "Groundwater Study Report".
- "Mississippi-Rideau Source Protection Region, Assessment Report, Mississippi Valley Source Protection Area" prepared by Mississippi Valley Conservation and Rideau Valley Conservation Authority and dated August 4, 2011. This report will herein be referred to as the "MVSPR Report".
- "Aggregate Resources Inventory of the City of Ottawa, Southern Ontario" prepared by the Ontario Geological Survey Aggregate Resources Inventory (Paper 191) and dated 2013. This report will herein be referred to as the "ARIP 191 Report".

2.1.1 Community Design Plan Report (City of Ottawa, 2004)

The CDP report prepared by the City of Ottawa was reviewed for relevant information pertaining to the development of the subject site:

- Development of the site should preserve and add as many trees as possible and the use of landscaping, decorative fences, trees and/or shrubs in front of fencing to screen unsightly uses.
- The environmental features of the subject site (Schedule 2 CDP Report) shall be protected by implementing the policies in Section 4.7 of the Official Plan. In areas identified as groundwater recharge areas shown on Schedule 2, a groundwater impact assessment may be required to support development applications to determine the potential for impact on groundwater resources.
- A groundwater impact assessment may be required for development applications to support land uses that may pose a high risk to the groundwater resource, or uses that use large volumes of water or dispose of large volumes of liquid or solid waste, as per Section 4.7.5 of the Official Plan.
- Schedule 2 of the CDP Report indicates that the majority of the subject site is located in a high recharge area and a high-quality fishery discharge area.
- When reviewing development applications in areas identified as groundwater recharge areas, the City will consider the potential for impact on groundwater resources. A groundwater impact assessment may be required where the City has identified that the lands play a role in the management of the groundwater resource or the need is indicated in other available information such as subwatershed plans or local knowledge as per Section 4.7.5 of the Official Plan.

2.1.2 Groundwater Study Report (Dillon, 2004)

The Groundwater Study Report prepared by the Dillon Consulting Ltd. was reviewed for relevant information pertaining to the development of the subject site. The following recommendations were presented:

- Applicants of future high risk commercial and industrial development should demonstrate that the proposed development will not impact groundwater prior to receiving approval. Elements of the proponent's proposal may include: assessment of the hydrogeological characteristics, the design of protection engineering systems to reduce risk of chemical discharges, identification and abandonment of unused wells, the design of a groundwater monitoring system, establishment of a spill response plan, plans to encourage natural infiltration and possible posting of bonds to cover future environmental clean-up efforts.
- For existing land uses, it is recommended that mitigation actions be enacted primarily through voluntary mechanisms including: promotion of best management practices,

education of the public on the aquifer sensitivities, development of incentive programs to reduce contamination risk, and the review of road salting practices to reduce salt loading.

• For development of new subdivisions, a hydrogeological assessment following City of Ottawa protocols should be performed as a condition of approval. For development by consent, neighbouring wells should be sampled and favourable chemistry results obtained prior to approval being granted.

The following information from the report is considered relevant to this investigation:

- The Groundwater Study Report was completed using information from the following resources:
 - 1:50,000 scale overburden and bedrock geology maps by Geological Survey of Canada and 1:10,000 scale Ontario Base Maps from the Ministry of Natural Resources;
 - MECP Water Well Records;
 - Other previous studies (please refer to the Groundwater Study Report for specific sources); and,
 - Geographic Information System (GIS) Database sources from: City of Ottawa, Renfrew County, Ministry of Northern Development. In addition, GIS data from a Regional Groundwater Study (Golder et al, 2003) was modified to a scale suitable for analysis (1:25,000).
- The Surficial Geology & Aquifer Location map of the Groundwater Study Report indicates that:
 - The subject site has predominantly offshore marine sediments of the Champlain Sea consisting of clay and silt as well as Paleozoic bedrock and organic deposits of peat and muck to the west and till to the east.
 - The lands immediately adjacent to the southeastern boundary of the subject site have nearshore sediments of the Champlain Sea consisting of gravel and sand.
 - The closest glaciofluvial deposits of sand and gravel to the subject site are mapped to the south of Richardson Side Road (which is greater than 1.0 kilometre from the closest boundary of the subject site).
 - The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Bedrock Geology & Aquifer Location map of the Groundwater Study Report indicates that:

- The subject site is mapped as Paleozoic bedrock consisting of limestone and shale of the Verulam Formation (northern portion of the site) and limestone of the Bobcaygeon Formation (southern portion of the site).
- The closest MOE Recorded Well Location and Aquifer Pumped symbols indicate an unconfined limestone aquifer.
- The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Groundwater Flow map of the Groundwater Study Report indicates that groundwater flow in the region of the site is expected to flow to the north (or to the northeast from the subject's site frame of reference). The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Groundwater Infiltration map of the Groundwater Study Report indicates that groundwater infiltration is low for clay, silt, and organic deposits, moderate for bedrock and till and high for the sand and gravel deposits of the subject site. The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Recharge/Discharge Areas map of the Groundwater Study Report indicates that the vertical groundwater gradient is subject site as being a recharge zone with the majority of the site identified as having a weak downward vertical groundwater gradient. A stream intersects the subject site and flows from west to east; the stream is identified as being a discharge area having a weak upward gradient. The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.
- The Aquifer Vulnerability map of the Groundwater Study Report indicates that the subject site (as is much of the Carp Road Development Corridor) is located in a high vulnerability aquifer area. The map notes indicate that the information conveyed by this map is regional in nature and is not suitable for use in site specific evaluations.

2.1.3 Mississippi Valley Source Protection Region Report (MVSPR, 2011)

The MVSPR Report prepared by Mississippi Valley Conservation and Rideau Valley Conservation Authority was reviewed for relevant information pertaining to the development of the subject site:

- The Mississippi-Rideau Source Protection Region Highly Vulnerable Aquifers (HVA's) map indicates that the subject site is located in a highly vulnerable aquifer zone. However, it should be noted that much of the Carp Road Development Corridor, the Waste Management West Carleton Environmental Centre and the Karson Quarry are also all located in the highly vulnerable aquifer zone.
- The Carp Wellhead Protection Area Map indicates that the closest corner of the subject site is located about 3.0 kilometres to the south of the outermost boundary of the Carp

Wellhead Protection Area (Zone D: 25 year travel time). In addition, the closest corner of the subject site to the Carp Communal well is approximately 6 kilometres.

2.1.4 ARIP 191 Report

The ARIP 191 Report prepared by Ontario Geological Survey was reviewed for relevant information to the development of the subject site:

- The subject site is shown as being located in a sand and gravel deposit of tertiary significance;
- A sand and gravel quarry is located to the southeast of the subject site (greater than 1.0 kilometres).

In addition to the sand and gravel deposits noted in the ARIP 191 Report, a small sand pit (<1.0 hectares) is located on the subject site, adjacent to the stream that bisects the subject site. The sand pit has been depleted.

2.1.5 Carp Road Corridor Zoning Study

In 2013, the City of Ottawa initiated a study of the zoning along the Carp Road Corridor to support economic development opportunities and to resolve issues with the previous zoning that were triggering amendments to permit development proposals to proceed along the Corridor.

The changes to Zoning By-law 2008-250 were intended to stimulate the local economy, to allow for more employment opportunities and to recognize that the Carp Road Corridor Rural Employment Area, as the largest rural employment area in the City, which plays an important role in the local economy. The study was also meant to influence and ensure that future planning decisions/approvals within the Corridor better reflect the evolution of the Corridor as a more diverse economic hub for the Western Rural area of Ottawa. Rather than requiring a performance-based zoning approach as recommended in past studies, the study of the zoning looked at each property along the Carp Road Corridor, which resulted in numerous changes including boundary changes, the addition of new uses and prohibition of other uses on some properties. Specific adjustments were also made to better separate the residential uses from the commercial and industrial uses given the conflicts with truck traffic and pollutants.

A report prepared by City staff (File Number: ACS2014-PAI-PGM-0071) was carried unanimously by City Council on May 14, 2014.

2.1.6 McGee Meadow Estates Subdivision

The McGee Meadow Estates is a 25-lot residential subdivision located adjacent to the subject site, on the southern border. The hydrogeological assessment and terrain evaluation were completed by Houle Chevrier Engineering Ltd. (herein referred to as HCEL), titled "Hydrogeological Assessment and Terrain Evaluation, Proposed Residential Subdivision, McGee

Subdivision, Ottawa, Ontario" and dated December 2009. The hydrogeological report, lot development plan and subdivision agreement were obtained from <u>www.mcgeemeadow.ca/resources/</u>.

A brief summary of the hydrogeological assessment and terrain evaluation conclusions and recommendations are provided below.

- The quality and quantity of groundwater is sufficient to service private residences based on the proposed development;
- Water supply recommendations include:
 - All wells should be drilled in accordance to local and MOE regulations and have well casings extend 10.0 metres below ground surface with a minimum casing length of 2.0 metres into sound, competent bedrock;
 - Rationale for 10.0 metre casings not provided.
 - Conventional water softeners and aeration (or activated charcoal filters, chlorination, manganese greensand filters, etc.) may be desired by homeowners to treat minor aesthetic objective and operational guidelines exceedances of hardness and hydrogen sulphide; and,
 - Drilled water wells may require hydro-fracturing to increase the well yield sufficiently to provide water at a rate of 13.7 litres per minute for a period greater than six hours.

Additional subdivision information including water quality results, pumping test results and terrain evaluation can be found in the hydrogeological report and subdivision agreement, i.e. Agreement of Purchase and Sale.

2.2 Land Use

The majority of the subject site is currently vacant undeveloped land and was previously used for agricultural purposes. Land use in the vicinity of the site consists of vacant undeveloped land and residential and commercial properties on private services. Residential properties, with private services, are located southeast and west of the subject site. Commercial properties are located to the north and northeast along Carp Road.

Specific land uses near the subject site boundaries are documented in Table 2.1.

Table 2.1 – Summary of Land Use in Study Area

Site Boundary	Existing Land Use
North / northeast (Carp Road)	Commercial properties along Carp Road
East / southeast	 Combination of agricultural land, wooded areas, and residential properties (Huntley Manor Subdivision)
South / southwest (William Mooney Drive)	 Wooded areas and scattered residential properties (McGee Meadow Estates Subdivision)
West / southwest	Residential properties (Arbourbrook Subdivision)

2.2.1 Technical Safety and Standards Authority (TSSA)

The Technical Standards and Safety Authority (TSSA) was contacted to conduct a search for the adjacent properties located at 2676, 2688, 2702, 2710, 2726, 2770, 2727, 2739, 2755, 2765, 2775, 2777, 2789, 2793, 2797, 2825, 2591 Carp Road, 80 Arbourbrook Boulevard, 120, 124, 128, 132, 136, 138, 140 Tansley Drive, 205, 215, 225 Maple Creek Crescent, 106, 122, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172 Reis Road and 158, 171, 189, 197, 217 Cardevco Road in Ottawa, Ontario. The TSSA indicated that they have no record of any fuel storage tanks at the above addresses.

It should be noted that the Fuels Safety Division of the TSSA did not register private fuel underground or aboveground storage tanks prior to January of 1990 or furnace oil tanks prior to May 1, 2002.

A copy of the search requests and the responses from the TSSA are provided in Appendix C.

2.2.2 Permit to Take Water and Environmental Compliance Approvals

No large scale water takings capable of causing adverse impacts to groundwater quantity were identified within 1000 metres of the subject site boundary (PTTW search completed July 25, 2019; <u>https://www.ontario.ca/environment-and-energy/map-permits-take-water</u>).

Several commercial properties are located along Carp Road, directly north of the subject site. Environmental Compliance Approvals (ECA's) are present for 15 of the commercial properties. The ECA's include industrial sewage works, air, waste management systems, and waste disposal sites. The waste disposal sites listed (ECA 2712-99VJ8R and 6469-ADXJVG) are for the processing and transfer of solid municipal and liquid waste as well as solid non-hazardous waste (limited to waste from the cleaning of water supply lines, storm sewers and sanitary sewers and all associated connections from municipal, industrial, commercial, institutional and domestic use). Potential impacts to groundwater quality from adjacent lands within 500 metres of the subject site boundary are not anticipated based on the present land uses identified in the ECA's.

2.2.3 Former Carp Road Landfill (WESA 2014a & WESA 2014b)

A former 35-hectare landfill is owned and operated by Waste Management and located at the West Carleton Environmental Centre (WCEC), approximately 1.8 kilometres from the southern edge of the subject site. The former landfill is closed and has been capped with vegetated layers. An expansion of the landfill is proposed to the west, which would be located approximately 1.3 kilometres from the subject site.

Groundwater impact and hydrogeological assessment reports have been prepared for the proposed expansion of the landfill, including:

- "Groundwater Impact Assessment Report, West Carleton Environmental Centre, Ottawa, Ontario" prepared by WESA, a division of BluMetric Environmental Inc. and dated January 2014.
- "Hydrogeological Assessment Report, West Carleton Environmental Centre Landfill, Ottawa, Ontario" prepared by WESA, a division of BluMetric Environmental Inc. and dated January 2014.

The overburden and shallow bedrock groundwater flow direction is to the north on the western half of the landfill study area and becomes north-easterly across the eastern portion of the landfill. The regional groundwater flow direction of the deep bedrock aquifer is to the northeast towards the Carp River.

The groundwater impact assessment report discusses the effects on the hydrogeology (groundwater flow and groundwater quality) of the proposed landfill expansion. Groundwater monitoring data shows that leachate-impacted groundwater is moving in the direction of groundwater flow, to the north away from the landfill. Future groundwater flow is predicted to be consistent with current observed conditions, with groundwater flow being in a northeastern direction.

The western two-thirds of the existing landfill is unlined and leachate can enter the underlying groundwater system. The leachate is expected to move following the groundwater flow direction, to the northeast, where it will intersect the existing purge well system installed along Carp Road. The purge wells control the off-site impacts within the Contamination Attenuation Zone (CAZ). Transport modelling indicates that leachate-impacted groundwater will continue to migrate off-site

in northeastern direction. Furthermore, groundwater impacts are expected from the proposed stormwater management ponds. The stormwater management ponds will have unlined portions to allow for groundwater infiltration. The maximum predicted extent of chloride concentrations from the stormwater management ponds is 130 mg/L, which could extend as far northwest as Richardson Side Road (located approximately 950 metres from the subject site).

Based on the hydrogeological and groundwater impact assessment reports, groundwater impacts at the subject site (located 1.3 kilometers northwest of the proposed landfill expansion) are not anticipated.

2.3 Topography

Topographic mapping data provided indicates that elevations range from about 112.5 to 120 metres above sea level. Overall, the property is relatively flat and slopes gently towards a stream that bisects the subject site.

2.4 Drainage

The drainage of the subject site is influenced by the natural topography and a stream which intersects the site. The stream flows from the west to east and controls the shallow groundwater flow from the northern and southern portion of the site.

2.5 Ontario Ministry of Environment and Climate Change Water Well Records

The Ministry of Environment, Conservation and Parks (MECP) Water Well Records for existing private wells in the surrounding development were obtained to determine the characteristics of existing private wells in the vicinity of the subject site (500 metre radius). A total of 146 well records were reviewed from the MECP online water well record mapping resource. Of the 146 well records, 124 wells were identified as domestic, public, or commercial wells (remaining 22 wells are monitoring, test, or not used).

Table 2.2 provides a summary of the well characteristics for the 124 water well records (using available data) for depth to water found, static water levels, depth to bedrock, depth into bedrock and total well depth.

Parameter	10 th Percentile	90 th Percentile	Average / Geometric Mean
Depth Water Found (m)	8.0	68.6	29.2 / 20.3
Static Water Level (m)	1.1	5.5	3.4 / 2.3

Table 2.2 – Summary of Water Well Records Search Results

Parameter	10 th Percentile	90 th Percentile	Average / Geometric Mean
Depth to Bedrock (m)	2.7	11.9	7.5 / 6.0
Depth into Bedrock (m)	6.2	81.0	38.0 / 23.7
Total Well Depth (m)	11.4	84.8	42.3 / 31.2

The MECP Water Well Records for drinking water wells surrounding the subject site (500 metre radius) indicate that water in existing private wells was encountered at shallower depths compared to that of the onsite test wells (i.e. geometric average of 20.9 metres below ground surface for the offsite private well records and geometric average of 27.9 metres below ground surface for the onsite test wells). The majority of wells are completed within the limestone bedrock, with the exception of 13 domestic overburden wells completed in sand and gravel at depths of 6.1 to 16.4 metres.

The MECP Water Well Records indicate that the total well depth in existing private wells have shallower well completion depths to the onsite test wells (i.e. geometric average of 31.2 metres below ground surface for the offsite private well records and geometric average of 38.6 metres below ground surface for the onsite test wells).

The depth to bedrock in existing private wells is similar to the depth to bedrock of the onsite test wells (i.e. geometric average of 6.0 metres below ground surface for the offsite well records and geometric average of 5.2 metres below ground surface for the onsite test wells).

3.0 TERRAIN EVALUATION

3.1 Regional Geology

Surficial geology maps of the Carp area indicate that the site is underlain by organic deposits, offshore marine sediments (clay and silt), glacial till, nearshore marine sediments (sand, reworked glaciofluvial) and bedrock. Bedrock geology maps of the Carp area indicate that the site is underlain by interbedded limestone and shale of the Simcoe Group Formation (approximately 150 to 180 metres thick). Paleozoic bedrock geology mapping further indicates that the site is underlain by the Bobcaygeon and Verulam Formations, which are separated by a vertical fault that runs parallel to the stream that bisects the subject site. The bedrock geology consists of limestone and shale bedrock of the Verulam Formation to the north and limestone bedrock of the Bobcaygeon Formation to the south. Surficial and bedrock geology maps, Figure C1 and C2 respectively, are provided in Appendix C.

3.2 Field Procedure

The initial field work for the terrain analysis was carried out in 2003 followed by subsequent investigations in 2017 and 2019. A summary of the field work completed as part of the terrain analysis are summarized below:

- 17 test pits (TP1 to TP17, inclusive) were advanced on March 25, 2003 using a track mounted backhoe supplied and operated by the owner. The test pits were advanced approximately 1.4 to 4.6 metres below ground surface.
 - Grain size distribution analyses submitted for two samples.
- Six boreholes were advanced at the site on September 9-14, 2004 using a track-mounted drill rig. Monitoring wells were installed in all boreholes, numbered MW1S, MW1D, MW2S, MW2D, M23S, MW3D, MW4S, MW4D, MW5S, MW6S, and MW6D. The monitoring wells were installed at depths of 1.5 to 3.0 metres (labelled "S") and 4.5 to 6.0 metres (labelled "D") below ground surface.
- Three boreholes were advanced at the site on July 12-13, 2017 using a track-mounted drill rig supplied and operated by George Downing Estates Drilling Ltd. The boreholes were continuously sampled until inferred bedrock was encountered.
 - Grain size distribution analyses submitted for five samples.
- Eight test pits (TP18 to TP25, inclusive) were advanced at the site on May 29, 2019 using a track mounted backhoe supplied and operated by the owner. The test pits were advanced approximately 1.8 to 3.0 metres below ground surface.
 - Grain size distribution analyses submitted for three samples.
- Two boreholes were advanced at the site on May 31, 2019 using a track-mounted drill rig in order to replace MW4S and MW4D, which were abandoned during the development of the trailer storage yard at the site. Monitoring wells were installed in the two boreholes, numbered MW4S-R and MW4D-R, where "R" refers to replacement. The monitoring wells were installed at depths of 1.5 to 3.0 metres (labelled "S") and 4.5 to 6.0 metres (labelled "D") below ground surface.

The locations of the boreholes and test pits are shown on the Detailed Site Plan, Figure 2. The ground surface elevations at the borehole locations were determined using our Trimble R10 GPS survey instrument. The elevations are referenced to geodetic datum. All field work was observed by a member of our engineering staff.

Following the completion of the borehole drilling work and test pit excavation, the soil samples were returned to our laboratory for examination by a geotechnical engineer and/or hydrogeologist. Descriptions of the subsurface conditions logged in the boreholes and test pits are provided on the Record of Borehole and Record of Test Pit sheets appended (Appendix D) and the results of the grain size distribution analyses are provided in Appendix E.

3.3 Soil Conditions

3.3.1 General

The soil descriptions in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil involves judgment and GEMTEC does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.

The subsurface conditions are variable throughout the site, with the greatest distinction south of the creek that flows west to east through the subject site. An overview of the subsurface conditions, interpreted from the test pits and boreholes advanced during the investigation, are presented below, including geological cross sections. The results of grain size distribution analyses carried out on selected samples are shown in Appendix E.

3.3.2 Topsoil

A surficial layer of topsoil was encountered at all of the borehole and test pit locations. The topsoil is generally composed of brown silty sand and sand with varying amounts of organic material. The topsoil layer has a thickness ranging between about 0.1 to 0.4 metres.

3.3.3 Sand

A deposit of red brown to grey brown to grey, fine to medium sand to fine to coarse sand was encountered beneath the topsoil at all of the test pits, except borehole MW2 and test pits 11, 15, 16 and 17. The thickness of the sand deposit at the test pit and borehole locations is 0.2 to 4.4 metres. Test pits 1, 2, 3, and 9 were terminated in the sand material at depths of 4.2 to 4.3 metres below the existing ground surface.

3.3.4 Silty Sand

Beneath the topsoil at test pit 17, boreholes 17-1, 17-2, 17-3 and the fine to medium sand at test pit 6 and borehole MW4, a layer of yellow brown to grey brown to grey silty sand was encountered. The thickness of the silty sand layer at the test pit and borehole locations is 0.2 to 2.7 metres.

3.3.5 Silty Clay

Beneath the topsoil at test pits 11, 15, 16, 20, 21, 22, 24 and borehole 17-1, the sand deposit at test pits 6, 7, 8, 13, and 14 and beneath the silty sand layer at test pit 17, 23 and 25, a deposit of grey brown to grey silty clay was encountered. Where penetrated at the test pit locations the silty

clay layer is 1.0 to 2.0 metres in thickness. Test pits 6, 7, 8, 11, 17, 23, 24 and 25 were terminated in the silty clay at depths of 3.05 to 4.6 metres below the existing ground surface.

3.3.6 Clayey Silt

Beneath the topsoil at borehole 17-1 and the upper and lower sand deposits at borehole 17-2 and 17-3 a deposit of grey brown to grey clayey silt was encountered. Where penetrated at the borehole locations, the clayey silt layer is 0.3 to 1.5 metres in thickness.

3.3.7 Clay

Beneath the topsoil at borehole MW2 and the sand deposit at borehole MW3 and MW6, a deposit of grey clay was encountered. Where penetrated at the borehole locations, the clay layer is 0.9 to 5.4 metres in thickness. It is noted that clay soils were only identified in the boreholes advanced using a track mounted auger in 2004. Grain size distribution curves collected from similar geologic units (i.e. silty clay layers identified in test pits 20, 23 and 25 advanced in May 2019) classify the soils as silt and clay with some sand / clay and silt with trace sand. The results of grain size distribution analyses carried out on selected samples are shown in Appendix E.

3.3.8 Sand and Gravel

Beneath the sand material at test pits 2 and 5, boreholes MW1, MW6, 17-1 and 17-2 a layer of grey brown sand and gravel was encountered. The thickness of the sand and gravel layer at the test pit and borehole locations is 1.8 to 3.5 metres. The test pits and boreholes MW1 and MW6 were terminated in the sand and gravel at depths of 3.5 to 6.0 metres below the existing ground surface. Boreholes 17-1 and 17-2 were terminated on inferred bedrock at depths of 12.2 to 12.9 metres below ground surface.

3.3.9 Glacial Till

Beneath the sand at test pits 12, 20, 23 and 25 and the silty clay at test pits 14, 15 and 16 a deposit of grey brown to grey silty sand glacial till was encountered. Where fully penetrated at the test pit locations the glacial till is 0.3 to 0.9 metres in thickness. Test pits 12, 14, 18, 19, 20, 21 and 22 were terminated in the glacial till at 1.4 to 3.3 metres below the existing ground surface. Large cobbles and boulders limited test pits 12 and 21 to practical refusal of 1.4 and 1.8 metres respectively; however, it is noted that test pits 22, 24 and 25 advanced in the vicinity of test pits 12 and 21 (refer to Figure 2) were completed to depths of 3.05 metres below ground surface.

3.3.10 Bedrock

Test pits 13, 15 and 16 were terminated on refusal to excavate on what is possibly the surface of the bedrock at depths of 2.3 to 3.3 metres below the existing ground surface.

Borehole MW2 encountered bedrock at 5.4 metres below ground surface and was cored to 6.0 metres below ground surface. Borehole MW5 was terminated on refusal at a depth of 3 metres

below ground surface. Boreholes 17-1, 17-2, 17-3 were terminated on auger refusal at depths of 9.1 to 12.9 metres below ground surface.

The total overburden thickness at the site as indicated by the bedrock test well records provided by the well driller's ranges from 5 to 12 metres, with the exception of MW5 and TW5 which indicate an overburden thickness of approximately one metre.

Water was encountered in test pits 1, 3, 5, 6, 7, 13, 14, 16 at depths of about 1.3 to 4.2 metres below the existing ground surface on March 25, 2003. All of the remaining test pits were dry for the short time the test pits remained open.

3.4 Groundwater Conditions

3.4.1 Groundwater Levels

Groundwater levels in the onsite monitoring wells (MW1 to MW6, inclusive) and groundwater levels in the onsite test wells (TW1 to TW8, inclusive) are summarized in Tables 3.1 and 3.2 respectively. A summary table of groundwater levels is provided in Table F1, Appendix F.

	Depth (m B.G.S ¹)						
Monitoring Well	2004	Jun 7, 2016	Jun 9, 2017	Jun 14, 2017	Jul 12, 2019		
MW1S	2.19	1.94	1.35	1.47	1.65		
MW1D	2.19	2.03	1.38	1.49	1.66		
MW2S	0.78	1.11	0.43	0.89	0.97		
MW2D	0.74	1.07	0.39	0.89	0.96		
MW3S	0.84	1.17	-0.10	0.85	0.98		
MW3D	0.81	1.33	0.46	0.97	0.87		
MW4S	2.00	1.63	Abandoned	Abandoned	1.78 ²		
MW4D	2.11	1.69	Abandoned	Abandoned	1.83 ²		
MW5S	2.80	3.27	1.85	2.21	2.66		
MW6S	2.68	2.53	1.66	1.75	2.00		
MW6D	2.76	2.69	1.82	1.95	2.10		

 Table 3.1 – Overburden Groundwater Conditions in Monitoring Wells

1. BGS – below ground surface.

2. Water level taken from MW4S-R and MW4D-R, which are replacement monitoring wells.

Depth (m B.G.S ¹)						
Test Well	2004	Jun 7, 2016	Jun 9, 2017	Jun 14, 2017	Oct 16, 2017	Jul 12, 2019
TW1	2.16	1.80	1.22	1.37	-	1.53
TW2	0.52	0.57	-0.22	0.23	0.50	0.16
TW3	0.60	0.72	0.01	0.26	1.23	0.42
TW4	1.91	1.47	In Use	In Use	In Use	1.41 ²
TW5	-	-	-	-	-	32.63
TW6	-	-	-	-	0.66	0.33
TW7	-	-	-	-	1.97	1.27
TW8	-	-	-	-	0.86	0.53

Table 3.2 – Bedrock Groundwater Conditions in Test Wells

1. BGS – below ground surface.

2. Test Well TW4 currently in use as a water supply well.

3.4.2 Groundwater Flow Directions

Water level measurements for both overburden monitoring wells (< 6 metres bgs) and test wells (35.6 to 62.5 metres b.g.s) were used to estimate groundwater flow. The water levels in the test wells ranged from -0.22 (artesian conditions) to 2.16 metres b.g.s, shallow monitoring wells ranged from -0.10 (artesian conditions) to 3.27 metres b.g.s, and deep monitoring wells ranged from 0.39 to 2.76 metres b.g.s.

A stream bisects the site and flows from the northwest to the southeast (Figure 2). The stream is approximately 1.5 metres below the water table at nearby monitoring wells MW 1, MW 6, MW 3, and MW 4 as measured on June 7, 2016.

There are minimal downward/upward vertical hydraulic gradients at the site. Generally, the vertical hydraulic gradients are downward within the overburden and upwards between the overburden and bedrock (Table F1 in Appendix F). It is noted that bedrock test well TW2 displayed artesian conditions indicating confined aquifer conditions.

Based on the test wells, the regional groundwater flow direction is to the northeast. The local groundwater flow direction in the overburden is heavily influenced by the stream that intersects the site and results in eastward and westward groundwater flows toward the stream (Figure 3).

3.4.3 Long Term Groundwater Levels

Electronic water level data loggers were installed in MW2S, MW2D and TW2 from June 6, 2017 to July 27, 2017 and in MW1S, MW1D and TW1 from July 27, 2017 to August 29, 2017 to monitor long term groundwater levels. The water levels were corrected for changes in barometric pressure using a dedicated on-site electronic barometric logger. The water levels, corrected for barometric pressure, along with precipitation data are compiled in Appendix F and are summarized in Table 3.3 below.

Well ID	Geologic Material & Depth (m bgs¹)	Water Level (metres bgs)	Water Level (metres, elevation)
MW1S	Sand (1.5 – 3m)	2.00 - 2.31	114.55 – 114.86
MW1D	Sand / Gravel (4.5 – 6m)	1.95 - 2.25	114.53 – 114.83
TW1	Bedrock (14 – 62.5m)	2.05 - 2.36	114.57 – 114.87
MW2S ²	Silty Clay and Glacial Till (1.5 – 3m)	1.05 – 1.73	115.90 – 116.58
MW2D	Gravel / Bedrock (4.5 – 6m)	1.04 – 1.77	115.88 – 116.61
TW2	Bedrock (6.1 – 36.6m)	-0.32 - 0.27	116.47 – 117.06

Table 3.3 – Long Term Groundwater Level Measurements

1. BGS = below ground surface

2. Borehole logs classify soils as clay; soil classification based on nearby test pits and grain size distribution curves.

The bedrock test wells displayed minimal groundwater fluctuations of 0.31 and 0.59 metres for TW1 and TW2 respectively during the time they were installed. The maximum daily fluctuations were 0.08 to 0.35 metres for TW1 and TW2 respectively.

The groundwater levels within the overburden monitoring wells (MW1S, MW1D, MW2S and MW2D) and test well TW1 are directly influenced by precipitation events (Appendix F). The observed water levels in test well TW2 do not respond to precipitation events as quickly as the other well; however, TW2 is influenced by periods of heavy rainfall (30+ mm) and displays artesian conditions (Appendix F).

The groundwater level monitoring indicates that there are upward vertical gradients between the overburden and bedrock. The artesian conditions observed in TW2 suggests that the bedrock aquifer is confined at that location.

3.5 Overburden Hydraulic Conductivity Testing

Hydraulic testing was carried out in the well screens installed in the overburden as part of this investigation. The hydraulic testing was carried out in order to estimate the hydraulic conductivity of the overburden. The hydraulic testing included falling/rising head testing by introducing a slug. A summary of the hydraulic testing carried out in this investigation is provided in Table 3.4.

	Coological	Test Methodology				
Borehole	Geological Material Monitored	Falling Head Test by Introducing a Slug ¹	Rising Head Test by Removing a Slug ²			
MW1D	Gravel	\checkmark	✓			
MW2S	Silty Clay and Glacial Till ³	\checkmark	\checkmark			
MW3D	Silty Clay ³	\checkmark	-			
MW6D	Sand/Gravel	\checkmark	\checkmark			

- 1. Falling head testing by introducing a slug involved introducing an instantaneous pressure increase to the water column within the well screen (equal to the volume of the slug) and monitoring the dissipation of the water level over time using a groundwater data logging pressure transducer together with an electric water level tape. Falling head testing was carried out on July 26, 2017.
- 2. Rising head testing by removing a slug involved introducing an instantaneous pressure decrease to the water column within the well screen (equal to the volume of the slug) and monitoring the recovery of the water level over time using a groundwater data logging pressure transducer together with an electric water level tape. Rising head testing was carried out on July 26, 2017.
- 3. Borehole logs classify soils as clay; soil classification based on nearby test pits and grain size distribution curves.

The well screens were installed within a surround of filter sand. Above the surround of filter sand, bentonite pellets were used to seal the monitoring well from the soil above. Details of the well screens are provided on the Record of Borehole sheets in Appendix D.

3.5.1 Hydraulic Testing Results

The results of the hydraulic testing carried out in the well screens are provided in Appendix G. A summary of the recovery measurements made during slug testing in boreholes MW1D, MW2S, MW3D and MW6D are provided in Table 3.5.

Borehole	Geological Material Tested	Static Groundwater Depth (metres bgs ¹)	Initial Groundwater Level Displacement (metres)	Recovery Time (seconds)	Recovery (percent)
MW1D (FH)	Gravel	1.29	0.61	20	99
MW1D (RH)	Gravel	1.29	0.89	20	99
MW2S (FH)	Silty Clay and Glacial Till ³	0.53	0.45	30	95
MW2S (RH)	Silty Clay and Glacial Till ³	0.53	0.42	30	93
MW3D	Silty Clay ²	0.19	0.55	1800	64
MW6D (FH)	Sand/Gravel	1.76	0.26	15	99
MW6D (RH)	Sand/Gravel	1.76	0.47	15	99

Table 3.5 – Summary of Results for Overburden Hydraulic Testing

1. Bgs = below ground surface

2. Water level within well screen (water losses to filter pack).

3. Borehole logs classify soils as clay; soil classification based on nearby test pits and grain size distribution curves.

Hydraulic conductivities calculated from the hydraulic test results carried out at boreholes MW1D, MW2S, MW3D and MW6D are provided in Table 3.6.

	Geological	Calculated Hydraulic Conductivity, k (m/s)						
Borehole	Material Monitored	Falling Head Test by Introducing a Slug	Rising Head Test by Removing a Slug					
MW1D	Gravel	6 x 10 ⁻⁴	3 x 10 ⁻⁴					
MW2S	Silty Clay and Glacial Till ²	8 x 10⁻⁵	1 x 10 ⁻⁴					
MW3D	Silty Clay ²	6 x 10 ⁻⁶	-					
MW6D	Sand/Gravel	2 x 10 ⁻⁴	3 x 10 ⁻⁴					

1. The hydraulic conductivities were calculated using the Hvorslev Analysis.

2. Borehole logs classify soils as clay; soil classification based on nearby test pits and grain size distribution curves.

The hydraulic conductivity of the sand and sand/gravel units are within literature values for sands and gravels, which range from 10^{-6} to 1 m/s (Freeze and Cherry 1979). The hydraulic conductivity for clay units are higher than literature values, which range from 10^{-9} to 10^{-12} m/s. Although the soils are labelled as clay for MW2S and MW3D, subsequent test pit information with supporting grain size distribution curves indicates that soils previously identified as clay are likely to be silty clay. The closest test pit to MW2S (TP16) recorded silty clay and glacial till within the well screen depths. The overburden hydraulic conductivity is anticipated to be variable throughout the site, generally ranging from low permeability silty clay (6 x 10^{-6} m/s in MW3D) to high permeability sands and gravels (3 x 10^{-4} m/s in MW6D).

4.0 HYDROGEOLOGICAL CONCEPTUAL MODEL

4.1 Background Information

Based on the results of the review of MECP water well records, land use observations and available geology maps, the local hydrogeology on the subject site and adjacent lands are characterized by offshore marine sediments (clay and silt), nearshore marine sediments (fine to medium sands and sand/gravel), organic deposits (peat and muck) and Paleozoic bedrock. The bedrock geology consists of limestone and shale bedrock of the Simcoe Group. A mapped bedrock fault divides the site at the approximate location of the stream, where limestone and shale of the Verulam Formation is north of the fault and limestone with minor shales in the upper parts of the Bobcaygeon Formation is south of the fault (Figure C2, Appendix C).

4.2 Site Specific Geology

The subject site is primarily underlain by deposits of low permeability silty clay and silty sand till south of the stream that bisects the site and fine to coarse sands and gravels north of the stream, with occasional layers of clayey-silt ranging from 0.3 to 1.5 metres in thickness.

The site-specific geology findings are generally consistent with the findings of the available background information (surficial geology maps) with the exception of organic deposits and bedrock outcrops (refer to Figure C1 in Appendix C). No organic deposits (peat or muck) or exposed bedrock were identified in test pit, borehole, monitoring well, or available water well records. Also, bedrock was not identified during the site walk over. The reclassified surficial geology is presented in Figure C3 in Appendix C. The overburden thickness is presented in Figure C4 in Appendix C.

4.3 Hydrogeological Conceptual Model

The framework for the hydrogeological conceptual model for the subject site is summarized in Table 4.1 below.

Hydrogeological cross-sections for a north-south (Figure 4) and west-east alignment (Figure 5) across the subject site were prepared based information from available on-site monitoring and

test wells. Please note that the boundaries between zones indicated on the cross-sections have been interpreted based on available information and may differ somewhat from that indicated. Ground surface elevations for each of the monitoring and test wells were measured using a Trimble R10 global positioning system. The elevations are referenced to geodetic datum.

	Stratigraphic Unit	Generalized Composition	Thickness (m)
North of stream / fault	Overburden	 Topsoil; and, Coarse-grained glaciomarine; Relatively thick deposits of fine to medium sands; Sand and gravel (< 2 metres) overlying the limestone bedrock; and, Occasional, clayey-silt layers, increasing in thickness to the east (0.3 to 1.5 metres). 	7 to 13 metres
No	Bedrock	 Limestone and Shale (Simcoe Group – Bobcaygeon Formation) 	Unknown
South of stream / fault	Overburden	 Topsoil; Fine grained glaciomarine; Silty clay and silt. Coarse grained glaciomarine; Fine to medium sands. Till; and, Silty to sandy glacial till underlain by coarse sands and gravels; Thin (1 metre) at the south-western portion of the site (forested area to be preserved). 	1 to 10 metres
S	Bedrock	 Limestone and Shale (Simcoe Group – Verulam Formation) 	Unknown

Table 4.1 – Framework of Hydrogeological Conceptual Model

The bedrock surface elevation ranges from about 103.9 to 118.6 metres Above Mean Sea Level (AMSL) and the base of the well casings range from 101.4 to 112.9 metres AMSL. The elevation of the water bearing zones (depth water found) ranges from 63.4 to 108.5 metres AMSL and the elevation of the bottom of test wells ranged from 52.6 to 80.2 metres AMSL.

It is our assessment that the hydrogeological conceptual model is consistent with available background information and the results of the field investigation on the subject site. Hydrogeological cross sections (refer to Figures 4 and 5) were prepared based on our interpretation of the above noted hydrogeological conceptual model. The alignment of the cross section (Section A-A' and B-B') lines are provided on the Detailed Site Plan in Figure 2.

5.0 IMPACT ASSESSMENT

The impact on groundwater and surface water resources due to wastewater treatment and disposal by individual onsite sewage disposal systems on the subject site are assessed in the following sections.

5.1 Hydrogeological Sensitivity

In the absence of exposed bedrock, karstic features, areas of thin soils or areas of continuous highly permeable soils, the site is not considered to be hydrogeologically sensitive. As discussed in section 3.3 and 4.3, the overburden material generally consisted of deposits of low permeability silty clay and silty sand till south of the stream that bisects the site and fine to coarse sands and gravels north of the stream, with occasional layers of clayey-silt. The overburden thickness at the site is greater than 2.0 metres on all proposed residential and commercial lots (refer to Figure C4 in Appendix C). Some localized areas of thin soils were identified; however, they correspond to preserved forests areas that will not be developed. The coarse sands and gravels on the northern portion of the site are not continuous and contain clayey silt ranging from 0.3 to 1.5 metres in thickness.

5.2 Sewage Disposal Systems

This section discusses the results of the terrain evaluation as related to the installation of sewage disposal systems on the subject site for onsite wastewater treatment and disposal.

It should be noted that the following information is provided for general guidance purposes only and that all septic systems installed on the subject site should be designed on a lot by lot basis using a lot specific investigation involving test holes to determine the actual subsurface conditions at the location of the proposed septic system. In all cases, the septic system design must conform to the Ontario Building Code (OBC) requirements.

5.2.1 Class IV Septic Sewage Disposal Systems

This section discusses the results of the terrain evaluation as they relate to the feasibility of installing Class IV septic sewage disposal systems on the subject site.

The septic system envelope area (septic envelope) represents the area on a lot set aside for the construction of the leaching bed and is for the leaching bed only. It does not include that area required for the septic tank or the isolation/separation distances required by the Ontario Building Code (OBC). The size of the septic system envelope is a function of the percolation rate of the native soil in the vicinity of the septic envelope (or the fill used for the construction of a septic bed) and the daily effluent loading to the septic bed.

It is understood that the septic envelope sizes were estimated by Novatech for the purposes of preparing the Lot Development Plan in Appendix A. The conservative average septic system envelope required to service a single-family dwelling at this site; which was calculated using a conservative design flow of 3,500 litres/day and a conservative loading rate of 6 to 8 L/m²/day for the silty sand, is 440 to 580 m². For those lots which are underlain by silt and clay, a loading rate of 4 litres/m²/day is considered to be appropriate. The septic envelope area required under this scenario is 875 m² (0.088 hectares). This septic system envelope should be readily accommodated on the lot sizes that are proposed (minimum 0.6 hectares), as demonstrated in the Lot Development Plan.

Prior to establishing the actual septic envelope (leaching bed) location on any particular lot, test holes should be excavated to determine the actual subsurface conditions in the area of the proposed leaching bed.

The septic leaching bed design must ensure that the bottom of the absorption trenches is at least 0.9 metres above low permeability soils (such as silty clay), bedrock, and the seasonally high groundwater table. Based on the soil conditions which were observed in the test pits and boreholes, it is expected that some or all of the septic leaching beds at this site will be partially or fully raised.

A site-specific investigation should be carried out on each lot for septic system design purposes to determine the thickness and type of overburden present in any areas proposed for installation of leaching beds.

5.2.2 Tertiary Septic Systems

Approved septic disposal systems that meet the OBC requirements for tertiary treatment could also be considered for this development in place of conventional Class IV septic systems. The disposal beds for tertiary treatment systems require a smaller area than conventional Class IV septic systems. Furthermore, the required separation distance between the underside of the crushed stone layer in the disposal bed and low permeability soils, bedrock, or the seasonally high groundwater table is less than the required 0.9 metres for conventional septic systems. Some tertiary treatment systems are also effective in reducing contaminants, such as nitrate, prior to disposal to the leaching bed.

5.3 Groundwater Impacts

The potential risk to groundwater resources on and off the subject site was assessed in accordance with Ministry of Environment Procedure D-5-4: Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. To evaluate the groundwater impacts, the Three-Step Assessment Process outlining in MECP D-5-4 was followed.

5.3.1 Three-Step Assessment: Step 1 - Lot Size Considerations

Lot sizes of 1.0 hectares or larger are assumed to be sufficient for attenuative processes to reduce nitrate-nitrogen to acceptable concentrations in groundwater below adjacent properties. The proposed lot sizes of 0.4 hectares (minimum) fails this consideration.

5.3.2 Three-Step Assessment: Step 2 – Isolation

Where proposed lot sizes are less than 1.0 hectares, the risk of sewage effluent contamination must be assessed for the proposed subdivision. As per Procedure D-5-4, it is required to:

- Evaluate the most probable groundwater receiver for sewage effluent; and,
- Define the most probable lower hydraulic or physical boundary of the groundwater receiving the sewage effluent.

Based on the hydrogeological conceptual model and as per the isolation requirements of MECP Procedure D-5-4:

- The groundwater receiver for the septic effluent is the overburden groundwater within siltyclays, silty sands, fine to coarse grained sands and sands and gravels.
- The lower hydraulic boundary for the groundwater receiving the septic effluent is primarily low permeability soils (encountered south of the stream intersecting the subject site) and limestone bedrock north of the stream intersecting the subject site.

Further guidance for the determination of isolating conditions is provided in the MECP document entitled "MOEE Hydrogeological Technical Information Requirements for Land Development Applications" dated April 1995. The guidance information is found within Section 3.2.1: Located on Protective Surficial Deposits of Appendix C8: Guideline for Applying 15-08 to Large Subsurface Disposal Systems. The guidance information indicates that:

- Protective surficial deposits are unconsolidated earth materials whose saturated hydraulic conductivities are 10⁻⁵ cm/sec (or lower) and comprise the top 10 metres of the surficial materials at the site;
- These deposits are likely to be laterally continuous for at least 100 metres;
- These deposits do not contain significant lenses or beds of higher conductivity materials that would:
 - Exceed one metre in cumulative or total thickness;

- Serve as practical sources of groundwater flow to wells; or
- Impair the function of the earth materials as a barrier to contaminant migration.

The result of the hydrogeological conceptual model indicates that the surficial overburden deposits across the site do not meet the above requirements for isolation.

5.3.3 Three-Step Assessment: Step 3 - Nitrate Dilution Calculations

Where it cannot be demonstrated that the effluent is hydrogeologically isolated from the water supply aquifer and the proposed lot sizes are less than 1.0 hectares, the risk of individual on-site septic systems will be assessed using nitrate-nitrogen contaminant loading. The maximum allowable concentration of nitrate in the groundwater at the boundaries of the subject property is 10 milligrams per litre as per the Ministry of the Environment and Climate Change's guideline D-5-4, dated August 1996.

In order to assess the nitrate dilution, the commercial and residential lots were calculated separately. The septic flow for the commercial lots is based on information provided in Guideline D-5-4, Section 5.6.3 and the Carp Road Corridor Nitrate Impact Assessment Recommendations memo dated September 27, 2016, it was determined than an allowable daily design sanitary sewage flow for each of the four proposed commercial lots ranges from 3226 to 8525 litres per day. The details of this are provided on the following table.

Block	Area (m²)	Infiltration Factor	Precipitation Surplus (m³/year)	Available Infiltration (litres per day)	Maximum Septic Flow (litres per day)
79	11,300	0.75	3887	4792	4792
80	7,600	0.75	2614	3226	3226
81	20,100	0.75	6914	8525	8525
82	11,800	0.75	4059	5004	5004

Table 5.1 - Allowable Sewage Flow per Commercial Lot (assuming 40% hard surfaced area and tertiary treatment)

The nitrate concentration at the site boundaries was calculated using the following information:

- Subject site divided by residential and commercial lots;
 - Residential (Lots 1-78; refer to Lot Development Plan in Appendix A).
 - Commercial (Lots 79-82).
- Ministry of the Environment and Climate Change's guideline D-5-4, dated August 1996. In consideration of the proposal that the subject site will include both residential and commercial properties, information in both sections 5.6.2 and 5.6.3 of D-5-4 was implemented into our assessment;
- An annual water surplus ranging from 0.299 to 0.363 metres/year (average of Ottawa Airport and Carleton Place data, Environment Canada Water Surplus Datasets attached in Appendix H);
 - Ottawa International Airport (1939-2013) and Carleton Place (1984-2006);
 - 100 mm Sand, 150 mm Silty Sand, 200 mm Glacial Till and 280 mm Silty Clay.
- 78 residential lots are proposed;
 - A varying allowance for hard surface area on the residential lots, roadways, and pathways;
 - A total available area for infiltration of 697,600 square metres, net of hard surfaces (600,915 sq.m. residential/roadways/pathways, 30,635 sq.m. commercial, and 66,040 sq.m. open space);
 - An allowance of 1,000 litres per day of sewage flow per residential lot;
 - An allowance of 40 mg/L of nitrate-nitrogen in the effluent discharging from the proposed Class 4 septic systems;
 - An annual water surplus of 0.336 metres/year for the residential lots (1-78); and,
 - A combined infiltration factor of 0.60 for residential lots (1-78).
- 4 commercial lots are proposed;
 - An allowance for 40 percent hard surface area on the commercial lots;
 - An annual water surplus of 0.361 metres/year for the commercial lots (79-82);
 - A combined infiltration factor of 0.75 for the commercial lots (79-82);
 - An allowance for an average of 2,300 litres per day of sewage flow per commercial lot; (less than the maximum septic flow determined using information provided in Section 5.6.3 of D-5-4; see Table 5.1);
 - A septic flow of 2,300 litres per day per commercial lot corresponds to 30 employees as per the Ontario Building Code 2012.
 - The use of tertiary treatment systems in the construction of the septic systems at each commercial lot, capable of reducing the concentration of nitrate in the effluent exiting the treatment unit to a maximum of 20 mg/L (this concentration value was utilized when re-simplifying the formula provided in D-5-4 for the purpose of determining the factor used to determine the maximum allowable flow for each lot

from the determined available infiltration volume. The factor becomes 1 versus 3 as is the case without tertiary treatment).

The estimated nitrate concentration in the groundwater at the property boundary following development is 6.18 mg/L and 7.69 mg/L for the commercial and residential lots respectively. The calculations and assumptions used are provided in Appendix H. It has been determined that, through dilution of the nitrate stemming from the proposed septic systems, the proposed 4 commercial lots and 78 residential lots can be established while maintaining a nitrate concentration within the groundwater at the property boundary of less than 10 mg/L.

5.4 Background Nitrate Conditions

To further evaluate the potential risk of septic effluent on the water supply aquifer, the background water quality in the receiving overburden aquifer was assessed. Water samples were collected on June 9, 2016 and July 14, 2017 from all available overburden monitoring wells. In addition, a water quality sample was collected on June 28, 2019 from MW4-R, which serves as a replacement for the abandoned MW4. Nitrate concentrations varied throughout the site, with non-detectable concentrations on the southern portion of the site (<0.05 to <0.1 mg/L for MW2S, MW2D, MW3S, MW3D and MW5S) and nitrate concentrations on the northern portion of the site ranging from <0.1 to 7.86 mg/L in MW 1S, MW1D, MW4S, MW 4D, MW6S and MW 6D (Table 5.2).

The background nitrate concentrations are attributed to previous agricultural practices which occurred on the subject site. Compared to historical data (October 23, 2004), nitrate concentrations measured in 2016, 2017 and 2019 are consistent spatially and are generally decreasing over time. Some variability was observed in MW4D which reported an increase in the latest sampling event. The background nitrate sampling was completed over three seasons (fall 2004, spring 2016, summer 2017 and summer 2019) and the variability may in part be related to seasonal variations. It is anticipated that the nitrate concentrations will continue to decrease over time following the change of land use, from agricultural to fallow lands.

Nitrate	M۷	V 1	MV	V 2	MV	V 3	MV	V 4	MW 5	M	N 6
mg/L	S ³	D^4	S	D	S	D	S	D	S	S	D
Oct 23, 2004	4.12	9.47	<0.05	<0.05	<0.05	<0.05	12.5	5.76	<0.05	-	-
Jun 9, 2016	2.56	7.86	<0.05	<0.05	<0.05	<0.05	5.75	3.02	<0.05	2.17	1.32
Jul 14, 2017	2.1	7.3	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	0.5
Jun 28, 2019	-	-	-	-	-	-	4.3 ²	7.8 ²	-	-	-

Table 5.2: Nitrate Concentrations in Overburden monitoring wells

1. Nitrite levels for all monitoring wells are at non-detectable levels (<0.05 mg/L)

 Monitoring wells MW4S and MW4D were decommissioned in late 2016 (current commercial property). Monitoring wells MW4S-R and MW4D-R reinstalled to same specifications and within 30 metres of the decommissioned monitoring wells in May 2019.

3. S = Shallow wells (screened 1.5 to 3 metres b.g.s)

4. D = Deep wells (screened 4.5 to 6 metres b.g.s)

Based on the average nitrate concentrations in the shallow and deep monitoring wells on the northern portion of the site, the background nitrate concentration is estimated to be 3.4 mg/l (Table 5.3). As the northern portion of the subject site only occupies 20% of the proposed development, the weighted average background nitrate concentration in the receiving overburden aquifer at the subject site is estimated to be 0.8 mg/L.

Nitrate mg/L	9 mg/L		MW 4		MW 6		Arithmetic Average		Overburden Aquifer Average	
	S1	D ²	S	D	S	D	S	D	S + D	
Oct 23, 2004	4.12	9.47	12.5	5.76	-	-	8.3	7.6	7.8	
Jun 9, 2016	2.56	7.86	5.75	3.02	2.17	1.32	3.5	4.1	3.7	
Jul 14, 2017	2.1	7.3	-	-	<0.1	0.5	2.43	4.43	3.4	
Jun 28, 2019	-	-	4.3 ⁴	7.8 ⁴	-	-	-	-	-	

Table 5.3: Nitrate Concentrations Summary (Northern Portion of Site)

1. S = Shallow wells (screened 1.5 to 3 metres b.g.s)

2. D = Deep wells (screened 4.5 to 6 metres b.g.s)

3. Arithmetic average for July 14, 2017 calculated using average of MW 4 June 9, 2016 and June 28, 2019 nitrate concentrations.

4. Monitoring wells MW4S and MW4D were decommissioned in late 2016 (current commercial property). Monitoring wells MW4S-R and MW4D-R reinstalled to same specifications and within 30 metres of the decommissioned monitoring wells in June 2019.

In addition, two water samples were collected from the stream on June 30, 2016, one upstream entering the site and the other downstream, leaving the site (Figure 2). Nitrate concentrations in the stream were <0.05 mg/L upstream and 0.34 mg/L downstream (Table 5.4).

Location	Date	Nitrate Concentrations (mg/L)
SW-1 (Upstream)	June 30, 2016	<0.05
SW-2 (Downstream)	June 30, 2016	0.34

Table 5.4: Nitrate Concentrations in Surface Water (refer to Figure 2 for sample locations)

Based on the results of the nitrate groundwater sampling and water level monitoring, the following conclusion are presented:

- Nitrate concentrations in the shallow and deep overburden monitoring wells have generally decreased from previously reported levels in 2004. Residual nitrate concentrations are attributed to past agricultural practices and levels are expected to continue to decrease over time;
- Nitrate concentrations in on-site bedrock test wells were non-detectable in all samples;
- Based on water level measurements across the subject site, groundwater flow in the overburden (shallow and deep overburden wells) is towards the stream that bisects the subject site; therefore, offsite impacts associated with nitrates are not anticipated.
- Nitrate concentrations over the northern portion of the site decrease in a northerly (up gradient) direction, from well MW 1 to MW 6, further supporting the notion that offsite impacts will not likely occur;
- Based on surface water samples at the upstream and downstream property boundaries, nitrate impacts to the stream appear to be negligible;
 - Sewage systems should be constructed at an appropriate setback from the surface water boundaries in accordance with the Ontario Building Code and any municipal requirements.
- Water levels in the bedrock are higher than the overburden water levels indicating upward gradients in the bedrock;
 - Artesian conditions observed in TW2 suggests a semi-confined to confined bedrock aquifer system at that location.
- The nitrate concentrations at the property boundary, based on nitrate dilution calculations, is estimated to be:
 - Commercial Lots (79-82) = 6.2 mg/L + background concentration of 3.4 mg/L;
 - \circ Residential Lots (1-78) = 7.7 mg/L + background concentration of 0.8 mg/L.

It has been determined that, through dilution of the nitrate stemming from the proposed septic systems, the proposed 4 commercial lots and 78 residential lots can be established while maintaining a nitrate concentration within the groundwater at the property boundary of less than 10 mg/L. Therefore, the proposed subdivision meets the requirements of the Three-Step Assessment Process as outlined in MECP D-5-4.

5.5 Aquifer Vulnerability

The background documentation (see section 2.1) identifies the subject site to be located within a high recharge (City of Ottawa, 2004), highly vulnerable aquifer (MCSPR, 2011) with weak downward gradients (Dillon, 2004). The background reports indicate that the information conveyed by mapping is regional in nature and is not suitable for use in site specific evaluations.

The on-site investigation identified the overburden aquifer to have a weak downward gradient at the majority of the site (MW 1, MW3 and MW4) and a slightly upward gradient in the vicinity of MW2. The test wells, screened in the bedrock, have a higher hydraulic head, indicating upward vertical hydraulic gradients. In addition, artesian conditions at TW2 suggest the water supply aquifer is at least partially confined. This is supported by the non-detectable nitrate concentrations in the bedrock test wells, compared to the nitrate concentrations observed in the overburden aquifer. The proposed low impact development (78 lot residential and 4 lot commercial subdivision) does not pose a negative risk to groundwater quantity or quality based on the groundwater supply investigation (see section 6.0) and the three-step nitrate assessment (MECP D-5-4).

A review of the site uses in the vicinity of the subject site identified a landfill located 1.3 kilometres to the northwest. Based on the hydrogeological and groundwater impact assessment reports prepared for the landfill (see section 2.2.3), groundwater impacts at the subject site are not anticipated based on the groundwater flow directions, distance to the site and ongoing remediation of off-site water quality.

6.0 GROUNDWATER SUPPLY

A groundwater supply investigation was carried out in accordance with the MECP August 1996 document "Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment", to determine the quantity and quality of groundwater available for domestic water supply. The results of the groundwater supply investigation are summarized in the following sections.

6.1 Test Well Construction

The MECP Procedure D-5-5 document indicates that a minimum of seven test wells are required for sites more than 60 hectares and up to 80 hectares, with the site under investigation being 70 hectares. Five test wells (TW 1 to TW 5) were drilled by Air Rock Drilling Co. Ltd. under Well Contractor License No. 1119 and were completed on March 14 to 18, 2003. Three additional wells (TW6 to TW8) were drilled by Air Rock Drilling Co. Ltd. and completed October 6-11, 2017; copies

of the MECP Water Well Records and the Certificates of Well Compliance (Well Grouting Inspections) are provided in Appendix I.

The locations of the new test wells were chosen to provide maximum coverage of the site and with the intent for future use as water supply wells on individual lots (Figure 2). The geographical references for the test wells are provided in the respective MECP Water Well Records.

Well grouting inspections were carried out by GEMTEC staff during the sealing of the well casings in test wells TW 6, TW 7 and TW8. The test wells were constructed using a nominal 159 millimetre inside diameter steel casing. All of the test wells were completed with steel well casings installed a minimum of 6.1 metres (20 feet) below the ground surface. The construction details of the test wells are summarized in Table 6.1.

Test Well	Depth to Bedrock (m BGS)	Depth of Well Casing (m BGS)	Depth Water Found (m BGS)	Total Well Depth (m BGS)
TW 1	12.2	14.6	18.3 & 44.2	62.5
TW 2	4.6	6.7	15.2 & 34.4	36.6
TW 3	10.0	12.8	41.1 & 51.8	55.2
TW 4	7.6	10.0	45.1	61.0
TW 5	1.1	6.7	-	67.1
TW 6	6.4	8.2	9.1 & 32.3 & 41.7	43.6
TW 7	4.0	6.1	32.9	55.8
TW8	4.3	6.1	8.5 & 29.9 & 41.8	43.6

Table 6.1 – Summary of Test Well Construction Details

6.2 Pumping Tests Field Procedure

The pumping tests for the test wells used in this study were conducted March 17, 2003 to March 24, 2003 for TW 1 to TW 4. Due to initial low well yields, test wells TW 1 and TW4 were re-pumped on July 5, 2017 and May 16, 2016, respectively.

Six to eight-hour duration constant discharge rate pumping tests were conducted in each test well. The pump discharge was directed to the ground surface at a distance ranging from 5 to 10 metres from the test wells and in a manner such that the flow of water on the ground surface was directed away from the test wells. Based on the overburden geology, thickness and the duration of pumping, this is considered to be sufficient to ensure that artificial recharge does not occur.

6.2.1 Water Level Measurements

During the pumping tests, water level measurements were taken at regular intervals in the well being pumped using an electric water level tape and on a continuous basis using electronic data loggers. After the pump was shut off, water level data was collected until a minimum of 95 percent of the drawdown in water level had recovered in the test wells or two hours had passed. The water level measurements for the drawdown and recovery data for the pumping tests are provided in Appendix J. The drawdown data was measured with reference to the top of the well casings.

Water level measurements were also taken from other onsite test wells (observation wells) during the pumping of select test wells to determine potential interference effects between the test wells during pumping. Water level measurements taken in the observation wells are provided in Appendix J.

6.2.2 Flow Rate Measurements

The flow rate of the pump discharge hose was maintained at a constant flow rate. The discharge nozzle of the pump hose was outfitted with a critical flow nozzle which ensures that the flow rate of the pump is restricted to the critical flow nozzle calibration rate. A summary of the flow rate and duration from the pumping tests of the test wells is provided in Table 6.2:

Test Well	Date	Flow Rate (litres per minute)	Duration (Hours)	Discharge Volume (Litres)
TW 1	March 22, 2003	9	9	4,860
TW1	July 5, 2017	18.9	6	6,804
TW 2	March 24, 2003	23	6	8,280
TW 3	March 17, 2003	32	6	11,520
TW 4	March 19, 2003	14	6	5,040
TW4	May 16, 2016	26.5	8	12,720

Table 6.2 – Pump Test Flow Rates

Test Well	Date	Flow Rate (litres per minute)	Duration (Hours)	Discharge Volume (Litres)
TW 5	July 12, 2017	18.9	1	1,134
TW 6	October 19, 2017	22	6	7,920
TW 7	October 18, 2017	38	6	13,680
TW8	October 17, 2017	57	6	20,520

6.2.3 Groundwater Sampling

Total chlorine tests were conducted in the field to ensure that chlorine levels were at 0.0 mg/L prior to sampling for bacteriological testing. The temperature, conductivity, total dissolved solids, pH, turbidity and total chlorine levels of the groundwater were measured at periodic intervals during the pumping tests and are summarized in Appendix K. The field equipment used during the pumping test is calibrated monthly by GEMTEC and the details of field equipment are provided in Table 6.3:

Table 6.3 – Field Equipment Overview

Field Parameters	Manufacturer	Model No.
Total Chlorine	Hach	CN-60
pH, temperature, TDS and Conductivity	Hanna	HI 98129
Turbidity	Hanna	HI 98703

Groundwater samples for laboratory analysis were collected from the test wells half way through pumping and within the last hour of pumping (i.e. 6 hour test = 3 hour / 6 hour sampling and 8 hour test = 4 hour / 8 hour sampling).

The groundwater samples were collected in laboratory supplied bottles and prepared/preserved in the field in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory. All water samples, including samples for metal analysis, were unfiltered. The groundwater samples were subsequently submitted to accredited laboratories in Ottawa, Ontario for chemical, physical and bacteriological analyses as listed in the MECP guideline titled "Technical Guideline for Private Wells: Water Supply Assessment", dated August 1996.

6.3 Test Well Water Quality

The results of the chemical, physical and bacteriological analyses of the water samples from the test wells are summarized in Appendix K and the Laboratory Certificates of Analyses are provided in Appendix L.

6.3.1 Maximum Acceptable Concentration Exceedances

The proposed water supply aquifer, based on water samples collected from the onsite test wells, does not contain any maximum acceptable concentration exceedances of the Ontario Drinking Water Standards (ODWS). Based on the absence of health-related exceedances and the results of the bacteriological testing, the water from the proposed water supply aquifer is safe for consumption. It should be noted that total coliform exceedances were detected in multiple test wells, however following chlorination and re-sampling, all test wells reported non-detectable Total Coliform levels. A summary of the bacteriological exceedances is provided below.

- TW 1 (March 21, 2003) Total Coliform reported as no data; overgrown with non-target;
 - Non-detectable Total Coliform following chlorination and re-sampling on August 21-22, 2003;
- TW 1 (July 5, 2017) Total Coliform: 7 counts per 100 mL;
 - Non-detectable Total Coliform following chlorination and re-sampling on November 7-8, 2017;
- TW 2 (March 22, 2003) Total Coliform reported as no data; overgrown with non-target;
 - Non-detectable Total Coliform following chlorination and re-sampling on August 20-21, 2003;
- TW 4 (May 10, 2016) Total Coliform reported as no data; overgrown with non-target;
 - Non-detectable Total Coliform following chlorination and re-sampling on May 19-20, 2016.

6.3.2 Bacteriological Parameters

Total chlorine measurements made at regular intervals during the pumping test confirmed that total chlorine concentrations in the well water was non-detectable at the time of bacteriological sampling.

The results of the bacteriological analysis indicate that the water samples met all the standards of the ODWS for bacteriological parameters (following chlorination and re-pumping in test wells TW1, TW2 and TW4). Based on the bacteriological testing, the water is suitable for consumption.

6.3.3 Other Health Related Parameters

No maximum acceptable concentration limits of the ODWS were exceeded in the water samples collected from the onsite test wells.

6.3.4 Operational Guideline Exceedances

Operational related exceedances of the Ontario Drinking Water Standards (ODWS) were detected for hardness (in all test wells sampled) and for organic nitrogen (TW 8). The operational guideline exceedances are discussed in the following section:

Hardness

The concentration of hardness in water samples obtained from all seven (7) test wells ranged from 201 to 395 mg/L as $CaCO_3$ and was higher than the operational guideline of 80 to 100 mg/L of $CaCO_3$ as specified in the ODWS.

Water having a hardness level above 80 to 100 mg/L as CaCO3 is often softened for domestic use. The MECP Procedure D-5-5 document states that water having a hardness value more than 300 mg/L is considered "very hard". The Ontario Ministry of the Environment publication entitled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", states that water with hardness in excess of 500 mg/L is considered to be unacceptable for most domestic purposes. There is no upper treatable limit for hardness specified in MECP Procedure D-5-5.

The concentrations of hardness in all the test wells are below the reported threshold of 500 mg/L as CaCO3 as specified in the Technical Support Document for the ODWS. The concentration of hardness observed in the test wells is considered to be reasonably treatable using a conventional water softener. Most water supply wells within rural eastern Ontario are equipped with water softeners.

Water softening by conventional sodium ion exchange may introduce relatively high concentrations of sodium into the drinking water that may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium); could be considered as a means of keeping sodium concentrations in the water at background levels. Consideration could also be given to providing a bypass of the water softener for drinking water purposes (for example, a bypass of the softener to the cold-water kitchen tap).

Organic Nitrogen

The organic nitrogen concentration (total kjeldahl nitrogen – ammonia) exceeded the operational guideline of 0.15 mg/L for Ontario Drinking Water Standards (ODWS) in samples from test well

TW 8. Of the seven test wells sampled, only TW 8 slightly exceeded the ODWS with a concentration of 0.2 mg/l.

The ODWS indicates that levels of organic nitrogen in excess of 0.15 mg/L may be caused by septic tank or sewage effluent contamination and is typically associated with Dissolved Organic Carbon (DOC) contribution of 0.6 mg/L. The DOC in TW 8 was reported to be 2.5 and 2.3 mg/L in the 3-hr and 6-hr sample respectively. Organic nitrogen can react with chlorine and severely reduce its disinfectant power; in addition, taste and odour problems may also occur.

The observed organic nitrogen concentration in TW 8 does not appear to be representative of the background groundwater quality at the subject site. In addition, it is not expected that chlorination will be utilized by homeowners in the residential subdivision and, as such, no concerns with the operational objective exceedance for organic nitrogen were identified.

6.3.5 Aesthetic Objective Exceedances

Aesthetic objective exceedances of the Ontario Drinking Water Standards (ODWS) were detected for manganese (TW1, TW6 and TW8), iron (all test wells except TW7), turbidity (TW1, TW4 and TW7 lab only), sulphide (TW2, TW3, TW6 and TW7) and total dissolved solids (TW1, TW4, TW6). These exceedances are discussed in the following sections:

Manganese

The manganese concentration in all test wells ranged from 0.006 to 0.191 mg/L. The manganese concentration in TW 1, TW6 and TW8 is above the aesthetic objective of 0.05 mg/L listed by the ODWS. Manganese can naturally occur in groundwater and elevated levels of manganese may cause staining to plumbing fixtures and laundry, and effect the taste of the water. However, the manganese level is well within the maximum reasonably treatable limits (1.0 mg/l) provided in Table 3 of the Appendix in the MECP Guideline D-5-5.

Iron

The iron levels within the on-site test wells ranged from <0.1 to 1.0 milligrams per litre. With the exception of TW7, all remaining test wells exceeded the aesthetic objective of 0.3 milligrams per litre listed by the ODWS. Elevated levels of iron may cause staining to plumbing fixtures and laundry. However, the iron level is well within the maximum reasonably treatable limits (5.0 mg/l) provided in Table 3 of the Appendix in the MECP Guideline D-5-5.

Turbidity

The laboratory Certificates of Analysis indicates that the level of turbidity in test wells TW 1 (2003 and 2017), TW3 (2003), TW4 (2003) and TW7 (2017) exceeded the ODWS aesthetic objective. However, it should be noted that turbidity may be affected by various factors to which the water sample would have been subjected from the time of sampling to the time of analysis. As such, field measurements of turbidity are considered to be more representative of the water being

sampled. The turbidity levels during the pumping tests for all test wells, with the exception of TW3, indicated that the turbidity level continuously decreased throughout the pumping test and was less than 5 NTU at the time of sampling. Test well TW3 was further developed and pumped for a period of approximately seven hours on August 25, 2003. Field measurements of turbidity following the additional pumping was measured to be <1.0 NTU.

Based on the field measurements the level of turbidity in all of the test wells meets the ODWS aesthetic objective.

Hydrogen Sulphide

Hydrogen sulphide levels of 0.16, 3.70, 0.39 and 0.30 were measured at the end of the pumping tests at TW2, TW3, TW6 and TW7 respectively. The hydrogen sulphide in the test wells is likely naturally occurring. The Ministry of Environment (MOE) indicates that hydrogen sulphide levels of up to 2.5 mg/l can be reasonably treatable using a manganese greensand filter. Based on past discussion with MOE personnel who set the MOE treatability limits, it is understood that the treatability limits are a conservative estimate of treatability. Valley Plumbing and Treatment of Perth, Ontario, water treatment specialists, were contacted to provide information on current capabilities of hydrogen sulphide treatment systems. Valley Plumbing indicated that hydrogen sulphide levels in drinking water of up to 20 mg/l can be treated using an air injection system such as Odour Oxidizer by Amitrol or equivalent. Accordingly, the hydrogen sulphide levels measured at the site are indicated to be readily treatable.

Total Dissolved Solids

The Total Dissolved Solids (TDS) levels in test wells TW1, TW4 and TW6 were reported to be 660, 512 and 502 mg/l respectively, which exceeds the ODWS aesthetic objective of 500 milligrams per litre. Elevated levels of TDS can lead to problems associated with encrustation and corrosion.

To determine the corrosive nature of the groundwater, the Langelier Saturation Index (LSI) was calculated for the samples obtained from the test wells. These values are based on the TDS, temperature, pH, alkalinity, and calcium observed in the sample. A copy of the calculation to determine the LSI value is provided in Appendix M. The LSI was calculated to be 0.77, 0.94 and 0.76 for TW1, TW4 and TW6 respectively. This indicates that the water is scale forming but non corrosive. In our experience, the palatability of water with a TDS concentration of that measured should not be an issue.

6.3.6 Testing for Pesticides

A sample of water was obtained from TW3 on October 23, 2004 and delivered to Accutest Laboratories Ltd. for pesticides testing. The results of the testing are provided in Appendix L and indicate no detectable levels of pesticides in the sample.

6.3.7 Comparison Between 2003 and 2016/2017 Water Quality

Tests wells TW1 and TW4 were originally pumped and sampled in 2003 and then re-pumped in July 2017 and May 2016 respectively. The ODWS exceedances are summarized in Table 6.5 below.

TW 1 March 21, 2003	TW 1 July 5, 2017	TW 4 March 19, 2003	TW 4 May 10, 2016
Hardness	Hardness	Hardness	Hardness
Turbidity	Turbidity	Turbidity	-
-	Iron	Iron	Iron
-	Total Dissolved Solids	-	-
-	Manganese	-	-

Table 6.5 –2003 and 2016/2017 ODWS Exceedances Test Wells TW 1 and TW 4

The water quality in TW1 and TW4 has not significantly changed between the earlier and more recent sampling rounds, with a few exceptions described below. Notable changes in water quality in TW1 include increases in chloride (66 to 86 mg/l) and decreases in sodium (47 to 38.8 mg/l) and fluoride (0.23 to <0.1 mg/l). Notable changes in water quality in TW4 include increases in chloride (49 to 133 mg/l) and sodium (32 to 56.7 mg/l) and decreases in fluoride (0.7 to 0.23 mg/l). The variability in water quality observed from 2003 to 2016 and 2017 may be attributed to the further development of the test wells, both of which had increased well yields (discussed in section 6.5 below).

All water quality parameters continue to meet the ODWS and/or aesthetic objective treatability limit; no health-related parameters were exceeded. To note, TW1 had an initial total coliform exceedance (7 CFU/100mL) and TW4 had non-reportable values (overgrown) upon resampling. These exceedances can be attributed to the test wells not being used for 10+ years; following chlorination and additional pumping, both TW1 and TW4 reported non-detectable total coliform.

6.3.8 Water Quality Spatial Variability

The spatial variability of groundwater at the subject site was assessed using piper diagrams created in GW_Chart (Winston, R.B., 2000, Graphical User Interface for MODFLOW, Version 4: U.S. Geological Survey Open-File Report 00-315, 27 p.). Piper diagrams are used to understand the sources of dissolved constituents in groundwater using analytical data. The water quality information from all bedrock test wells were used. The following parameters were obtained from the 'subdivision package' and used as inputs: calcium, magnesium, sodium, potassium, chloride,

sulphate and total dissolved solids. Carbonate and bicarbonate were converted from alkalinity. The piper diagram for the bedrock water quality is provided in Appendix K. The seven test wells are clustered together, with no dominant or calcium dominant cation. The dominant anion is bicarbonate and the groundwater can generally be classified as a calcium bicarbonate type.

Based on geologic mapping of the area, the test wells are completed in limestone and shale bedrock of the Bobcaygeon and/or Verulam Formation of the Simcoe Group. With the exception of TW3, which indicated shale bedrock on the Water Well Record, the remaining bedrock test wells were completed in limestone bedrock. Based on the water quality results and piper diagrams, no significant water quality variability was observed across the subject site.

6.4 Off-Site Water Quality

6.4.1 Well Survey 2005

A survey of six existing wells at the Arbourbrook Subdivision on the north side of the subject site and seven existing wells in the Huntley Manor subdivision on the south side of the side were carried out in the fall of 2003. As part of the well survey, well owners were questioned as to any problems experienced with the quantity of water obtained from their wells. The well owners interviewed indicated that the wells in question have been supplying water for domestic family dwelling for some 1 to 17 years. Only one of the 13 well owners indicated any problem with water quantity. That well owner (on Huntley Manor Drive) indicated that about five years ago (1998) their well had to be deepened for quantity purposes to some 107 metres but since that time, with the use of a storage tank, no water quantity problems have been experienced. All of the well owners indicated that conventional water softeners are utilized for their well water to treat hardness, iron and/or manganese.

Water samples were collected from two nearby private wells located on private lots to characterize groundwater quality at established wells in the vicinity of the subject site. The water samples were collected April 8, 2005 from two residences located on Huntley Manor Drive (samples labelled "Turcotte" and "KHOL1"), directly adjacent to the subject site. The exact locations are not provided in this report to respect participant's privacy. The addresses of the private lots are maintained on file at GEMTEC's office. The results of the private well sampling were provided to each of the well owners separately by means of a letter and the Laboratory Certificates of Analysis are provided in Appendix N.

The private well samples were collected in laboratory supplied bottles and prepared/preserved in the field in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory. The private well samples were subsequently submitted to Accutest laboratories Ltd. in Ottawa, Ontario for analysis chemical, physical and bacteriological analyses as listed in the MECP guideline titled "Technical Guideline for Private Wells: Water Supply Assessment", dated August 1996.

Water samples were collected directly from the pressure tank or an untreated sample point (as determined by the well owner) after purging the water system at full flow for a period of about 10 to 15 minutes. When contacting well owners for collection of a water sample, it was requested that we be provided access to an untreated sample point.

Based on the results of the water sampling for offsite private wells, the water quality in the vicinity of the subject site is considered to be good and no significant exceedances of the ODWS were identified. Furthermore, no health-related parameters were exceeded.

6.4.2 Well Survey 2019

Given the background water quality sampling was completed in 2005, additional water quality samples were collected from the Huntley Manor and Arbourbrook Subdivisions. A door-to-door survey was initiated along Huntley Manor Drive (Huntley Manor Subdivision) and Sentinel Pine Way (Arbourbrook Subdivision) on May 30, 2019 until one homeowner in each subdivision agreed to participate in the voluntary water quality sampling. One homeowner along Huntley Manor Drive ("PW1") and the second ("PW2") along Sentinel Pine Way were interviewed and they allowed water quality samples to be collected from untreated taps, following the same procedure outlined in the 2005 well survey above. The Laboratory Certificates of Analysis and associated MECP Water Well Records are provided in Appendix N. The well owners interviewed indicated that their well water quality was good and they have not had any water quantity concerns. The homeowner on Huntley Manor Drive (PW1) indicated the groundwater to have high iron concentrations.

6.4.3 Comparison between Onsite Test Wells and Offsite Private Wells

Table 6.4 provides a list of all Ontario Drinking Water Standards (ODWS) aesthetic objective (AO) and operational guideline (OG) exceedances for both the onsite test wells, offsite private wells sampled during the course of this investigation and water quality results from four test wells within the McGee Subdivision (refer to section 2.1.6).

Onsite Test Wells (2004, 2016, 2017)	Huntley Manor (April 5, 2005)	Huntley & Arbourbrook (May 30, 2019)	McGee Estates Test Wells (Aug 2009)
Hardness (7/7)	Hardness (2/2)	Hardness (2/2)	Hardness (4/4)
-	Turbidity (1/2)	-	Turbidity (3/4)
Hydrogen Sulphide (4/7)	-	-	Hydrogen Sulphide (4/4)
Iron (6/7)	Iron (2/2)	Iron (1/2)	-
Manganese (3/7)	Manganese (1/2)	-	-

Table 6.4 - Comparison of Test Well and Private Well Exceedances

Onsite Test Wells (2004, 2016, 2017)	Huntley Manor (April 5, 2005)	Huntley & Arbourbrook (May 30, 2019)	McGee Estates Test Wells (Aug 2009)
Organic Nitrogen (1/7)	Organic Nitrogen (1/2)	-	Organic Nitrogen (1/4)
Total Dissolved Solids (3/7)	Total Dissolved Solids (1/2)	-	Total Dissolved Solids (1/4)
-	Colour (1/2)	-	-

1. Refer to Detailed Site Plan, Figure 2, for well locations.

Generally, both on-site and off-site private wells have similar ODWS exceedances. Notable differences include iron and manganese exceedances in the on-site test wells and Huntley Manor Subdivision private wells. One of the four private wells sampled had ODWS exceedances of colour, turbidity, total dissolved solids, iron and manganese. The elevated iron concentrations, measured to be 1.0 mg/L is likely the cause of the elevated turbidity and colour concentrations, as the iron may precipitate out of solution between the time the sample is collected and tested in the laboratory.

Based on the laboratory results of the onsite test wells and offsite private wells, the onsite test wells are likely utilizing the same aquifer as the offsite private wells.

6.5 Pumping Test Analysis

6.5.1 Pump Test Analysis Overview

The drawdown and recovery water level data from the eight test wells are provided in Appendix J. Test wells TW1 and TW4 were re-pumped in order to confirm aquifer transmissivity and water quality parameters. The details of the pumping tests carried out on the test wells are provided in Table 6.6 and 6.7 below. All depths provided are in metres below ground surface (m BGS).

Table 6.6 – Pumpir	ig Tests Details	(2003)
--------------------	------------------	--------

Parameter	TW 1 Mar 22/03	TW 2 Mar 24/03	TW 3 Mar 17/03	TW 4 Mar 19/03
Duration (minutes)	540	360	360	360
Flow Rate (litres per minute)	9	23	32	14
Static Water Level (m BGS)	3.43	0.93	1.19	3.45

Parameter	TW 1 Mar 22/03	TW 2 Mar 24/03	TW 3 Mar 17/03	TW 4 Mar 19/03
Well Depth (m BGS)	62.5	36.6	55.2	61.0
Available Drawdown (m)	58	34	53	56
Water Level at End of Pumping (m BGS)	44.19	20.78	11.80	21.06
Observed Drawdown at End of Pumping (m)	40.76	19.85	10.61	17.61
Percent Drawdown Utilized (%)	70.3	58.4	20.0	31.4
Specific Capacity (Litres/min/m)	0.2	1.2	3.0	0.8

Table 6.7 – Pumping Tests Details (2016-2017)

	TW 1	TW 4	TW 5 ¹	TW 6	TW 7	TW 8
Parameter	Jul 5/17	May 16/16	Jul 12/17	Oct 19/17	Oct 18/17	Oct 17/17
Duration (minutes)	374	480	-	360	360	360
Flow Rate (litres per minute)	18.9	26.5	-	22	38	57
Static Water Level (m BGS)	1.89	1.75	-	0.27	1.42	0.49
Well Depth (m BGS)	62.5	61.0	-	43.6	55.8	43.6
Available Drawdown (m)	60.6	59.2	-	43.3	54.4	43.1
Water Level at End of Pumping (m BGS)	2.29	18.4	-	1.82	3.1	0.78

	TW 1	TW 4	TW 5 ¹	TW 6	TW 7	TW 8
Parameter	Jul 5/17	May 16/16	Jul 12/17	Oct 19/17	Oct 18/17	Oct 17/17
Observed Drawdown at End of Pumping (m)	0.40	16.7	-	1.56	1.69	0.28
Percent Drawdown Utilized (%)	0.66	28.2	-	4.2	3.1	0.65
Specific Capacity (Litres/min/m)	47.2	1.6	-	14.1	22.5	203.6

1. Test well 5 did not yield sufficient water, not used as a test well.

As per MECP Procedure D-5-5, each of the test wells was pumped at a flow rate greater than 18.8 litres per minute for 6 hours. The largest percent drawdown utilized at the end of pumping was 70.3% in test well TW 1 (with the exception of TW5 which did not have sufficient water), which corresponds to a 40.76 metre drawdown. The drawdown utilized in the remaining test wells ranged from 0.65 to 70.3 percent. Test wells TW1 and TW4 were re-pumped on July 5, 2017 and May 16, 2016 respectively to confirm aquifer transmissivity. Both wells were capable of pumping at rates greater than 18.8 litres per minute for greater than six hours. The increase in aquifer transmissivity may be attributed to further well development (additional pumping) or development in the vicinity of the subject site (drilling and hydrofracturing).

Based on these results, all of the onsite test wells are capable of supplying water at a rate greater than 18.8 litres per minute for a period greater than six hours. This is considered more than sufficient for typical domestic use. The only exception was test well TW5 which is now situated in a tree conservation area outside of the proposed lot development plan (refer to Appendix A).

6.5.2 Transmissivity Analysis

The transmissivity of the water supply aquifer was estimated from the pumping test drawdown and recovery data using Aqtesolv version 4.5, a commercially available software program from HydroSOLVE Inc. The water supply aquifer is modelled as a confined to leaky-confined aquifer based on pumping test and water level observation data. As such, the pumping tests results were analyzed for both, confined and leaky-confined conditions. The results of the Aqtesolv 4.5 analyses are provided in Appendix J.

6.5.2.1 Pumping Test TW 1

March 22, 2003

Test well TW 1 was pumped at a constant rate of 9 L/min for 540 minutes. The drawdown in the pumped well gradually increased to 40.76 metres throughout the 540 minutes of pumping. The water level in the test well recovered 95% in 120 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 0.2 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 1 x 10⁻⁶ m²/s
- Confined aquifer, Theis Recovery Analysis, 7 x 10⁻⁷ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 7 x 10⁻⁷ m²/s
- Leaky Confined Aquifer, Hantush-Jacob Recovery, 5 x 10⁻⁷ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 9 x 10^{-7} m²/sec assuming a confined aquifer and 6 x 10^{-7} m²/s assuming a leaky confined aquifer.

July 5, 2017

Test well TW1 was re-pumped July 5, 2017 to confirm aquifer transmissivity and water quality. Test well TW 1 was pumped at a constant rate of 18.9 L/min for 374 minutes. The drawdown in the pumped well increased to 0.40 m after 30 minutes of pumping and remained at that level for the remaining 344 minutes of pumping. The water level in the test well recovered 100% in 60 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 47.25 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 2 x 10⁻⁴ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 1 x 10⁻⁴ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 2 x 10^{-4} m²/sec assuming a confined aquifer and 1 x 10^{-4} m²/s assuming a leaky confined aquifer.

6.5.2.2 Pumping Test TW 2

Test well TW 2 was pumped at a constant rate of 23 L/min for 360 minutes. The drawdown in the pumped well gradually increased to 14 metres throughout the first 200 minutes of pumping and

then increased to approximately 20 metres in the following 160 minutes. The water level in the test well recovered 99% in 35 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 1.2 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 1 x 10⁻⁵ m²/s
- Confined aquifer, Theis Recovery Analysis, 5 x 10⁻⁶ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 6 x 10⁻⁶ m²/s
- Leaky Confined Aquifer, Hantush-Jacob Recovery, 3 x 10⁻⁶ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 7 x 10^{-6} m²/sec assuming a confined aquifer and 4 x 10^{-6} m²/s assuming a leaky confined aquifer.

6.5.2.3 Pumping Test TW 3

Test well TW 3 was pumped at a constant rate of 32 L/min for 360 minutes. The drawdown in the pumped well gradually increased to 10.6 metres throughout the pumping test. The water level in the test well recovered 99% in 120 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 2.9 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 6 x 10⁻⁵ m²/s
- Confined aquifer, Theis Recovery Analysis, 2 x 10⁻⁵ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 9 x 10⁻⁶ m²/s
- Leaky Confined Aquifer, Hantush-Jacob Recovery, 1 x 10⁻⁵ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 4 x 10^{-5} m²/sec assuming a confined aquifer and 9 x 10^{-6} m²/s assuming a leaky confined aquifer.

6.5.2.4 Pumping Test TW 4

March 19, 2003

Test well TW 4 was pumped at a constant rate of 14 L/min for 374 minutes. The drawdown in the pumped well gradually increased to approximately 21.5 metres throughout the first 220 minutes and then began to decrease during the remaining 154 minutes. The water level in the test well recovered 97% in 55 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 0.6 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 3 x 10⁻⁶ m²/s
- Confined aquifer, Theis Recovery Analysis, 3 x 10⁻⁶ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 1 x 10⁻⁶ m²/s
- Leaky Confined Aquifer, Hantush-Jacob Recovery, 6 x 10⁻⁷ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 3 x 10^{-6} m²/sec assuming a confined aquifer and 8 x 10^{-7} m²/s assuming a leaky confined aquifer.

May 16, 2016

Test well TW4 was re-pumped May 16, 2016 to confirm aquifer transmissivity and water quality. Test well TW 4 was pumped at a constant rate of 26.5 L/min for 480 minutes. The drawdown in the pumped well gradually increased to 16.7 metres after 480 minutes of pumping. The water level in the test well recovered 97% in 45 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 1.6 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 1 x 10⁻⁵ m²/s
- Confined aquifer, Theis Recovery Analysis, 7 x 10⁻⁶ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 7 x 10⁻⁶ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 8 x 10^{-6} m²/sec assuming a confined aquifer and 7 x 10^{-6} m²/s assuming a leaky confined aquifer.

6.5.2.5 Pumping Test TW 5

The water well record for test well TW5 reported no water found and no pump test was conducted following drilling on March 18, 2003. The test well was pumped on July 12, 2017 at a rate of 18.9 litres per minute and following one hour of pumping was dry. No aquifer transmissivity analysis was conducted.

6.5.2.6 Pumping Test TW 6

Test well TW 6 was pumped at a constant rate of 22 L/min for 360 minutes. The drawdown in the pumped well increased to 1.56 metres after 30 minutes of pumping and remained at that level for the remaining 330 minutes of pumping. The water level in the test well recovered 95% in 15 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 14.1 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 7 x 10⁻⁵ m²/s
- Confined aquifer, Theis Recovery Analysis, 8 x 10⁻⁵ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 4 x 10⁻⁵ m²/s
- Leaky Confined Aquifer, Hantush-Jacob Recovery, 8 x 10⁻⁵ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 7 x 10^{-5} m²/sec assuming a confined aquifer and 6 x 10^{-5} m²/s assuming a leaky confined aquifer.

6.5.2.7 Pumping Test TW 7

Test well TW 7 was pumped at a constant rate of 38 L/min for 360 minutes. The drawdown in the pumped well gradually increased to 1.69 metres throughout the 360 minutes of pumping. The water level in the test well recovered 95% in 85 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 22.5 L/min/m. The aquifer transmissivity estimates are summarized below:

- Confined aquifer, Cooper-Jacob Analysis, 4 x 10⁻⁴ m²/s
- Confined aquifer, Theis Recovery Analysis, 3 x 10⁻⁴ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 7 x 10⁻⁵ m²/s
- Leaky Confined Aquifer, Hantush-Jacob Recovery, 2 x 10⁻⁴ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 3 x 10^{-4} m²/sec assuming a confined aquifer and 9 x 10^{-5} m²/s assuming a leaky confined aquifer.

6.5.2.8 Pumping Test TW 8

Test well TW 8 was pumped at a constant rate of 57 L/min for 360 minutes. The drawdown in the pumped well increased to 0.28 m after 40 minutes of pumping and remained at that level for the remaining 320 minutes of pumping. The water level in the test well recovered 99% in 15 minutes after the pump was shut off.

Aquifer parameters were evaluated using drawdown and recovery data from the pumping well. The specific capacity of the well at the time of maximum drawdown was 203.6 L/min/m. An aquifer transmissivity of 2 x 10^{-3} m²/sec was estimated using the Cooper-Jacob method for the water level drawdown data and pumping rates. The aquifer transmissivity estimates are summarized below:

• Confined aquifer, Cooper-Jacob Analysis, 2 x 10⁻³ m²/s

- Confined aquifer, Theis Recovery Analysis, 2 x 10⁻³ m²/s
- Leaky Confined Aquifer, Hantush-Jacob, 1 x 10⁻³ m²/s

The average transmissivity of the bedrock aquifer in the area of the test well is calculated to be 2 x 10^{-3} m²/sec assuming a confined aquifer and 1 x 10^{-3} m²/s assuming a leaky confined aquifer.

6.5.3 Unified Aquifer Parameters

The unified parameter values were calculated the geometric mean from the specific capacity and transmissivity values of the current investigation (Table 6.8).

Unified Aquifer Parameters	Minimum	Maximum	Arithmetic Average	Geometric Mean
Specific Capacity (Litres/min/m)	1.2	203.6	10.8	41.9
Transmissivity – Confined (m²/sec)	5 x 10 ⁻⁶	2 x 10 ⁻³	4 x 10 ⁻⁴	8 x 10 ⁻⁵
Transmissivity – Leaky Confined (m²/sec)	3 x 10 ⁻⁶	1 x 10 ⁻³	1 x 10 ⁻⁴	3 x 10 ⁻⁵

Table 6.8 – Summary of Aquifer Parameters

Notes: The specific capacity and transmissivity of TW 1 and TW4 from the most recent pumping test data was used in the calculations.

The geometric mean was computed in addition to the arithmetic average. The geometric average is a more representative "average" of a natural population (Gaussian distribution). Based on the unified parameter calculations, the specific yield of the bedrock water supply aquifer at the subject site is 41.9 litres per minute per metre and the transmissivity is estimated to be 8 x 10^{-5} m²/s assuming a confined aquifer and 3 x 10^{-5} m²/s assuming a leaky confined aquifer.

6.6 Hydraulic Interference Effects

During the pumping of the onsite test wells TW 6, TW7 and TW 8 on October 17 to October 19, 2017, water level measurements were taken every 15 minutes at test wells TW2, TW3, TW6, TW7 and TW8 using electronic dataloggers. During the pumping of test well TW1 on July 5, 2017, water level measurements were taken every 15 minutes at test wells TW2 and monitoring wells MW1D. The water level measurements in the observation wells are reported in Appendix J and discussed below.

6.6.1 Bedrock Observation Wells

The change in water level measurements in bedrock monitoring wells (test wells not being pumped) during the pumping tests for test wells TW 1, TW 6, TW 7 and TW 8 ranged from 0.03 to 0.20 metres (decrease in water level). The measured drawdown in each of the observation wells is provided in Appendix J. Based on the observed water levels during pumping, hydraulic interference between wells is expected to be minimal. The well interference effects are further discussed in section 6.6.3 below.

6.6.2 Overburden Observation Wells

The change in water level measurements overburden monitoring well MW1D (screened 4.5 to 6.0 metres below ground surface in sand and gravel) during the pumping tests for test well TW 1 decreased approximately 0.03 metres. The 0.03 metre decrease in water level is within the daily water level fluctuations for MW1D and does not appear to be the result of pumping from test well TW1. Based on the water level observations in the overburden monitoring well (MW1D), the overburden does not appear to be hydraulically connected to the bedrock aquifer in the vicinity of the test well.

6.6.3 Interference Effects from Neighbouring Subdivisions

As discussed in section 3.4.3., electronic dataloggers were installed in two bedrock test wells, TW1 and TW2, for approximately four to six weeks. Both TW1 and TW2 are located on proposed residential lots directly adjacent to the neighbouring Arbourbrook Estates Subdivision, which has 67 residential and 2 commercial lots. The bedrock test wells displayed minimal groundwater fluctuations of 0.31 and 0.59 metres for TW1 and TW2 respectively, during the time they were installed. The maximum daily fluctuations were 0.08 to 0.35 metres for TW1 and TW2 respectively.

The long-term groundwater level monitoring in the two on-site bedrock test wells act as observation wells to the 69-lot subdivision. The data suggests that there is minimal interference between the on-site test wells and the neighbouring residential subdivision; therefore, no significant interreference effects are anticipated.

6.6.4 Computer Model Simulations

A well interference simulation was developed using Aqtesolv version 4.5. A scenario was developed and the well simulation output is provided on Figure O1 in Appendix O for discussion purposes. A discussion of the simulation and the parameters used in its development are provided in the following sections. No estimates of the storativity are available; however, typical values for confined aquifers range from 5×10^{-5} to 5×10^{-3} (Todd, 1980).

6.6.4.1 Scenario 1 (Figure O1 - Appendix O)

Scenario 1 is provided to illustrate the maximum drawdown using the unified aquifer parameters identified in Table 6.8. The average storativity for confined aquifers was used (Todd, 1980).

Furthermore, the individual pumping rate of 18.9 litres per minute is used for both residential and commercial properties. The peak demand for commercial properties is expected to occur over a larger time period (i.e. 8 hour day) and therefore a peak demand of 18.9 litres per minute should be sufficient to represent commercial well usage.

The following parameter values were utilized in the model:

- Number of pumping wells = 82 wells (78 residential and 4 commercial);
- Individual well pumping rate = 18.9 litres per minute;
- Duration of pumping = 120 minutes;
- Analysis model = Theis
- Aquifer thickness = Confined aquifer, 60 metres;
- Aquifer transmissivity = 8 x 10⁻⁵ m²/s (geomean; current investigation); and,
- Storativity coefficient = 5×10^{-4} .

The results of Scenario 1 simulation indicate that the maximum drawdown within the site is about 4.0 to 4.5 metres and the maximum interference between wells is approximately 0.5 to 1.0 metres. The drawdown decreases to less than 0.1 metres a distance of approximately 100 metres from the pumping wells and is a maximum of approximately 0.5 metres at the property boundary. The computer simulation results are consistent with the observed long-term water level fluctuations in TW1 and TW2. Therefore, based on the results of the well interference simulation and long-term water level monitoring of TW1 and TW2, the interference between drinking water wells is deemed negligible.

6.6.4.2 Scenario 2 (Figure O2 - Appendix O)

Scenario 2 is provided to illustrate the maximum drawdown assuming a leaky-confined aquifer. The average storativity for confined aquifers was used (Todd, 1980). Furthermore, the individual pumping rate of 18.9 litres per minute is used for both residential and commercial properties. The peak demand for commercial properties is expected to occur over a larger time period (i.e. 8 hour day) and therefore a peak demand of 18.9 litres per minute should be sufficient to represent commercial well usage.

The following parameter values were utilized in the model:

- Number of pumping wells = 82 wells (78 residential and 4 commercial);
- Individual well pumping rate = 18.9 litres per minute;
- Duration of pumping = 120 minutes;
- Analysis model = Theis
- Aquifer thickness = Leaky-confined aquifer, 60 metres;
- Leakage Factor (1/B) = 0.4 (average leakage factor from pumping test data);
- Aquifer transmissivity = 3 x 10⁻⁵ m²/s (geomean; current investigation); and,

• Storativity coefficient = 5×10^{-4} .

The results of Scenario 2 simulation indicate that the maximum drawdown within the site is approximately 5.5 metres and the maximum interference between wells is negligible. The drawdown is localized to the individual water wells and no drawdown is observed at the property boundaries. The computer simulation results are consistent with the observed long-term water level fluctuations in TW1 and TW2. Therefore, based on the results of the well interference simulation and long-term water level monitoring of TW1 and TW2, the interference between drinking water wells is deemed negligible.

6.7 Long Term Well Yields

The British Columbia Ministry of the Environment (2012) estimates the long-term well yield by first determining the well's specific capacity after 100 days of pumping (theoretical drawdown without recharge). The assessment was carried out using the following data:

- Time (t) 100 days;
- Pumping Rate (Q) 27.2 m3/day (based on peak flow of 18.9 litres per minute);
- Transmissivity (T) 3 x 10-5 m2/s (assumes a leaky confined aquifer as a conservative approach; refer to Table 6.8);
- Distance (r) 0.078 metres (based on radius of open hole test well);
- Storativity (S) 5 x 10-4 (based on an estimate of storativity from Todd, 1980); and,
- Maximum Available Drawdown (D) 34 metres (conservative maximum available drawdown from TW2; refer to Tale 6.6).

First, the drawdown in the aquifer after 100 days of pumping is calculated using the Modified Nonequilibrium Equation (Groundwater and Wells 2nd Ed., Driscoll, 1986):

$$s = \frac{0.183 \cdot Q}{T} \cdot Log \ \frac{2.25 \cdot T \cdot t}{r^2 \cdot S}$$

The specific capacity after 100 days (SC) is calculated using the pumping flow rate (Q) and estimated drawdown after 100 days (S):

$$SC = \frac{Q}{s}$$

The safe well yield (Q_{safe}) can then be estimated by multiplying the specific capacity after 100 days of pumping (SC) by the maximum available drawdown (D) by a safety factor of 0.7:

$$Q_{safe} = 0.7 \times SC_{100} \times D_{available}$$

Using this approach, the safe well yield was calculated for the average scenario based on unified transmissivity values. The safe well yield was calculated to be approximately 41 litres per minute

of continuous pumping for 100 days. This is two times greater than the peak pumping rates of 18.9 litres per minute for a period of 2 hours, as outlined in MECP Procedure D-5-5.

7.0 CONCLUSIONS

Based on the results of the hydrogeological investigation, the following conclusions and professional opinions are provided:

- The site geology consists of glaciomarine deposits (clayey silts to fine to medium sands), glacial till, and sand and gravel overlying the proposed bedrock water supply aquifer.
- The overburden of the subject site is characterized by shallow bedrock conditions on the southwestern portion of the subject site (1.0 to 2.2 metres) with the overburden depth increasing in a north-easterly direction. Overburden thickness on the proposed residential and commercial lots is greater than 2.0 metres.
- Water levels measured in on-site wells indicate downward vertical gradients within the overburden and upward vertical gradients between the overburden and bedrock. Based on the artesian conditions observed in TW2, the water supply aquifer is at least partially confined.
- The test well construction is typical of wells which will be used in the development in the future.
- Interference between drinking water wells is expected to be negligible under typical usage for residential developments. This is based on observations made during groundwater pumping tests, long-term groundwater level monitoring and groundwater model simulations.
- The water quality determined in the course of this investigation is representative of the long-term water quality which future lot owners are likely to obtain from their wells constructed in accordance with the well construction recommendations.
- The water quality available from drilled wells on the subject site is safe for consumption based on the absence of health-related exceedances of the ODWS.
- The quality of the groundwater meets the Ministry of the Environment and Climate Change Regulations, Standards, Guidelines and Objectives with the exception of hardness (all wells), organic nitrogen (1 of 7 wells), iron (6 of 7 wells), manganese (3 of 7 wells), total dissolved solids (3 of 7 wells) and hydrogen sulphide (4 of 7 wells). Following well chlorination, no health-related parameters have been exceeded.
 - The levels of hardness and iron are considered to be reasonably treatable using a conventional water softener (Table 3 of the Appendix of MOE Guideline D-5-5).
 - The level of organic nitrogen is an operational parameter intended for use in waters requiring chlorination for disinfection purposes. As there are no disinfection requirements for the subject site, this operational exceedance is not of concern.
 - An unofficial addendum to Procedure D-5-5 (July 6, 1995) indicates that sulphide concentrations of up to 2.5 mg/L can be reasonably treated with manganese

greensand filters. Based on past discussions with the MOE personnel who set the MOE treatability limits, it is understood that the treatability limits are a conservative estimate. Valley Plumbing and Treatment of Perth, Ontario, water treatment specialists, indicated that hydrogen sulphide levels in drinking water of up to 20 mg/L can be treated using air injection systems such as Odour Oxidizer or equivalent.

- The quantity of groundwater available from the proposed water supply aquifer is more than sufficient for the proposed development and will sustain repeated pumping at the test rate and duration at 24-hour intervals over the long term. The well yields determined in the course of this investigation are representative of the long-term yields which future lot owners are likely to obtain from their wells constructed in accordance with the well construction recommendations.
 - It is noted that the water supply recommendations from the neighbouring McGee Meadow Estates Subdivision states that drilled wells may require hydrofracking to increase well yields.
- The proposed subdivision (low impact development) meets the MECP D-5-4 Groundwater Impact Assessment (Three-Step Process).
 - Individual on-site septic systems will not cause concentrations of nitrate-nitrogen in groundwater to exceed 10 mg/L at the downgradient property boundary based on contaminant attenuation concentrations.

8.0 **RECOMMENDATIONS**

The following provides recommendations regarding well construction specifications, water quality and septic system design:

8.1 Well Construction Recommendations

- Any original test wells which are not located in suitable locations for future development use and any other existing wells located on the property should be abandoned by a licensed well driller in accordance with MECP regulations following draft plan approval of the subdivision;
- All wells that are drilled in the subdivision should be constructed in accordance with local and MECP regulations, including but not limited to Ontario Reg. 903. In addition, it is recommended that all new wells be installed in the bedrock aquifer;
- Drinking water wells should be located so that they meet and preferably exceed the minimum setback distances from septic systems, property lines and any other sources of contamination, as required in the Ontario Building Code and/or Ontario Reg. 903;
- Well casings should be extended at least 6.0 metres below ground surface. The entire annular space between the steel casing and the overburden/bedrock should be filled with a suitable cement or bentonite grout;

- In addition to the minimum recommended well casing lengths specified in the preceding recommendation, all well casings should be completed a minimum of 1.5 metres into sound, competent bedrock;
- A well grouting certification inspection should be conducted during the installation and grouting of the well casing for future wells installed on the subject site. The well grouting certification inspection should be conducted under the supervision of a professional engineer or professional geoscientist;
- It is recommended that newly drilled water wells be developed by the well driller for a minimum of one hour of pumping following completion of the well drilling. This well development can be carried out in conjunction with the one-hour pumping test that is required for the MECP Water Well Record;
- It is recommended that newly drilled water wells be chlorinated by the well driller following completion of the well drilling and pumping.
- The test wells completed for this study were completed at depths ranging from 36.6 to 62.5 metres below ground surface. Future drinking water wells completed on the subject site at depths outside of this range may encounter different hydrogeological conditions and the quality and quantity of water available from drilled wells may differ than that presented in this study; and,
- A statement should be added to the subdivision agreement to inform residents that drilled wells located adjacent to William Mooney Road may require hydro-fracturing to increase the well yield sufficiently to provide water at a rate of 18.9 litres per minute for a period greater than six hours. This recommendation is based on the results of the McGee Meadow Estates Subdivision and on-site test well TW5.

8.2 Well Ownership Recommendations

- It is recommended that the property owners construct, maintain and test their drinking water well in accordance with the Ministry of the Environment and Climate Change document "Water Supply Wells - Requirements and Best Management Practices, Revised April 2015".
- The use of earth energy systems shall not be permitted within the subdivision.
- For all newly drilled wells, it is recommended that a raw water sample be collected and analyzed for potability requirements (E. Coli. and total coliform bacteria).
 - If any bacteriological exceedances of the Ontario Drinking Water Standards (ODWS) are noted in the sampling, then it is recommended that the homeowner take remedial actions (such as chlorination of the well to eliminate bacteria) and retest a raw water sample to confirm that the remedial actions were effective.
- It is recommended that homeowners be informed that hardness levels may exceed the ODWS operational guidelines. Conventional water softeners may be desired by homeowners to treat minor aesthetic objective and operational guideline exceedances of the ODWS such as hardness. On heating, hard water has a tendency to form scale

deposits and can form excessive scum with regular soaps. Conversely, soft water may result in accelerated corrosion of water pipes.

- Aeration of well water (or other treatment such as activated charcoal filters, chlorination, manganese greensand filters and other forms of oxidizing treatment) may be desired by homeowners to treat aesthetic objective exceedances of the ODWS for hydrogen sulphide;
- It is recommended that homeowners be informed that water softening by conventional sodium ion exchange may introduce relatively high concentrations of sodium into the drinking water which may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium) could be considered as a means of keeping sodium concentrations in the water at background levels. Consideration could also be given to providing a bypass of the water softener for drinking water purposes.
- Potential residents should be informed of the following information:
 - Background sodium levels in the drinking water wells at the site may exceed the warning level for persons on sodium restricted diets;
 - The following water quality parameters may not meet the ODWS operational guidelines in drinking water wells completed at the subject site:
 - Hardness Hardness levels in the onsite test wells were greater than the operational guideline for hardness and can be expected in future wells drilled at the property.
 - Organic nitrogen Organic nitrogen levels in onsite test wells encountered a single exceedance of the operational guideline for organic nitrogen; this result may occur in future wells drilled at the property. Taste and odour problems are common with organic nitrogen levels greater than the operational guideline. In addition, organic nitrogen levels in exceedance of the operational guideline can react with chlorine disinfection systems and severely reduce its disinfection power.
 - The following water quality parameters may not meet the ODWS aesthetic objectives in drinking water wells completed at the subject site:
 - Iron Iron concentrations in some of the water samples from onsite test wells exceeded the ODWS aesthetic objective for iron and a similar condition may be encountered in future wells drilled at the property. Excessive levels of iron may impart a brownish colour to laundered goods, plumbing fixtures and the water itself; it may also produce a bitter, astringent taste in water and beverages; and the precipitation of iron can promote the growth of iron bacteria in water distribution systems. Any iron exceedances can be effectively treated with the use of conventional water softener (up to 5 mg/L), oxidation with filtration through proprietary media (up to 10 mg/L) or chlorination followed by sand or multimedia filtration (up to 10 mg/L).

Sulphide – Sulphide levels in four of the onsite test wells exceeded the ODWS aesthetic objective for sulphide and a similar condition may be encountered in future wells drilled on the subject site. Although ingestion of large quantities of sulphide can produce toxic effects on humans, it is unlikely that an individual would consume a harmful dose in drinking water because of the associated unpleasant taste and odour. Sulfide, in association with iron, produces black stains on laundered items and black deposits on pipes and fixtures. Hydrogen sulphide can be effectively treated through the use of activated charcoal filters, chlorination, manganese greensand filters and other forms of oxidizing treatment.

8.3 Septic System Construction Recommendations

- Septic systems should be located in general accordance with the Lot Development Plan prepared by Novatech.
- The <u>proposed residential lots</u> will be serviced by conventional septic sewage disposal systems designed according to the Ontario Building Code. A site-specific investigation should be conducted on each lot for the design of the septic system;
 - Tertiary septic systems could be considered for the proposed residential lot development and/or individual property owners. Any tertiary systems should be designed according to the Ontario Building Code. A site-specific investigation should be conducted on each lot for the design of the septic system.
 - It is recommended that if property owners choose to install tertiary treatment septic systems, then it will be required to enter a maintenance agreement with authorized agents of the system manufacturer for the service life of the system.
 - In view of the percolation time of the native silty clay on the southern portion of the site, a sand mantle should be allowed for on some of the proposed lots.
- The proposed commercial lots will be serviced by tertiary treatment septic sewage disposal systems that achieve a minimum of 50% reduction in nitrogen, approved under the Ontario Building Code, prior to the effluent being disposed to a Class IV leaching bed (Type A or Type B). A site-specific investigation should be conducted on each lot for the design of the septic system;
 - It is required that the property owners enter a maintenance agreement with authorized agents of the tertiary treatment septic system manufacturer for the service life of the system;
 - The proposed commercial lots (lots 79-82) shall have sewage flows limited to those outlined in Table 5.1 Allowable Sewage Flow Per Commercial Lot and the average sewage flow for the four commercial lots shall be 2,300 litres per day.
 - If during the site plan approval process, the proposed commercial septic system design flow exceeds the preliminary septic flow recommendation for a specific lot, then it is recommended that a detailed groundwater impact assessment be conducted. If the detailed groundwater impact assessment demonstrates that

additional septic flow can be accommodated on the lot, then the preliminary septic flow recommendation for that lot should be amended accordingly.

8.4 Septic Ownership Recommendations

• It is recommended that the property owners construct, maintain and check their onsite septic system in accordance with the Ontario Building Code.

8.5 Site Phasing and Performance Reviews

- The proposed 78 residential lots should be completed in two phases, with no more than 40 lots in any phase (refer to the Lot Development Plan in Appendix A for lot and phasing locations).
- Performance reviews will be conducted in accordance with MECP Procedure D-5-5 Private Wells: Water Supply Assessment, section 4.7 Phased Developments.
- To provide information on the groundwater quality and septic system performance for each phase of the development, groundwater samples will be obtained from a representative number of wells on nearby lots within the previous phases. The wells will be sampled prior to the registration of the next phase for chemical, physical and bacteriological analyses listed in the Ontario Ministry of the Environment (MOE) guideline titled "Technical Guideline for Private Wells: Water Supply Assessment", dated August 1996. The wells would be chosen based on groundwater flow directions and the locations of septic systems, such that the results are representative of the groundwater available from drilled wells in the subsequent phases.
- Carry out interviews with the homeowners at the sampling locations to identify any problems with the existing septic system or the water quality and quantity.
- Maintain the results of all sampling/testing and resident interviews in a spreadsheet to easily track any potential groundwater quality or quantity issues. The spreadsheet would also include Global Positioning Systems (GPS) data for each well used in the study.
- The results of the proposed performance evaluation would be reported prior to the registration of the subsequent phases. The report would include the MECP Water Well Records for the private wells sampled and a site plan showing the sampled well locations as well as any other wells drilled in the subdivision.
- In accordance with the MOE guideline D-5-5, the recommendations and requirements provided in the hydrogeological report and terrain evaluation will be assessed and updated, if required, based on the findings of the investigations for the performance reports and/or a change in the surrounding land use.

9.0 LIMITATIONS OF REPORT

This report was prepared for 1384341 Ontario Ltd and is intended for the exclusive use of 1384341 Ontario Ltd. This report may not be relied upon by any other person or entity without

the express written consent of GEMTEC and 1384341 Ontario Ltd. Nothing in this report is intended to provide a legal opinion.

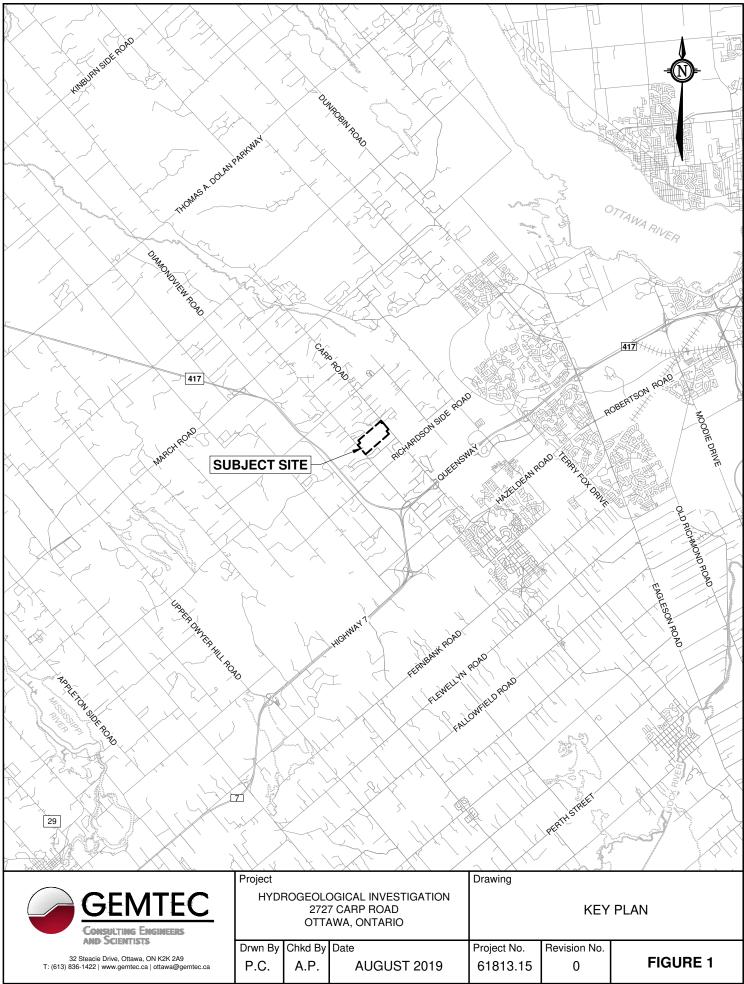
The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgments of GEMTEC based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed.

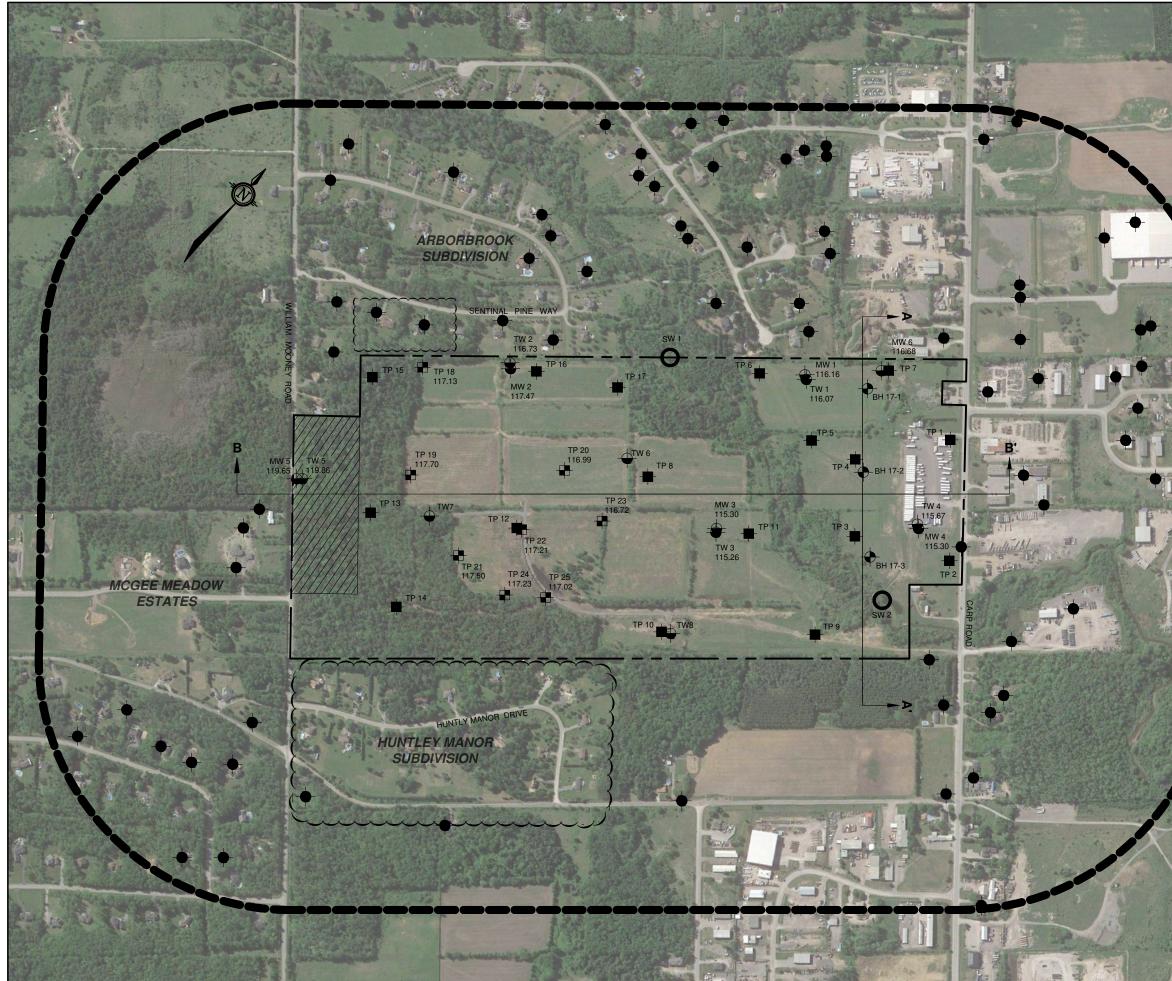
Should new information become available during future work, including excavations, borings or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein.

We trust that this report is sufficient for your requirements. If you have any questions concerning this information or if we can be of further assistance to you on this project, please call.

Andrius Paznekas, M.Sc. Environmental Scientist

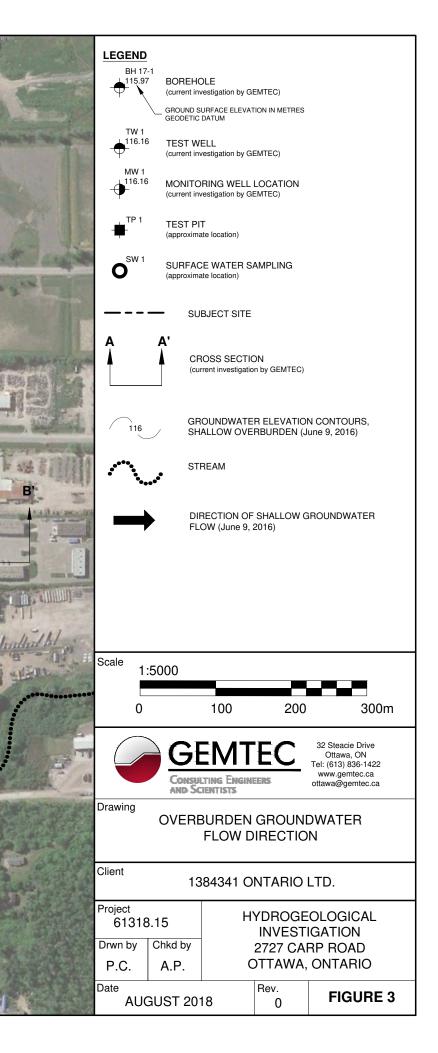
Shaun Pelkey, M.Sc.E., P.Eng. Principal, Environmental Engineer




10.0 REFERENCES

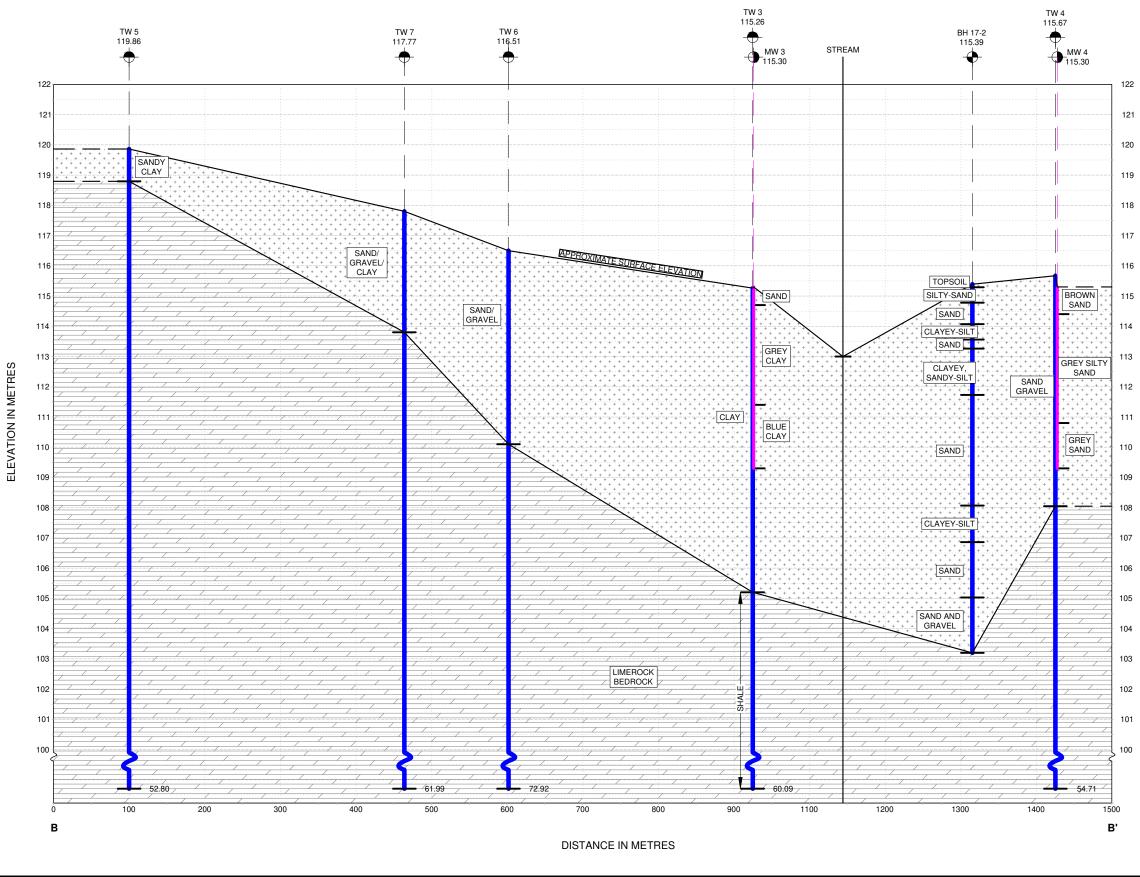
- Lee, V.L. 2013. Aggregate resources inventory of the City of Ottawa, southern Ontario. Ontario Geological Survey, Aggregate Resources Inventory Paper 191: 80.
- Ontario Geological Survey. 2010. Surficial geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release-Data 128-Revision 1.
- Ontario Geological Survey. 2011. 1:250 000 scale bedrock geology of Ontario. Ontario Geological Survey, Miscellaneous Release-Data 126-Revision 1.
- Ontario Ministry of Municipal Affairs and Housing, Building and Development Branch. 2006. Building Code Compendium. December 31, 2006.
- Ontario Ministry of the Environment and Climate Change. 1982. Manual of Policy, Procedures and Guidelines for Private Sewage Disposal Systems. May 1982.
- Ontario Ministry of the Environment and Climate Change. 1996. Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment. August 1996.
- Ontario Ministry of the Environment and Climate Change. 1996. Procedure D-5-4, Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. August 1996.
- Ontario Ministry of the Environment and Climate Change. 2008. Ontario Drinking Water Quality Standards, Safe Drinking Water Act, 2002, Ontario Regulation 169/03 as amended by Ontario Regulation 327/08.
- Ontario Ministry of the Environment and Climate Change. 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines. June 2006.
- Ontario Ministry of the Environment and Climate Change. 1995. MOEE Hydrogeological Technical Requirements for Land Development Applications. April 1995.
- City of Ottawa. 2004. Carp Road Corridor, Community Design Plan. June 2004.
- Dillon Consulting Limited. 2004. Carp Road Corridor, Groundwater Study. November 30, 2004.
- Mississippi Valley Conservation and Rideau Valley Conservation Authority. 2011. Mississippi-Rideau Source Protection Region, Assessment Report, Mississippi Valley Source Protection Area. August 4, 2011.
- WESA. 2014. Groundwater Impact Assessment Report, West Carleton Environmental Centre, Ottawa, Ontario. January 2014.
- WESA. 2014. Hydrogeological Assessment Report, Proposed West Carleton Environmental Centre Landfill, Ottawa, Ontario. July 2014.

P.\0. Files\61300\61318.15\HydroG Update 2019\Drafting\Drawings\61318.15_HydroG_FG1_V01_2019-08-14.dwg, FG1-KP, 19/08/16 10:13:36 AM

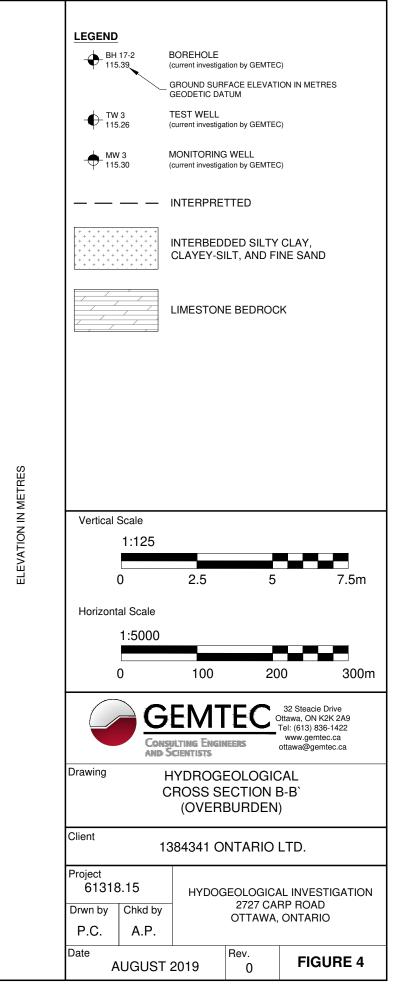


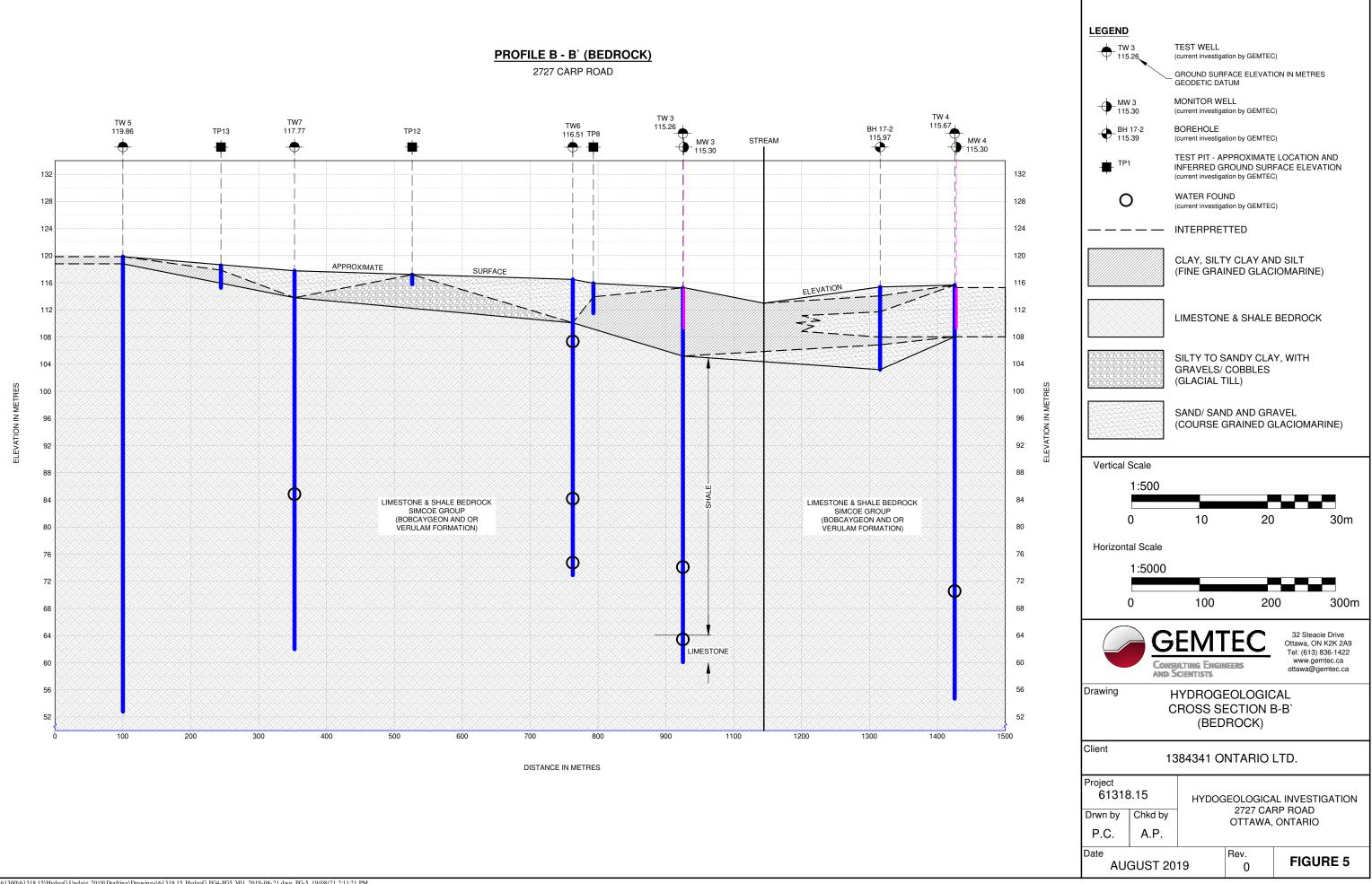
P:\0. Files\61300\61318.15\HydroG Update 2019\Drafting\Drawings\61318.15_HydroG_FG2_V01_2019-08-14.dwg, FG2-DSP, 19/08/16 10:19:17 AM

Caller of								
	LEGEND							
	TP 1	¹ TEST PIT LOCATION (current investigation by GEMTEC)						
	BH 17-1 (current investigation by GEMTEC)							
		TEST WI	ELL estigation by GEMTEC)					
	MW 1 (current investigation by GEMTEC)							
(and a	TP 1 TEST PIT - APPROXIMATE LOCATION (previous investigation by GEMTEC, 2017)							
	SW 1 							
and a second	O ^{SW 1} SURFACE WATER SAMPLING (approximate location)							
	BH/TP/MW # XX.XX			SURFACE ELE	DNITORING WELL ID VATION, IN METRES			
	SUBJECT SITE							
	500 METRE BUFFER SHOWING EXTENT OF STUDY AREA							
and	A 	A'	CROSS SE (current inves	CTION tigation by GEM	FEC)			
1 C				D AREA TO B evelopment plan	E PRESERVED by Novatech)			
a series				IATE LOCATI VELLS SAMP				
No.	Scale 1:75	500						
	0 150 300 450m							
	Drawing Consulting Engineers DETAILED SITE PLAN							
and and	Client	13	84341 O	NTARIO I	LTD.			
and a second	Project 61318.1 Drwn by Cł	5 hkd by	HYDROGEOLOGICAL INVESTIGATION					
		A.P.	2727 CARP ROAD OTTAWA, ONTARIO					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date	GUST 2	2019	Rev. 0	FIGURE 2			



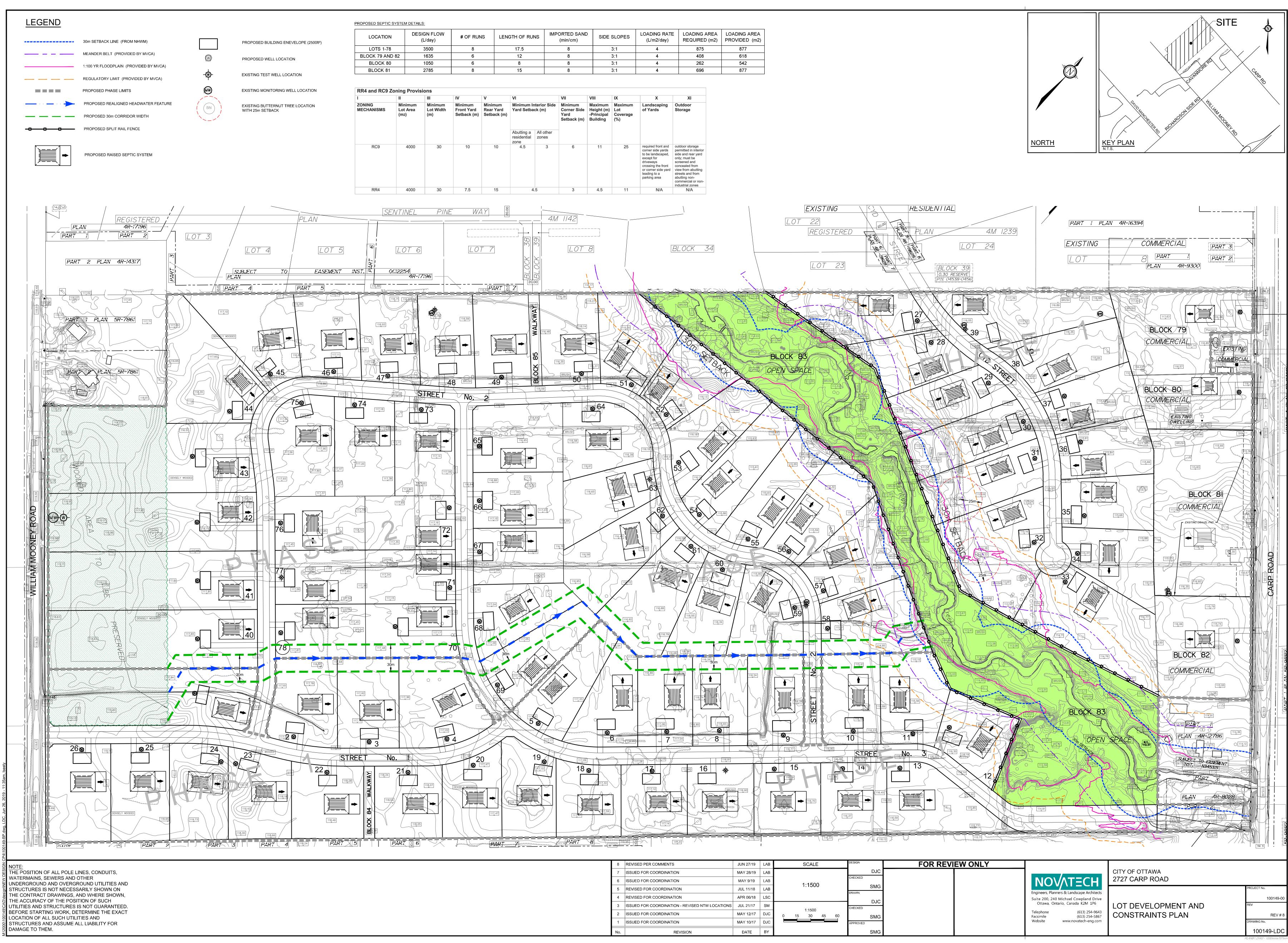
P10. Files/61300/61318.15/HydroG Update 2019/Drafting/Drawings/61318.15_HydroG_FG3_V01_2019-08-21.dwg, FG3-OB_GRDWTR, 19/08/21 2:09:56 PM




PROFILE B - B` (OVERBURDEN)

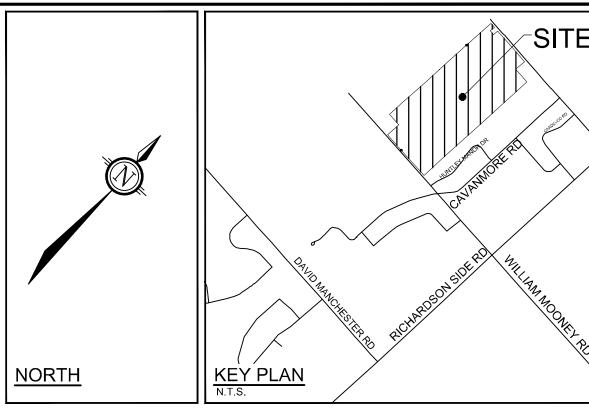
2727 CARP ROAD

P:\0. Files\61300\61318.15\HydroG Update 2019\Drafting\Drawings\61318.15_HydroG_FG4-FG5_V01_2019-08-21.dwg, FG-4, 19/08/21 2:10:51 PM



APPENDIX A

Lot Development Plan Prepared by Novatech Engineering Consultants Ltd.



PTIC SYSTEM DETAILS:													
DESIGN FLOW (L/day)	# OF RUNS	LENGTH OF RUNS	IMPORTED SAND (min/cm)	SIDE SLOPES	LOADING RATE (L/m2/day)	LOADING AREA REQUIRED (m2)	LOADING AREA PROVIDED (m2)						
3500	8	17.5	8	3:1	4	875	877						
1635	6	12	8	3:1	4	408	618						
1050	6	8	8	3:1	4	262	542						
2785	8	15	8	3:1	4	696	877						
_ _ [DESIGN FLOW (L/day) 3500 1635 1050	DESIGN FLOW (L/day) # OF RUNS 3500 8 1635 6 1050 6	DESIGN FLOW (L/day) # OF RUNS LENGTH OF RUNS 3500 8 17.5 1635 6 12 1050 6 8	DESIGN FLOW (L/day) # OF RUNS LENGTH OF RUNS IMPORTED SAND (min/cm) 3500 8 17.5 8 1635 6 12 8 1050 6 8 8	DESIGN FLOW (L/day) # OF RUNS LENGTH OF RUNS IMPORTED SAND (min/cm) SIDE SLOPES 3500 8 17.5 8 3:1 1635 6 12 8 3:1 1050 6 8 8 3:1	DESIGN FLOW (L/day) # OF RUNS LENGTH OF RUNS IMPORTED SAND (min/cm) SIDE SLOPES LOADING RATE (L/m2/day) 3500 8 17.5 8 3:1 4 1635 6 12 8 3:1 4 1050 6 8 8 3:1 4	DESIGN FLOW (L/day)# OF RUNSLENGTH OF RUNSIMPORTED SAND (min/cm)SIDE SLOPESLOADING RATE (L/m2/day)LOADING AREA REQUIRED (m2)3500817.583:14875163561283:1440810506883:14262						

RC9 Zo	ning Provisio	ons									
	II	III	IV	V	VI		VII	VIII	IX	X	XI
SMS	Minimum Lot Area (m²)	Minimum Lot Width (m)	Minimum Front Yard Setback (m)	Minimum Rear Yard Setback (m)	Minimum In Yard Setba		Minimum Corner Side Yard Setback (m)	Maximum Height (m) -Principal Building	Maximum Lot Coverage (%)	Landscaping of Yards	Outdoor Storage
					Abutting a residential zone	All other zones					
09	4000	30	10	10	4.5	3	6	11	25	required front and corner side yards to be landscaped, except for driveways crossing the front or corner side yard leading to a parking area	outdoor storage permitted in interio side and rear yard only; must be screened and concealed from view from abutting streets and from abutting non- commercial or non industrial zones
R 4	4000	30	7.5	15	4	.5	3	4.5	11	N/A	N/A

8	REVISED PER COMMENTS	JUN 27/19	LAB	SCALE	DESIGN	FOR REVIEW ONLY		
7	ISSUED FOR COORDINATION	MAY 28/19	LAB			DJC		CITY OF OTTAWA
6	ISSUED FOR COORDINATION	MAY 9/19	LAB	1:1500	CHECKED		NOVATECH	2727 CARP ROAD
5	REVISED FOR COORDINATION	JUL 11/18	LAB	1.1500		SMG	Engineers, Planners & Landscape Architects	
4	REVISED FOR COORDINATION	APR 06/18	LSC			DJC	Suite 200, 240 Michael Cowpland Drive	
3	ISSUED FOR COORDINATION - REVISED NTW LOCATIONS	JUL 21/17	SM	1.1500	CHECKED		Ottawa, Ontario, Canada K2M 1P6	LOT DEVELOPMENT AND
2	ISSUED FOR COORDINATION	MAY 12/17	DJC	1:1500 0 15 30 45 60	S	SMG	Telephone (613) 254-9643 Facsimile (613) 254-5867	CONSTRAINTS PLAN
1	ISSUED FOR COORDINATION	MAY 10/17	DJC		APPROVED		Website www.novatech-eng.com	
No.	REVISION	DATE	BY		SM	SMG		
No.	REVISION					SMG		

APPENDIX B

Mississippi Valley Conservation Authority (MVCA) Comments

100149 RECEIVED OCT - 7 2005

File: P08-T15-OLV2002-0025

October 4, 2005

Mr. Greg Winters Novatech Engineering Consultants Ltd. Suite 200 240 Michael Cowpland Drive Ottawa, ON K2M 1P6

Dear Mr. Winters:

Re: Plan of Subdivision and Zoning By-law Amendment Proposal Newill Corporation Part of Lots 7 and 8, Concession 3 2727 Carp Road City of Ottawa (Huntley) City File Nos. OLV2002-0025 and OZP2002-0132

Please find enclosed our letter dated September 28, 2005 containing our recommended draft plan conditions for the above noted subdivision application. As detailed in the letter, one of the key aspects of the recommendations is the performance report to be completed between phases of the subdivision. The following are to expand on the items listed in our letter of September 28, 2005 that will be addressed in the performance report:

- An update on the neighboring land use with an assessment of any new threats to the water supply aquifer.
- Water quality analysis including volatile organic carbons of untreated water supply from wells identified in the original hydrogeological report in the phase already developed and the representative samples from the newer wells.
- A study addressing the interference and drawdown impacts for existing wells. The study will be conducted on selected wells. The wells must be located in similar hydrogeology and down gradient of the groundwater and septic flow direction. Water levels in the new wells will be monitored for a sufficiently long period of time accounting for water levels during peak hours of use and to account for slow response of the aquifer. More than one set of observations must be obtained over a sufficiently long time to account for seasonal changes.

Member of

.../2

Greg Winters October 4, 2005

- Water quality analysis from east side (between Carp Road and Huntley Creek) from monitors installed in the aquifer receiving the septic effluent and in the test wells to demonstrate that nitrates, due to agricultural sources, are dissipating as implied by the original report. Placement of monitors should account for groundwater and nitrate plume flow directions.
- Interviews with the property owners to determine if there have been any occurrences of well water quality or quantity problems or malfunctioning septic systems.
- A visual inspection of septic systems, together with information from the property owners on septic tank pump out intervals and any other required maintenance.
- Re-evaluation of well construction and other recommendations contained in the original hydrogeological report within the context of the updated information.
- Re-assessment of the original recommendations and conclusions within the context of any new criteria or guidelines.
- Well records, GPS coordinates and a map showing well sampling locations and water level elevations must be provided. Original lab analysis reports must also be made available. The wells must be located in similar hydrogeology. Borehole logs and site cross-sections are useful tools to clarify site conceptual hydrogeology. The rationale for determining the size of the representative sample must be provided. The placement and number of monitors must be sufficient to provide confidence in the conclusions and recommendations. Methodologies, investigations and analysis, including assumptions, must be documented in detail.

If you have any questions please contact the undersigned.

Yours truly,

Am Duie

John Price, P. Eng. Watershed Management Coordinator

cc Asher Rizvi, Conservation Partners Site

OLV2002-0025a.wpd

Mississippi Valley Conservation

File: P08-T15-OLV2002-0025

September 28, 2005

Mr. Kathy Rygus City of Ottawa Planning and Growth Management 110 Laurier Avenue West Ottawa, ON K1P 1J1

Dear Ms. Rygus:

Re: Plan of Subdivision and Zoning By-law Amendment Proposal Newill Corporation Part of Lots 7 and 8, Concession 3 2727 Carp Road City of Ottawa (Huntley) City File Nos. OLV2002-0025 and OZP2002-0132

Staff of Mississippi Valley Conservation (MVC) have reviewed the above noted plan of subdivision and zoning by-law proposal with respect to the potential impact on natural hazards, natural heritage features and private servicing. As indicated in the proposal summary, a tributary of the Carp River (Huntley Creek) conveys flow through the proposed subdivision. The number and layout of the lots have changed since the original application. There are now proposed to be 80 residential lots and 3 commercial blocks along Carp Road. Considering the total gross area of the property, the average lot size is of 0.8 hectares. Also the originally proposed crossing of the tributary has been eliminated.

The supporting documentation that was part of our review included:

- "Newill Corporation Subdivision Conceptual Stormwater Management Report" (March 2003) prepared by Novatech Engineering Consultants Ltd.
- "Preliminary Tree Study and Conservation Plan" (April 2003) prepared by Muncaster Environmental Planning.
- "Hydrogeological Investigation and Terrain Evaluation" (March 2003) prepared by Morey Houle Chevrier Engineering Ltd. and subsequent submissions dated October 2003, December 2004, January 2005, February 2005, May 2005 and June 2005.

Member of

.../2

. .

Stormwater Management

Due to the low increase in imperviousness with estate residential subdivisions, it is proposed to address change in runoff with development by implementing Best Management Practices (BMPs) such as minimum grade ditches, vegetated swales, vegetative buffers around watercourses and promoting infiltration and filtering of runoff through sheet drainage.

Tree Conservation Plan

The key features have been highlighted and flagged for retention. Best Management Practices will be help retain trees on the lots that have significant woody vegetation. Key general recommendations from the plan are:

- Protect breeding birds by not removing trees between May 15th and July 10th.
- Grubbing and grading should be kept to a minimum and the limits of vegetation removal should be clearly marked and maintained with flagging tape and/or fencing for the duration of construction.
- A minimum setback of the drip line around tree trunks should be marked with fencing or flagging tape before the start of construction and maintained to protect the root system. No grading or heavy machine traffic should be permitted in the setback area due to possible soil compaction.
- Close cutting of vegetation will reduce the need for grubbing where vegetation removal is normally required for access or in work areas where re-grading is not necessary.
- To reduce major changes to micro-habitats, gradual removal or thinning is recommended.
- Transplanting of regenerating stems is recommended for the agricultural fields and open areas in the riparian zone along the watercourse.

Hydrogeological Investigation and Terrain Evaluation

The hydrogeological and terrain assessment report and the subsequent submissions for the proposed subdivision were reviewed to evaluate availability of water for 80 lots, suitability of septic systems and risk to water quality from proposed and existing land uses as considering the Official Plan policy of the City of Ottawa, the Ministry of the Environment Hydrological Technical Information Requirements for Land Development Applications (April, 1995) and Provincial Policy Statement (2005). Reports have concluded that:

- Sufficient water quantity is available on-site based on the 4 test wells. The report has concluded that it may be necessary to drill to depths greater than 61m on some lots to produce a sufficient water supply. Site water storage may also be required to meet peak daily domestic demands. Mutual well interference is calculated to range from 3.7 to 68 metres depending on the assumptions made during calculations (see Kollaard Associates June 15, 2005 response).
- On-site water quality from test wells was found to be acceptable as per the Safe Drinking water guidelines (with the exception of background Nitrate levels on the east side of the property as described below) with elevated parameters of Phenols, Hydrogen Sulphide, organic Nitrogen, Iron, Sodium, Manganese, TDS and turbidity. Pesticide analysis was conducted on well water to further assess the potential health risk. No pesticide presence was found. For Hydrogen Sulphide, the report has concluded that it is treatable with commercially available treatment systems. The reports have indicated that all the neighboring well owners surveyed are using treatment systems.
- Background Nitrate levels ranging from 4.1 to 12.5 mg/l were found east of Huntley Creek and less than 0.1 mg/l on west side of the creek. The report indicates the source of the Nitrate on the east side to be agricultural. Subsequent analysis (Kollaard Associates June 15, 2005) showed that nitrates are decreasing with current levels at 2.54-7.98 mg/l on the east side at the same locations sampled previously.
- A solid waste disposal site, located about 2km south east of the property, is not seen as posing any danger. The plume from the waste site is migrating to the east and the waste site is fitted with an intercept system. Accordingly, it is considered that the private wells at the subject site should not be impacted by the presence of the waste disposal site.
- The report has concluded that no impacts from neighboring developments are expected.

Based on the information contained in the reports, it can be confirmed that the bedrock aquifer could supply groundwater of reasonable quality for the proposed subdivision. Considering the proposed lot density, however, there could be some issues regarding well drawdown and interference effects. The existing nitrate contamination on the east side of Huntley Creek will have to be addressed before development can proceed in that area.

Therefore, MVC recommends draft plan approval of this proposed plan of subdivision application subject to the following conditions:

1) Prior to registration, or prior to an application for a Certificate of Approval for any stormwater works (whichever comes first), the owner shall prepare a Stormwater Site

Management Plan in accordance with the approved "Newill Corporation Subdivision - Conceptual Stormwater Site Management Plan" (March 2003) prepared by Novatech Engineering Consultants Inc. and "Preliminary Tree Study and Conservation Plan" (April 2003) prepared by Muncaster Environmental Planning. The Stormwater Site Management Plan shall identify the sequence of its implementation in relation to the construction of the subdivision and shall be to the satisfaction of the City of Ottawa and Mississippi Valley Conservation.

- 2) The design of the subdivision and development on individual lots will implement the conclusions and recommendations of the Site Stormwater Management Plan, Tree Study and Conservation Plan and Hydrogeological and Terrain Assessment and any subsequent addendums.
- 3) A consolidated report will be prepared incorporating and appending all the hydrogeological and terrain analysis information submitted to date.
- 4) The development of the subdivision shall proceed starting with the lots between William Mooney Road and Huntley Creek. Prior to any development occurring on lots between Huntley Creek and Carp Road, it shall be demonstrated that the Nitrate levels in the near surface and deep aquifers in this area are substantially reduced from current levels and it can be demonstrated that reasonable use criteria can be met.
- 5) The development of this subdivision will be phased. Each phase is to contain not more than 35 lots. Prior to the registration of each phase, subsequent to the first phase, the owner shall prepare a performance report demonstrating the operation of wells and private sewage disposal systems in the previous phases of the development to be satisfactory.

A report prepared by a qualified professional shall be submitted to the City of Ottawa and Mississippi Valley Conservation to demonstrate that the existing wells and private sewage disposal systems in previous phases are functioning in a satisfactory manner. The assessment shall be based on a representative sample of sewage disposal systems and wells from the previous phases and shall include:

- interviews with the property owners to determine any occurrences of well water quality or quantity issues or malfunctioning sewage disposal systems
- a general chemistry analysis (including volatile organic carbons) of the water supply (untreated)
- a visual investigation of sewage disposal systems together with records from property owners on septic tank pump out intervals and any other required maintenance

.

• Re-evaluation of conclusions and recommendations contained in the original hydrogeological analysis with respect to well construction, interference and draw down impacts, Nitrate plume levels and within the context of new criteria or guidelines.

The performance report will not be completed for any phase until 80% of the lots for that phase have been built upon and occupied.

- 6) Any operation involving groundwater extraction (e.g. groundwater source open loop heat pumps) within the development should not be permitted unless a detailed assessment of the water demand on the overall aquifer is completed.
- 7) The subdivision agreement and the agreements of purchase and sale will contain a clause whereby the purchaser is advised and acknowledges that, to prevent mutual interference of future wells on site, all wells must be drilled to a minimum depth of 35 metres. Additionally, any well with a yield of less than 13.7 L/min must be drilled to at least 70 metres below the existing ground surface.
- 8) All water wells will be constructed in compliance with amended Regulation 903 and the recommendations contained in the hydrogeological report. Wells should be drilled with casings set well into bedrock, with the entire annular space filled with a suitable grout and supervised by a certified professional
- 9) Well's that will not be utilized for potable water or future monitoring and/or not meeting minimum specifications shall be abandoned in accordance with *Ontario Water Resources Act, R.R.O. Regulation 903.*
- 10) The agreements of purchase and sale will also contain the following causes:
 - Homeowners should regularly inspect their sewage disposal systems and follow a sewage management program to minimize the impact to the groundwater aquifer and the risk of system failure
 - Prior to connection to the plumbing system, each well should be properly developed and re-tested to verify that bacteria Nitrates, Fluoride and other health related parameters are within the Ontario Safe Drinking Water Standards.
 - Homeowners are advised to complete regular water quality analysis for bacteria and other health related parameters. In case of any exceedances of health related parameter criteria contained in the Ontario Safe Drinking Water Standards, the Medical Officer of Health should be consulted for further evaluation and measures.
 - Homeowners are advised that water quality is not guaranteed over time and treatment/filtration may become necessary.

- Depending on the individual wells, the water may be subject to elevated aesthetic parameters (Hydrogen, Sulphide, hardness, Iron, Manganese, total dissolved solids, Sodium, Organic Nitrogen, etc.). Incrustation, taste, odor and colour problems may occur and treatment units may be required to improve water quality.
- Treating water using softeners may further increase the sodium content. People on sodium restricted diets should use a separate water supply and should consult their physician for advice on the use of well water.
- Low yield wells may be encountered on individual lots and supplemental storage may also be required to meet peak daily domestic demands.

If you have any questions please contact the undersigned.

Yours truly,

John Pine

John Price, P. Eng. Watershed Management Coordinator

cc Asher Rizvi, Conservation Partners Site

OLV2002-0025.wpd

Internal Memo Date: Aug. 30, 2005 File No:OLV2002-0020 & OZP2002-0132

LOFFICE DE RIDEAU PROTECTION VALLEY DE LA NATURE DE CONSERVATION LA VALLE RIDEAU AUTHORITY

To: John Price, Water Resources Coordinator, MVC From: Asher Rizvi, Hydrogeologist, Conservation Partners

Subject: Hydrogeological Impact Assessment, Newill (Rump) residential sub-division, part of lots 7 & 8, con. III, City of Ottawa (Huntley)

Hydrogeological Assessment (MHC March 2003) and subsequent submissions (Oct. 2003, Dec. 2004, Jan. 2005, Feb. 2005, May. 2005, Jun. 2005) for the Newill sub-division were reviewed to evaluate availability of water for 80 lots, suitability of septic systems and risk to water quality from proposed and existing landuses as per official plan policy of the City of Ottawa, document MOEE Hydrological Technical Information Requirements for Land Development Applications (April, 1995) and Provincial Policy Statement (2005). Reports have concluded that:

- 1 Sufficient water quantity is available on-site based on 4 test wells. Report has concluded that it may be necessary to drill to depths greater then 61m on some lots to produce a sufficient water supply. Site water storage may be required to meet peak daily domestic demands. Mutual well interference is calculated to be ranging from 3.68-68m depending on the assumptions made during calculations as per Kollaard Associates June 15, 2005 response.
- 2 On-site water quality from test wells was found to be acceptable as per Safe Drinking water guidelines with elevated parameters of Phenols, hydrogen sulphide, organic nitrogen, Iron, sodium, Manganese, TDS and turbidity. Pesticide analysis was conducted on well water to further confirm the health risk. No pesticide presence was found. For hydrogen sulphide report has concluded that it is treatable with commercially available treatment systems. MHC reports have indicated that all the neighboring well owners surveyed are using treatment systems.
- 3 Background Nitrate levels ranging from 4.1 to 12.5 mg/l were found east of the Huntley Creek and 1.56 to 3.75 mg/l on west side of the Creek . Report indicates the source to be agricultural. Subsequent analysis (Kollaard Associates June 15, 2005) showed that nitrates are decreasing with current levels at 2.54-7.98 mg/l on the east side at the same locations sampled previously.
- A solid waste disposal site, located about 2km south east, is not seen as posing any danger as the plume for the waste site is directed to the east and waste site is fitted with an intercept system. Accordingly, it is considered that the private wells at the subject site should not be impacted by presence of the waste disposal site. (MHC Oct.10, 2003).
- 5 Report has concluded that no impacts from neighboring developments are expected.

Based on the information contained in MHC and Kollard reports, it can be confirmed that the bedrock aquifer could supply groundwater of reasonable quality for the Proposed Subdivision. Considering the proposed lot density, however, there is some concern about drawdown, interference effects and existing nitrate contamination. In order to overcome these problems, alternative solutions are considered. These are:

- a) decreasing the lot density to optimum interference and to optimum nitrate levels
- b) using groundwater from communal wells located in well head protected areas.
- c) A study addressing the interference and drawdown impacts including all the wells using the aquifer and suggesting optimum number of wells and septic systems
- d) a draft approval can be granted for the development of a limited number of lots, subject to the following conditions:
 - i) A limited number (about 40 lots accounting for background nitrate levels) be allowed to develop. After the total completion of the development of the 40 lots, a study shall be undertaken of sufficient detail to review the operation of existing wells, including quantity/ quality, more specifically, drawdown and interference effects of wells. The study will also evaluate the nitrate plume.
 - ii) If the above mentioned study concludes that nitrate levels, drawdown and interference of wells are not being affected by the proposed lot sizes, then the registration of the second phase shall resume, without further study.
 - iii) If on the contrary, the study indicates the possibility that drawdown and interference of wells are being affected by lot density, then the whole proposed subdivision should be serviced by an alternative communal well water supply or not allowed to proceed at all.

Based on the above and hydrogeological assessment reports , MVC recommends <u>allowing</u> the subdivision application to proceed for <u>limited number of lots only</u>, provided that <u>following</u> conditions are applied/considered to require that:

<u>General</u>

- 1 A consolidated report must be provided appending all the information submitted to date in the relevant sections.
- 2 Recommendations of the Hydrogeological Assessment must be implemented to ensure safe drinking water and minimize the impacts to environment.
- 3 Development should proceed in phases. Minimum lot size in each phase will be 0.8 ha. First phase should not contain more than 40 lots.
- 4 Development is only to proceed in up-gradient side (west side of the creek) as determined through site investigations.
- 5 Recommendation of the subsequent phases and development in east side of the Huntley Creek will be based on the satisfactory performance of water quality, wells and septic system in earlier phase. Report will also evaluate the nitrate plume levels. Atleast 100% of the lots must have been built and occupied in the earlier phase before the performance evaluation. The performance report must include:
 - e) An up-date on the neighboring landuse with an assessment of any new threats to water supply aquifer.
 - b) Water quality analysis including volatile organic carbons of untreated water supply from wells identified in the original hydro-g report in the phase already developed, original wells in the subsequent phase and the representative sample from the newer wells.
 - c) A study addressing the interference and drawdown impacts for existing wells. Study will be conducted on selected wells. The wells must be located in similar

hydrogeology and down gradient of the groundwater and septic flow direction. Water levels in the new well will be monitored for sufficiently long period of time accounting for water levels during peak hours of use and to account for slow response of the aquifer. More then one set of observations must be obtained over sufficient long time to account for seasonal changes.

- d) Water quality analysis from east side (between carp road and huntley creek) from monitors installed in the aquifer receiving the septic effluent and in the test wells to demonstrate that nitrates due to agricultural source are dissipating as implied by the report. Placement of monitors should account for groundwater and nitrate plume flow directions.
- e) Interviews with the property owners to determine if there have been any occurrences of well water quality or quantity problems or malfunctioning septic systems.
- f) A visual inspection of septic systems, together with information from the property owners on septic tank pump out intervals and any other required maintenance.
- g) Re-evaluation of well construction and other recommendations contained in the original hydrogeological report within the context of the updated information,
- h) Re-assessment of original hydro-G within the context of any new criteria or guidelines.
- Well records, GPS coordinates and a map showing well and sampling locations. Waterlevel elevations must be provided. Original lab analysis reports must also be made available. The wells must be located in similar hydrogeology. Borehole logs and site cross-sections are useful tools to clarify site conceptual hydrogeology. The rationale for determining the size of the representative sample must be provided. The placement and number of monitors must be sufficient to provide confidence in the conclusions and recommendations. Methodologies, investigations and analysis including assumptions must be documented in detail.
- 4 Any operation involving groundwater extraction (groundwater source open loop heat pumps etc.) within the development should not be permitted unless a detailed assessment of the water demand on the overall aquifer is completed.
- 5 Nitrate dilution calculations based on MOE 1995 methodology (exclusion of impervious areas, no storm water management contribution towards dilution etc.) are being accepted as basis for recommending the development. If in the future, the total lot coverage area in the development used in the nitrate dilution calculations changes due to some reasons, then applicant shall demonstrate by providing updated calculations as per MOE methodology that the nitrate impacts still meet the provincial criteria of 10 mg/l.

Septic system

- 1 Sewage system designs shall be based on specific investigations to evaluate the suitability of local conditions on each lot. All sewage systems shall be constructed according to the Ontario Building Code and in accordance with the recommendations of the hydrogeological report.
- 2 Where applicable, the sewage systems along the surface water features have to be examined individually to assess their impact on the feature. Proper separation between sewage source and sensitive features should be maintained. This may be problem for lands with boundaries extending all the way to surface water features. In this case,

additional buffers should be included for protection as agreed. Sensitive features are not to be utilized for nitrate reductions for the sewage effluent being generated within the site boundaries.

- 3 Homeowners are advised that the Ontario Building Code allows the installation of selected Treatment Units capable of producing secondary and tertiary effluent quality. Treatment Units may benefit the homeowner, depending on site-specific conditions, as the associated leaching bed area will be smaller. As an added benefit, Treatment Units will reduce the nutrient and contaminant impact on the groundwater.
- 4 A clause shall be registered on title stating that the homeowners shall regularly inspect their sewage systems and follow a sewage system management program to minimize the impact to the groundwater and the risk of system failure. Septic Systems Do's and Don'ts Guides and Septic Smart Guides should be consulted in this regard and are available from regulatory agencies.

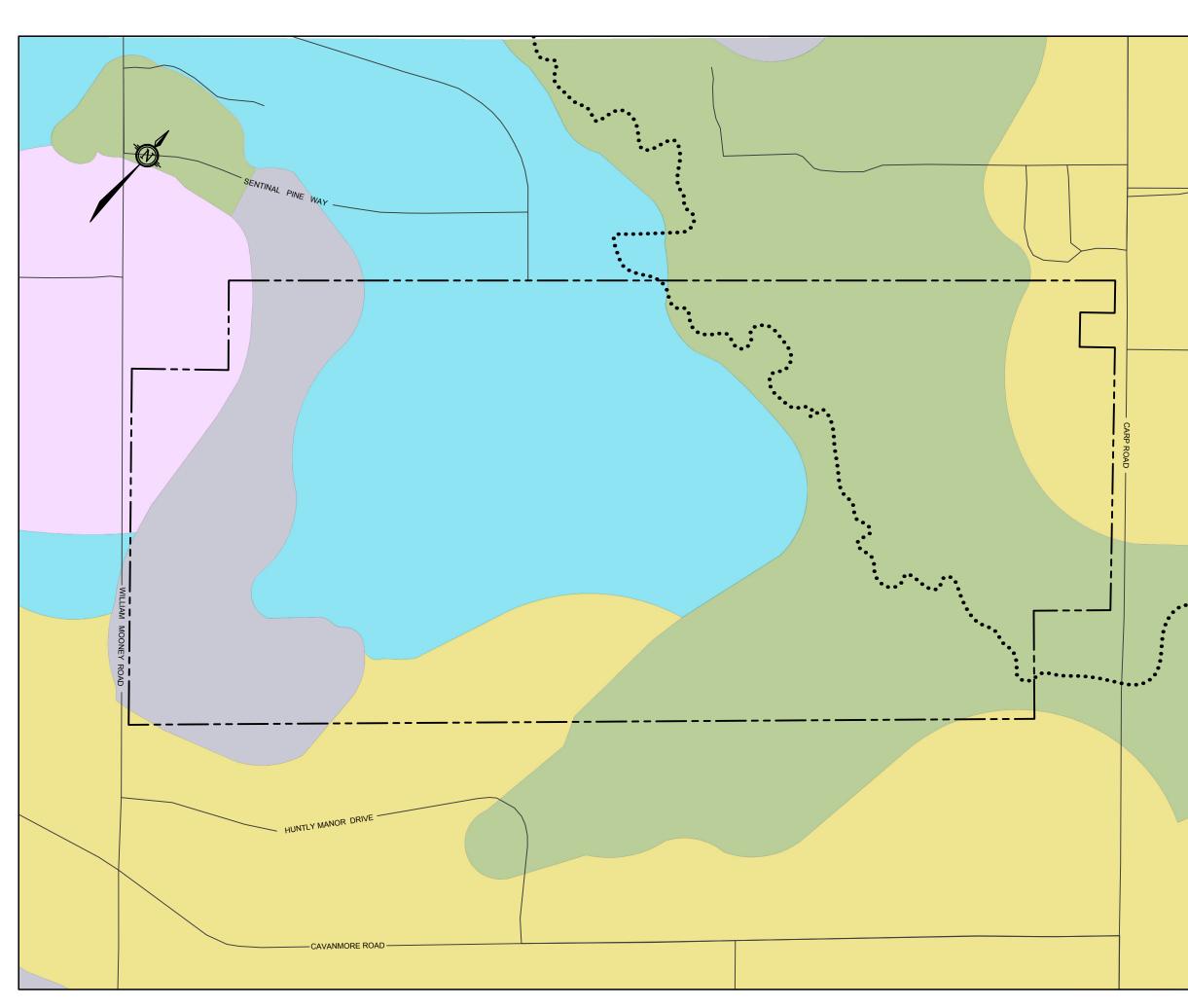
Water Quantity

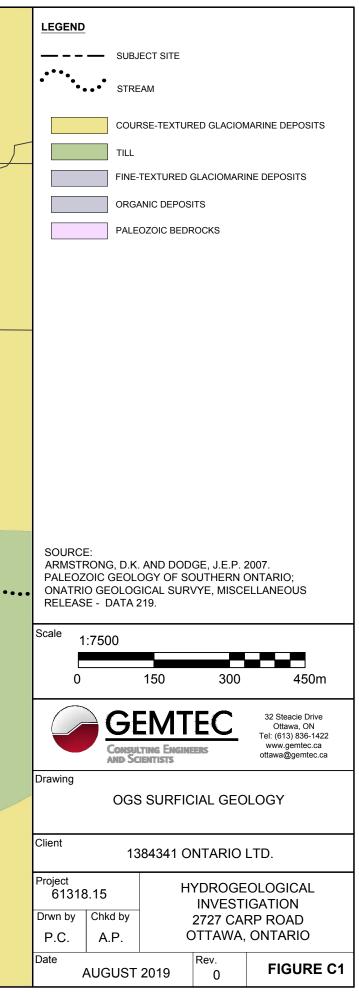
- 1 Wells should be drilled with casing set well into the bedrock and entire annular space filled with a suitable grout.
- 2 Low yielding wells are a possibility. Well driller or hydrogeological professional must ensure that wells have a min. of 13.7 l/min well yield sustainable for 6 hours as per MOE requirements. If this requirement is not met then supplementary storage must be installed to prevent extreme well interference problems during peak hours of well use. Repots has indicated that it may be necessary to drill deeper then 61 on some lots to produce sufficient water supply.
- 3 All water wells should be constructed in compliance with the MOE amended Well Regulations 903 and in accordance with the recommendations contained in the hydrogeological report for ensuring well and water quality safety. The construction and grouting of the wells should be supervised by a certified professional and a well compliance certificate provided to the satisfaction of the City of Ottawa.
- 4 The subdivision agreement contain a clause whereby the owner agrees that any existing wells or other monitors on the site including test wells which do not meet minimum specifications (13.7 I/min yield etc.) of the MOE requirements and hydrogeological assessment (minimum well casing etc.) will be abandoned. Wells that will not be utilized for potable water supply or future monitoring or are at risk due to improper well construction and under surficial or septic impacts, shall also be abandoned in accordance with well regulations (Ontario Water Resources Act, R.R.O. 1990, Regulation 903, and any subsequent amendments). A certificate of compliance shall be provided in this regard.

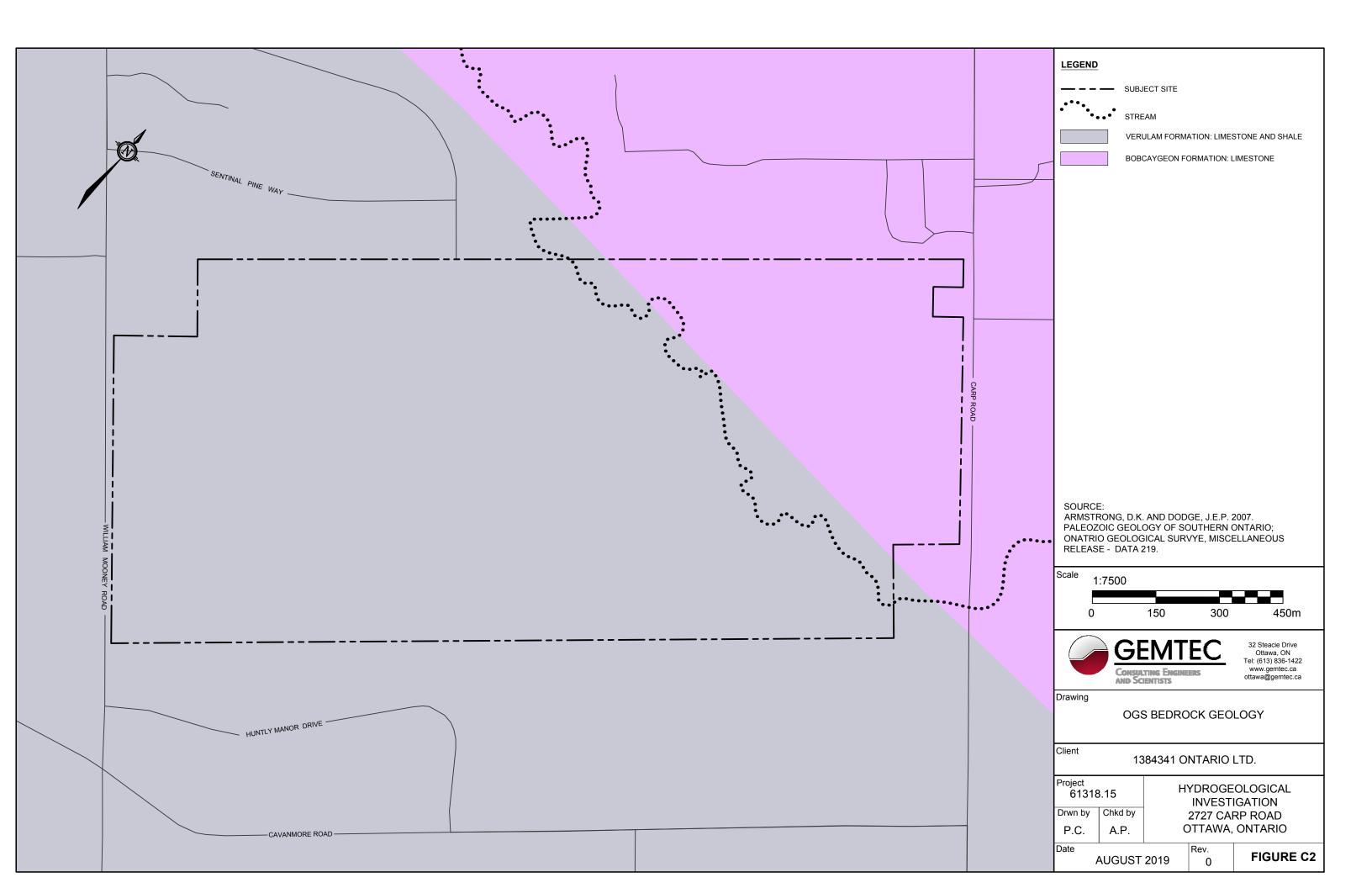
Water Quality

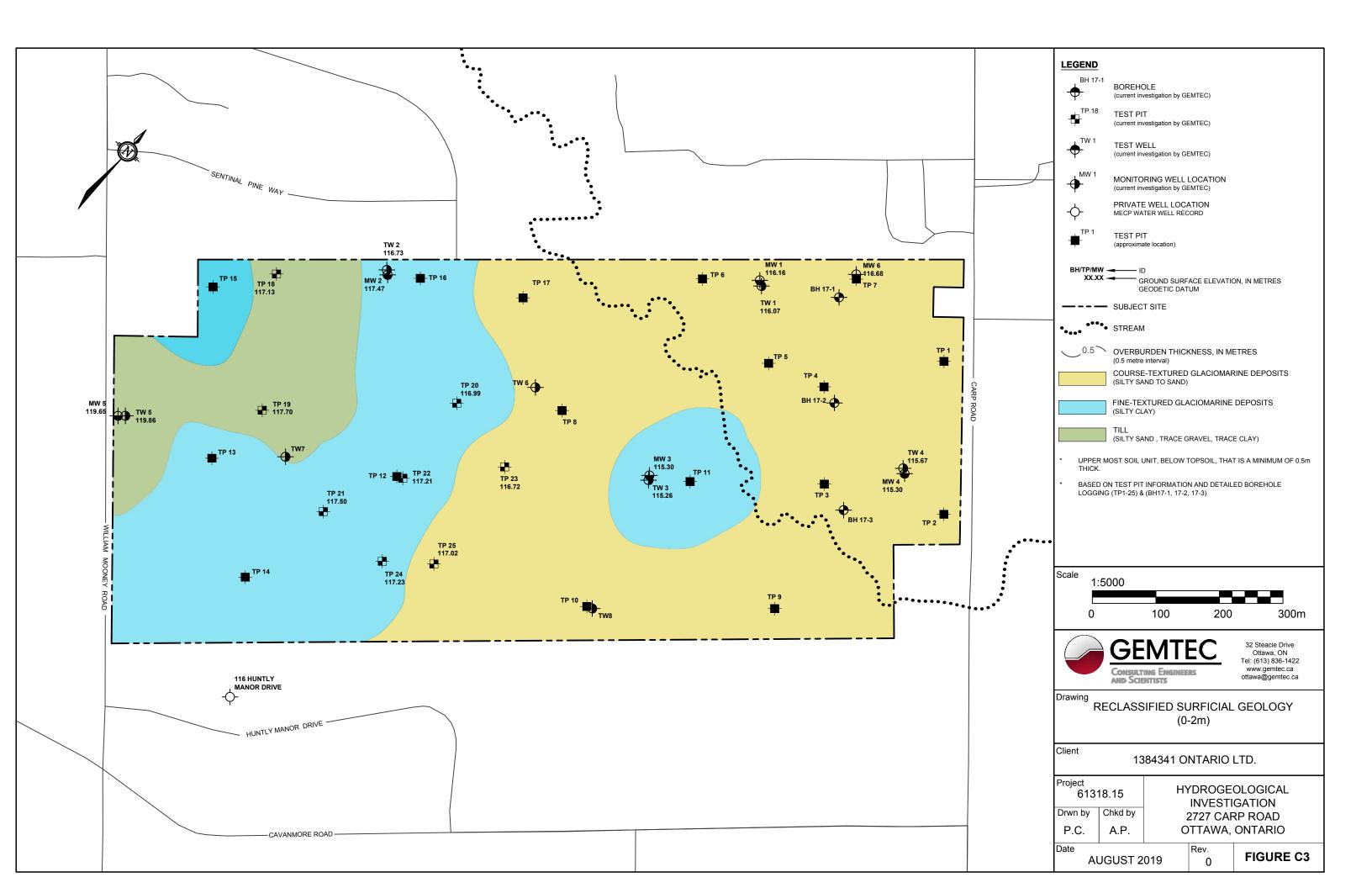
- 1 Prior to connection to the plumbing system each well shall be retested to verify that bacteria, nitrates, flouride and other health related parameters are within the Ontario Safe Drinking Water Standards. Newly developed wells may encounter turbidity, which can interfere with the effectiveness of some treatment systems. Therefore, wells must be properly developed before connection to the house plumbing system.
- 2 The well owner is advised to do a regular water quality analysis for bacteria, septic indicators and other health related parameters in accordance with the Ontario Safe Drinking Water Act (2003). In case of any exceedances, medical officer of health should

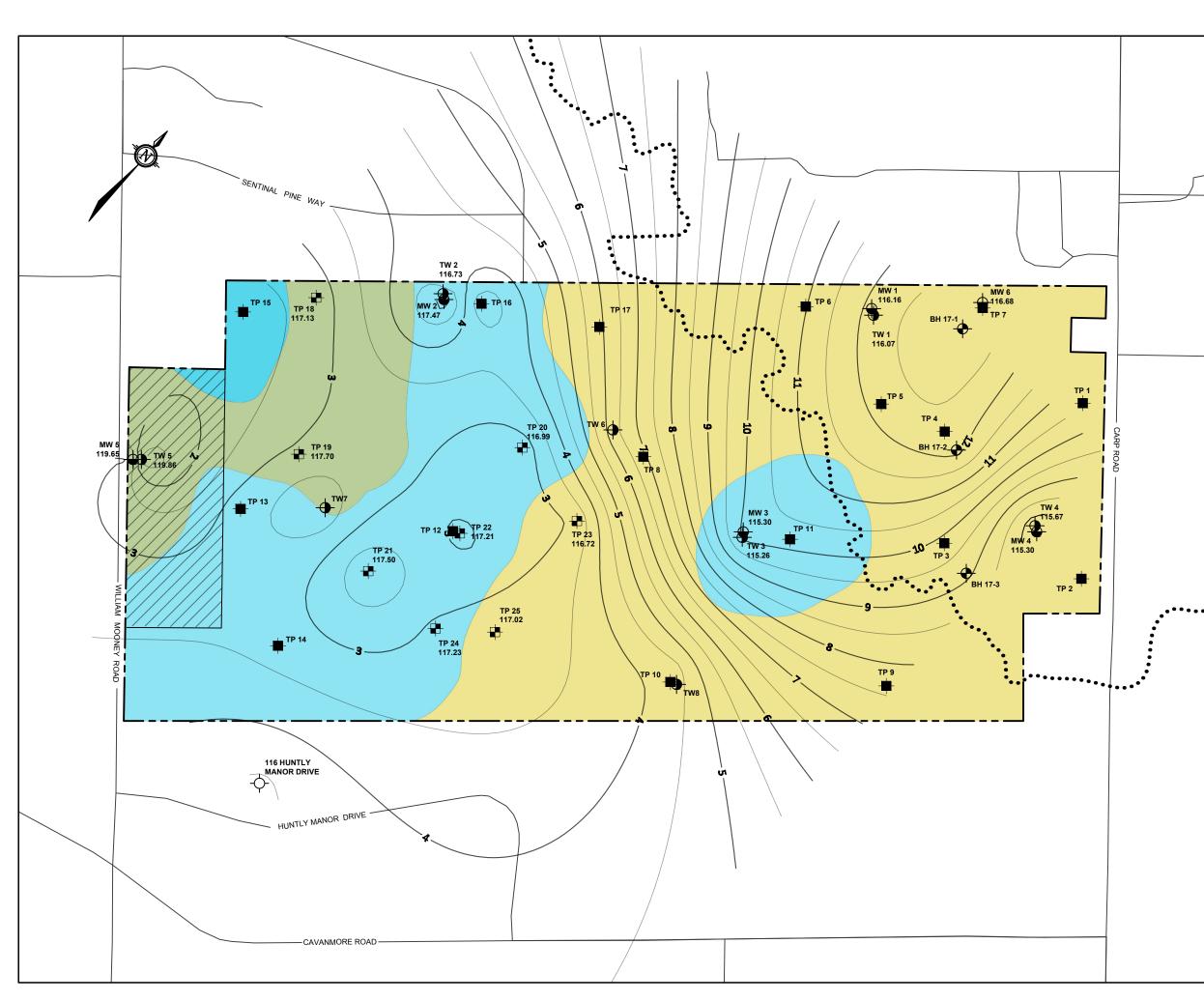
be consulted for further evaluation and necessary measures. Safe Drinking water Act criteria must be followed to avoid any future serious health issues.

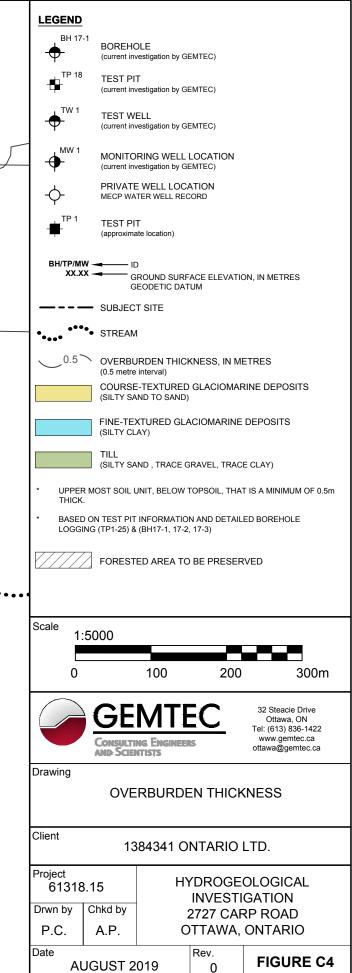

- 3 The homeowner is advised that water quality is not guaranteed over time and treatment/filtration may become necessary. Depending on the well, the water may be subject to elevated aesthetic parameters (hydrogen sulphide, hardness, iron, manganese, TDS, sodium, Organic Nitrogen etc.). Incrustation, taste, odor and color problems are expected. Therefore, well owners should be aware that treatment systems may be required to improve the water quality. Treating the water by softeners may further increase the sodium content. People on sodium restricted diets should use a separate water supply and should consult their physician for advice on the use of the well water.
- 4 Homeowners shall follow a well management program to minimize the potential for contamination of the groundwater from various pollutants. The guides "How Well is Your Well" and "Water Well Best Management Practices" should be consulted in this regard. These guides are available from regulatory agencies.


We would like to take this opportunity to point out that a comprehensive hydrogeological review is conducted based on the MOEE Hydrological Technical Information Requirements for Land Development Applications (April, 1995) including appendices D-5-4/D-5-5 last revised in 1996. The procedures documented in the guidelines are a minimum requirement for risk assessment and must be followed for evaluating the drinking water supplies. The hydrogeological assessments submitted in support of this development lack the reporting and investigative protocols as specified in these guidelines. Such deviations from the guidelines without any rationalization or substantiation and the absence of complete information in one comprehensive report delays the review process.


APPENDIX C


Land Use Maps and Background Documents





RE: 61318.15 - Storage tank / incident report

Public Information Services <publicinformationservices@tssa.org>

Wed 7/26/2017 10:15 AM

To: Andrius Paznekas <apaznekas@hceng.ca>;

Hello Andrius,

Thank you for your inquiry.

We have no record in our database of any fuel storage tanks at the subject address (addresses).

For a further search in our archives please submit your request in writing to Public Information Services via e-mail (<u>publicinformationservices@tssa.org</u>) or through mail along with a fee of \$56.50 (including HST) per location. The fee is payable with credit card (Visa or MasterCard) or with a Cheque made payable to TSSA.

Although TSSA believes the information provided pursuant to your request is accurate, please note that TSSA does not warrant this information in any way whatsoever.

Thank you and have a great day, Sherees

Sherees Thompson | Public Information Agent

Facilities 345 Carlingview Drive Toronto, Ontario M9W 6N9 Tel: +1-416-734-3363 | Fax: +1-416-231-6183 | E-Mail: <u>sthompson@tssa.org</u> www.tssa.org

From: Andrius Paznekas

[mailto:apaznekas@hceng.ca] Sent: Thursday, July 20, 2017 1:37 PM To: Public Information Services Subject: 61318.15 - Storage tank / incident report

Good afternoon,

Please conduct a search for storage tanks and/or incidents at the following addresses located in Ottawa (Carp), Ontario.

I'm interested in commercial/industrial properties within 500 metres of 2727 Carp Road. I'm not sure if there's a better way to request the information (e.g. if you're able to search a radius or have to enter addresses manually), but I've compiled the addresses below. Let me know if I'm able to provide any other information that may aid in your search.

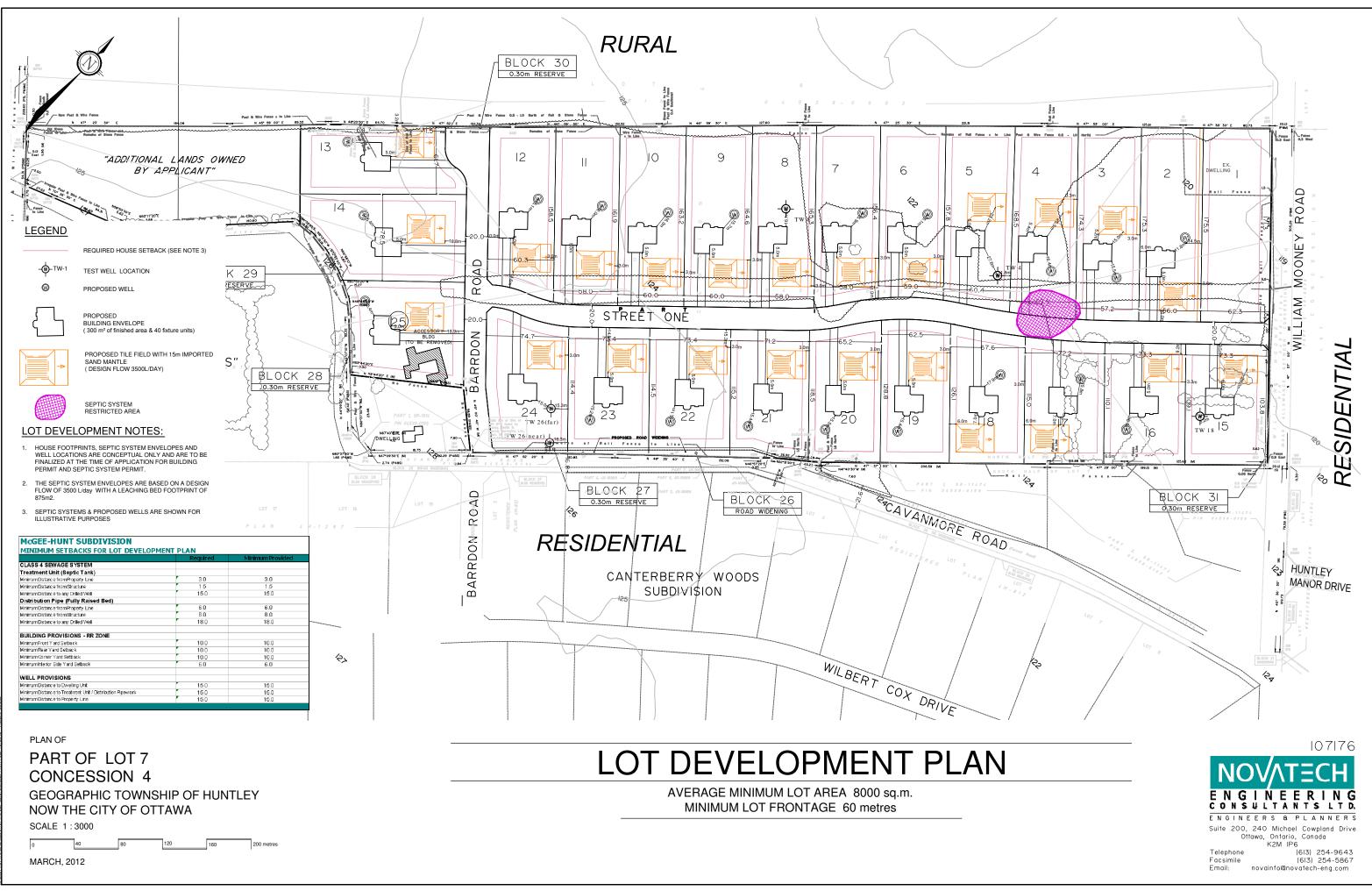
2676, 2688, 2702, 2710, 2726, 2770, 2727, 2739, 2755, 2765, 2775, 2777, 2789, 2793, 2797, 2825, 2591 Carp Road

120, 124, 128, 132, 136, 138, 140 Tansley Drive

205, 215, 225 Maple Creek Crescent

106, 122, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172 Reis Road

158, 171, 189, 197, 217 Cardevco Road


Thank you!

Andrius Paznekas, B.Sc., M.Sc. tel: 613.836.1422 cell: 613.295.8425 fax: 613.836.9731 Houle Chevrier Engineering Ltd.

32 Steacie Drive • Ottawa, Ontario • K2K 2A9 www.hceng.ca

This email is directed in confidence solely to the person(s) to whom it was addressed and may contain privileged, confidential or private information that is not to be disclosed. If you are not the addressee or an authorized representative thereof, please contact the sender and delete this email and any attachments. Houle Chevrier Engineering Ltd. does not accept liability for any damage caused by any virus transmitted by this email. It is the recipients' responsibility to screen this email and its attachments for viruses prior to opening them.

This electronic message and any attached documents are intended only for the named recipients. This communication from the Technical Standards and Safety Authority may contain information that is privileged, confidential or otherwise protected from disclosure and it must not be disclosed, copied, forwarded or distributed without authorization. If you have received this message in error, please notify the sender immediately and delete the original message.

APPENDIX D

Borehole and Test Pit Logs

RECORD OF BOREHOLE 17-1

CLIENT: 1384341 Ontario Ltd. PROJECT: Hydrogeological Investigation JOB#: 61318.15

LOCATION: See Detailed Site Plan, Figure 2

SHEET: 1 OF 1 DATUM: CGVD2013 BORING DATE: 12/07/2017

	Ц		SOIL PROFILE		1		SAM	IPLES		● PI R	NETI SIST	RATIO ANCE)N E (N),	BLOV	VS/0.3r	SH n + N	EAR S	TRENG AL ⊕ F	TH (Cu REMOU	i), kPA ILDED	Ş.	
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m		YNAM ESIST 10	IC PE ANCE 20	NET (N), 3(N VS/0.3r	n W _F	,⊢			% w _L 90	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0			round Surface rown sandy-silt, roots (TOPSOIL)		115.97 115.87		50					· · · · · · · · · · · · · · · · · · ·										
			rown CLAYEY-SILT, some sand, pots			1	50 D.O. SS		4	-			· · · · · · · · · · · · · · · · · · ·									
1		B	rown/grey SILTY-CLAY, some sand,		11 <u>4.97</u> 1.00	2	50 D.O. SS		5													
0		В	rown fine to medium SAND	£_	11 <u>4.50</u> 1.47	3	50 D.O. SS		14	-			· · · · · · · · · · · · · · · · · · ·									
2						4	50 D.O. SS		22													
3		Stem				5	50 D.O. SS		12		•										-	
		Hollow (6	50 D.O. SS		14	-												
4	ower	iameter			<u>111.70</u> 4.27	7	75 D.O. SS		27				•									
			rown/grey fine SAND, some silt and ay		4.27	8	75 D.O. SS		6				· · · · · · · · · · · · · · · · · · ·									
5		5				9	75 D.O.		4			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·									
6						10	SS 75 D.O.		4	•			· · · · · · · · · · · · · · · · · · ·								-	
					10 <u>9.26</u> 6.71	11	SS 75 D.O.		4	•			· · · · · · · · · · · · · · · · · · ·									
7		B st (6	rown/grey fine SAND with occasional tiff to very stiff grey clayey-silt lenses 5.6m, 7.7m and 7.8m)		6.71	12	SS 75 D.O.		9													
						13	SS 75 D.O.		7													
8					107.4 <u>4</u> 8.53		SS															
9		В	rown/grey fine to coarse SAND		8.53	14	62.5 D.O.		10		•										-	
						15	SS 62.5 D.O.		24													
10			rown medium-coarse SAND with		10 <u>5.92</u> 10.05 10 <u>5.61</u>	16	SS 62.5 D.O.		95											•		
	ŀ	p G	ravels irey/black layered fine to medium AND		10.36 10 <u>5.00</u>	17	SS 62.5 D.O.		67				· · · · · · · · · · · · · · · · · · ·				•					
11	i	E G G	rown/grey coarse SAND and		10.97	18	SS 62.5 D.O.		122				· · · · · · · · · · · · · · · · · · ·							>>(•	
12						19	SS 62.5 D.O.		35				· · · · · · · · · · · · · · · · · · ·	•							_	
				$\mathcal{O} \mathcal{O} \mathcal{O}$		20	SS 62.5		35					•								
13	+	In	ferred BEDROCK (spoon refusal)		103.02 12.95		D.O. SS		 >99 1	for 50n	nm-											
14																						
15																						
		 GF	EMTEC			<u> </u>	<u> </u>			::::	:::	: : :	::	::::	::::		::::		::::	::::	LOGG	ED: A.P.
		Consu	LTING ENGINEERS																			KED: K.H.

RECORD OF BOREHOLE 17-2

CLIENT: 1384341 Ontario Ltd. PROJECT: Hydrogeological Investigation JOB#: 61318.15

LOCATION: See Detailed Site Plan, Figure 2

Щ	ЦОН	SOIL PROFILE				SAN	IPLES		● PE RE	NETR. SISTA	ATION NCE (I	N), BLC	OWS/0	.3m	SHE + N/	AR ST ATURA	ireng al⊕F	TH (Cu REMOU), KPA LDED	누일		
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ DY RE	NAMIO SISTA	C PENI NCE (I	ETRAT N), BLC 30				VATE	R CON W	TENT, 9		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
- 0		Ground Surface	0)	115.39																$\left \right $		
- 0		Brown TOPSOIL Brown/grey SILTY-SAND		115:28	1	50		2	•													
		Brown fine SAND		11 <u>4.78</u> 0.61		D.O.																
- 1]	2	50 D.O.		8														
		Brown/grey CLAYEY-SILT, trace	T/	11 <u>4.07</u> 1.32	3	50		6	 ●.				: ::		::	· · · · ·						
- 2		Brown/grey fine to medium SAND	KUA.	11 <u>3.56</u> 1.83 11 <u>3.26</u> 2.13		D.O.																
	tem	Brown/grey CLAYEY, SANDY-SILT, stiff	\mathbb{N}	2.13	4	50 D.O.		9								· · · · ·						
	200 mm Diameter Hollow Stem				5	50 D.O.		4														
- 3	- Auge	Brown/grey CLAYEY-SILT, some sand, loose		<u>112.34</u> 3.05	6	50		2														
	Power	Brown/grey fine SAND	ĽИ.	11 <u>1.73</u> 3.66		D.O.		-													ŔĊ	
- 4					7	50 D.O.		8	•												Ś	
	200				8	50		9								<u></u>						
- 5		Brown/grey fine to medium SAND,		11 <u>0.51</u> 4.88		50 D.O.																
		trace gravel			9	75 D.O.		33								<u></u>						
					10	75 D.O.		29				•										
- 6					11			43														
		-					75 D.O.		43													
- 7				108.07	12	62.5 D.O.		32				•										
		Grey CLAYEY-SILT some sand	M	10 <u>8.07</u> 7.32	13	62.5 D.O.		7	•													
- 8																						
			I	10 <u>6.86</u> 8.53	14	62.5 D.O.		28								· · · · ·						
- 9		Brown/grey fine-coarse SAND, some gravel		0.00	15	62.5 D.O.		19														
Ū	N Diamond Bit				16	62.5		42					•			· · · · ·						
	Diam					D.O.		12														
- 10				105.03	17	62.5 D.O.		29				•										
		Coarse SANDS and GRAVELS	\circ $($	10 <u>5.03</u> 10.36	18	62.5		34														
- 11			00	2		D.O.															Ś	
					19	62.5 D.O.		30				•				· · · · ·						
- 12				102.00	20	62.5 D.O.		35				•										
		Inferred BEDROCK (spoon and auger refusal)		103.20 12.19				<mark> >99 f</mark>	or 50m	m::::			: : : : : :		::							
40		,																				
- 10 - 11 - 12 - 13																						
- 14																· · · · ·						
- 14																						
- 15																						
			1						<u> ::::</u>		:::	: : : :	:::	:: ::	::	::::	::::	::::	::::			
		DISULTING ENGINEERS No Scientists																			ED: A.P. KED: K.H.	

RECORD OF BOREHOLE 17-3

CLIENT: 1384341 Ontario Ltd. PROJECT: Hydrogeological Investigation JOB#: 61318.15

LOCATION: See Detailed Site Plan, Figure 2

SHEET:	1 OF 1
DATUM:	CGVD20
BORING DATE:	13/07/20

S D B 013 017 SHEAR STRENGTH (Cu), kPA

SALE	THOD	SOIL PROFILE	F			SAN	/IPLES		● ^{PE} RE	NETRA SISTA	ATION NCE (N), BLO	NS/0.3r	S⊦ n +1	IEAR S NATUR	TRENG AL ⊕ F	STH (C REMOU	u), kPA JLDED	AAL TING	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	▲ ^{DY} RE	NAMIC SISTA	PENE NCE (N	TRATIC), BLO	DN NS/0.3r	n W		R CON W		% —∣ w _L	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATIO
2	BO		STR	(m)	z		R	BLO	1	0 2	20 3	30	40	50 (50	70 8	30	90		
0		Ground Surface Brown TOPSOIL	1. 1	114.95																P.C.
		Brown SILTY-SAND, roots		114.75 0.20 114.34	1	75 D.O.		3	•											
1		Brown fine SAND		<u>114.34</u> 0.61	2	75 D.O.		7											-	
		Brown/grey CLAYEY-SILT, trace		11 <u>3.43</u>	3	75		7												
2		sand, stiff to very stiff Brown/grey silty fine SAND Occasional layers of stiff CLAYEY-SILT, some sand	JZI/	11 <u>3.43</u> 1.52 11 <u>3.12</u> 1.83	4	D.O. 75		17												
		Occasional layers of stiff CLAYEY-SILT, some sand (2.7m and 4.8m)				D.O.														
3					5	75 D.O.		8												
	Stem				6	75 D.O.		9	()											
4	Jer Hollow S				7	75 D.O.		8	•											
•	Power Auger Diameter Hol				8	75 D.O.		4												
5	Power Auger 200 mm Diameter Hollow Stem				9	75 D.O.		4	•											
	200	Brown/grey CLAYEY-SILT, some		10 <u>9.16</u> 5.79	10	75		2	•											
6		sand, stiff			11	D.O. 75		1												
7		Brown/grey fine SAND	ЦX	10 <u>8.09</u> 6.86	12	D.O. 75		5												
						D.O.														
8				106 73	13	75 D.O.		16												
		Brown/greymedium to coarse SAND, trace gravel		10 <u>6.73</u> 8.22	14	75 D.O.		42												
9				<u>105.81</u> 9.14	15	75 D.O.		82 >99 f	or 50m	n							•			
		Inferred BEDROCK (spoon and auger refusal)		5.14																
10																			-	
11																				
12																				
13																			1	
10 11 12 13 14 15																				
14																			1	
15																				
	G	SEMTEC																	LOGGEI	D: A.P.

	Date Street	cli Tag			MW/	
(Ontario	Ministry of the Environment	्या रहा	0347	iz beliw:		Well Record
Instructions for Completi	ing Form				neguation 30	Page of
For use in the Province	of Ontario only. This de	ocument is a perr	nanent leg:	al document, I	 ^p lease retain for futur	
 Questions regarding col 	moleting this application	cap be directed to	ng. Further			
 Please print clearly in bl 		1/10 ^m of a metre	·	<u> </u>	Ministry Usr	
Well Owner's Information First Name			MUN	a the second	T NOC	LOT
NEWILL	CORPORA	111214 .	ading Addres	ss (Street Numt	RP RUAD	
County/District/Municipality	TUN Township/City	NTown/Village			al Code Telo	S S OG LO
Address of Well Location (Count	y/District/Municipality)		winship		Loi	2 Concession
RR#/Street Number/Name	RP ROAD		City/Town/V	LTGEY Mage AWA	Site/Compa	tment/Block/Tract atc.
GPS Reading NAD Zo	V F Easting	· / A [1] / A.	Unit Make/M	lodel Mod	e of Operation: Und-	R 80 28
8:3 / Eleg of Overburden and B	edrock Materials (see	instructions)	MAGEL	LIN	USM Diffe	entitled, specify
General Colour Most common		er Materiais		· · · · · · · · · · · ·	al Description	Erom To
BROWN TOPS			·		N/E	0 1.5
GREY GRAN		ULDERS	1	<u></u>	ns re	1.5 3.6
	······································	<u>y: 5-14 /-15 2</u>			167 /	<u> </u>
<u> </u>	······		·····		· · · · · · · · · · · · · · · · · · ·	· —· ·
				WELL	#3	
Hole Diameter Depth Metros ; Diameter		Construction Reco	··		Test Pumping test method	Draw Down Recovery
From To Centimetres	linside Material diam Material	thickness centimetros	Depth From	Metres		Time Water Level Time Water Level
0 6 25		Casing				Sratic Lavel
	Steel (;Fibre,	g'ass		:	Pumping rate - (litres/min)	1
Water Record	Galvanized	rela C. Man	O	3	Duration of pumping	2 2
Water found at Metres Kind of Weter	Steel Fibre	• • •		,	Final water level and	3 3
Gas Salty Minerais	05 Galvanizer	4 m m	0	6	Recommended pump	4 4
m Fresh Sulphur	Steel Fibre	: 000	+ 9	9	type.	
☐ Gas ☐ Salty ☐ Minerals ☐ Other	Galvanized	100	• '	# 	depthnetres	(50
	Qualda	Screen			Recommended pump	10 10 15 15
[] Otner.	Outside Steel Fibre diam 52 Plastic Cone		1.5	3	(litres/min) / If flowing give rate -	.20 20
After test/of well yield, water was	5.7 Galvanized	4	4.5	6	(litres/min) If pumping discontin- ued, give reason,	25 25 10 30
i_lOther, specify		No Casing or Scre	ien	1		10 40 50 50
Chlorinated TYes (FNo	(Open hole					60
Plugging and Se Depth set at - Mettes Matchial and typ		volum	andonment e Placed	In diagram below	Location of v show distances of well from	f Weil microad, Iol line, and building.
	5 F-LIJONITE	(cubic	inetres;	Indicate north by	x 6	\gg
1.5 : 3 #8		5	lay			*5
3 45 3	ENTUNITE	6	line .		<u>^</u>	. 20m .
4.5 6 #	8 54110		lagn		*4	
The second se	Method of Construction					X ->
Cable Tool Rotary Conventional)	cuseion 🛄 Jetting	Ē	Digging Other		12.5-	×2
Rolary (reverse) Brring	Water Use			x	i	
Domestic Industri	<u> </u>		Other		CARP	ROAN
Irrigalion Municip		g à air conditioning		Audit No. Z	03582	Vell Completed
🗍 Water Supply 📄 Recharge w	rell 🚺 🚺 Unfinis	_	acd, (Other)	Was the well ov peckage delivere		Thelivered why we DD
Test Hole Abandoned,		emon! woll			Ministry Use	Only
Name of Well Contractor	tractor/Technician Inform	Well Contractor's L	- (Data Source		fractor -
PLUMBING VILL Business Address (street name, numb	A G (F ber, city etc.)	1 657		Date Received	YYYY MM DO Date	CENTED TANK OD
Name of Well Technician (lest name,	2 D CIAIT	LO H- 1LO Well Technician's 1	/ Joence No	Remarka		Fester Number
S. SIZUSE Signature of Technicika/Contractor X & Ulusur/June		Date Submitteo				
1× 8 Miller Vilian	Contractor's Copy	: Ministor's Copy		ler's Copy 🗔	Cette for	rcaile est disponible en français

🕲 Ontario	Minarry of the Environment	Well Tag Numt	مى ئۇلغانى	1480	- MW2- Regulation 90	Well Reco
instructions for Complet	ting Form					page of
	moleting this englic	volu enays in process ation can be directed.	Billig. Fürihei In the Mate			a reference.
All metre measurement Please print clearly in b Well Owner's Information	itie or black ink only	v.	6		Ministry Us	
First Name	Last Name	N	lailing Addre	ss (Street Num	ber/Name, RR.Lot Con.	-ussion)
County/District@danicipality	NO an ra	DCity/Town/Village		rovince Po	stal Code Tele	1210 None Number (include area of 31 8996
Address of Well Location (Count	ty/District/Municipality)	ownship	,,,,,,, _	2LIED and Lot	8 Concession
GPS Reading NAD Zo	WEST CA	Nathing	City/Town/V	TAW,	A Site/Compa	Rec 28
8:3 Log of Overburden and B	8 E 2 12,093 Iedrock Materials	N 5016301	MAGA	LAN	use of Operation:	ntialed
General Colour Most commo		Other Materials		Gene	ral Description	Depth Met
BROWN JOPSO				PAC	ILEO	Erom To
GRET C2					NED	.9 4
GRAY GRAN		SCONES			98 E	4.8 5.
<u></u>	x ucre (c-			M <u>A</u>	0	2.4 6.
					- ·	
··						
·	·······		U ji	<u>LL #5</u>		
Hole Diameter		Construction Rec	ord		Test	of Well Yield
Depth Metres Diameter From To Centimetres	losido dias: Mat	erial Well	Depth	Metres	Pumping test method	Oraw Down Recovery mejWater Level Time Water I
0 6 25	centmerrae	centimetres	From	то		min Metres min Motr
	Steel	Casing			(metres) Pumping rate -	*/el
Water Record		Concrete 4.44	0	3	(litres/min) (Duration of puniping	2 2
Water Record Water found alMetres / Kind of Water	Steet	Fibreglaus			hrs + min	
Gas Sally Monerals	5 SPiastic; Gavania	Condiete 4 m	0	6	Final water level end of pumping metres	3
Dtheir m Fresh Suphur	X Steel	,Horegiaso:		~	Recommended pump type. Shallow Deep Recommended pump	4 4
Gas Salt Minerais	15 Pinstu Gatvaniz	Cancrete , / 88	+,9	09	Recommended pump depthmetres	5
i ; m Fresh Sulphur Gas Salty Minerals	Outride -	Şçreen			Recommended pump	10 10
Other:	Ontride diem		1.5	3	If flowing give rate -	15 15 20 20
After test of well yield, water was i Clear and sediment free	5 7 Galvaniz	· · · · · · · · · · · · · · · · · · ·	245	6	(iitres/nyh) If punping discontin- ued, give redition.	25 25 30 30
]_Øther, specify		No Casing or Scr	ech		liveo, give igasen.	-10 40 50 50
Chlorinated 🔛 Yes 🗰 No	Oosh ho	la l				10 60
Plugging and Se			andonment le Placed	la diagram hata	Location of	Wall r road, lot line, and building.
Depth set at - Metros Material and typ From 1 To 0 1.5 5 1	EAITCALLS	ement sturry) etc. (cubic	metres)	in diagram belo Indicate north b	y allow. X 6	
	D GAND	<u>, </u>	lago.		h.L	- N -
3 45 315	NTUNITE	4	lip	1	TH TH	5×1-12m
4.5 6 +86	5/HAD		inp		x¥ /	1
	Aethod of Construct			{		× 3 300-
Cable Tool SRotary	oussion 🗍	Jetting 🖸	Digging Other	4		in 1
Rotary ireverse) Boring	Water Usc	Driving				X
Domestic Industri	al 🖸	Public Supply	Other	<u>#/</u>		CARP RUA
inigation Municip		Ceoling & air condilioning		Aurlit No. 7	<u>[]3584</u> ^{10ate}	Vell Completed
Water Supply Recharge W	ed []	Unfinished Abendo	med, (Olher)			Delivered YYYY MM I
X Test Hole Abandoned.	poor quality	Dewatering Replacement well		packago deliven	· · · · · · · · · · · · · · · · · · ·	<u>l · · </u>] .
Well Con Name of Well Contractor	tractor/Technician	Information Well Contractor's L	igence No.	Data Sourca	Ministry Use	
PL-WIMBING UIL Business Address (street namy, num)	cr. city etc.)	6579	<u> </u>	Date Received	YYYY NH OD Date	of Inspection Yerry 244
BOX 429	-ARP ON	Well Technician's L		Remarks		Record Number
S. SILUSIA	so as control /		A	AND CHEMICS	12461	- ANGEN AND AND AND AND AND AND AND AND AND AN
Signatore of Technician/Contractor		Date Submitted	315 52		;	

.

-

•

•

FROM : ROB'S SHELL	FAX NO. : 161359	925457	No., 05 2004 03	9.29AN PS
Ontario Ministry of the Environment	Well Tag Nun	13479	MW3	
Instructions for Completing Form	• = 1-51 AV		Regulation 90 Onta	Well Record ario Water Resources An
Of (ISE in the Province of e	Chin doour			pageof
 For use in the Province of Ontario only. 7 All Sections must be completed in full to a Questions regarding completing this applic All metre measurements shall be report Please print clearly in but any but or the structure. 	ation can be directed to the W	legal document. Ple ther instructions and /ater Well Managem	ese retain for future refe explanations are avritable ent Coordinator at 416-2.	erence. On the back of this form. 35-6203
Well Owner's Information and Land			Ministry Us: Only	
Well Owner's Information and Location of First Name			· · · · · · · · · · · · · · · · · · ·	
Couply/District/Municipality CORPO		CAR	Name, RR,Lot,Concussion))
Address of Well Location (County/District/Municipality)	ip/City/Town/Village	Province Postal (P RDAD Coda Telerhore	Number (include area code
Address of Well Location (County/District/Municipality)	Township	Ontario 120	A120 8	Number (includy area code) 3.1.8968
RR#/Strost Number/Name	<u> </u>	NICEY	1 ^{ter} 7	Concession
GPS Reading NAD CARP DUAL	· () · () · ()	MUNITAGE	Site/Compariment/	Block/Tract atc.
= 83 18 E 420 L/D	A CALL210 UNIT MAK	e/Model Mode of	Operation: [] Undif crentiste	U Veraged
Log of Overburden and Bedrock Materials	(see instructions)	1-LLAN	UTM Differ mlipted.	specily
General Colour Most common material	Other Materials	General D	escription	Depth Motres
BROWN SAND	<u></u>	FINE		Erom <u>To</u>
GREY CLAY		- KARK	3	6 26
Porlik CLAY		- W 15 1	r	39 6
·		·····		
·····				·······
	· <u> </u>	WF22 # 4	<u>+</u>	
Hole Diameter	Construction Record		·	
Depth Metres Diamater Inside	1		Test of Well	
From To Centimetros diam Mater	ial hickness	II	Imping test method Draw D Time Wate	Pown Recovery er Level Time Water Level
0 6 25 continetres	Centimetres From	To	in M	etres min Metres
)	Casing	0Te	elros) Level	
Water Percent 5 (TPostic)	Concrete 4 cm ()	(litr	mping rate - 1 res/min)	
Water Record		Dur	ration of pumping 7	
Side i			hrs + min al water level end	
Gan Sally Moerats Selforaria Gevanced		6 ofp	sumping metres	
Fresh Steel		LIVOR	commended pump 4	4
Gas Satt Minerals	Concrete 188 4.9	9 THEC	Shallow Deep	5
m Freeste Subshare	Screen	depi	morres	
Gas Saity Minerals Outside Steel p		3 rate.		10
After test of well yield, water was		If No	wing give rate# 20	20
Clear and sediment free 5.7 Galvenized	4 4.5	6 11 pu	(litres/min)/	25
	No Casing or Screen	uec.	mping discontin- give reason, <0	30 40
Chlorinated (_! Yes 17 No			/	50
Plugging and Sealing Record	Annutar space [] Abandonment]	(60
Depth set at - Metros Material and type (bentonite sturry, neat came	ant slumy) etc. Volume Placed (cubic matres)	In diagram below show	Location of Well distances of well from road, lot	line, and building,
0 1.5: BENJONITI		Indicate north by arrow	хъ	X
1.5 3 H80 SHAND	5 lun	1		"N-
3 45 BELIJONITE	7 4 chm	1000	×S	>
45 6 #80 5AND	s log.		131	
Method of Construction			64	
Cable Tool ARotary (air)			-	
Rotary (conventional) Air percussion	ng Circhigang		x 3	ļ
Water Use	og	20	0 ⊀ 2.	
	ic Supply Other	 #(_		
Sketk Do			583 Date Well Comple	<u>p</u>
Stock Commercial Xilon		Audit No		ded Date
Stock Commistrial News	used ing & six conditioning	Audit No. Z. 03	1583	YYYYY NG 00
Stock Commistrial Prea	ised ing & air conditioning ished Abandoned, (Other)	Was the well owner's info	omation Date Lalivered	אוג סגי <u>ו</u> ו איז אוג סגי איז אוג
Stock Commismial Fruit Irrigation Municipal Cool Water Supply Recharge well Unfin Observation well Abandoned, insufficient supply Dews Test Hole Abandoned, pcor quality Respiration	ing & sir conditioning	Was the well owner's info	<u>/////////////////////////////////////</u>	
Stock Commarcial Privat Infigation Municipal Commarcial Commarcial Infigation Municipal Cool Cool Content of Cool Cool Cool Cool Cool Cool Cool C	ised ing & sir conditioning ished Abandemed, (Other) sering coment well ntation	Vas the well owner's info package delivered?	omation Date I stivered Tes (XINo) Ministry Use Carly	
Stock Commandial More Irrigation Municipal Cool Final Status of Well Cool Water Supply Recharge well Unfin Observation well Abandoned, insufficient supply Dews Test Hole Abandoned, pcbr quality Repla Well Contractor/Technician Information Well Contractor/Technician Information	Ing & air conditioning	Ø U Was the well owner's information of the package delivered? [Data Snarce [omation Date I stivored	
Stuck Commercial Prod Irrigation Municipal Commercial View Irrigation Municipal Cool Final Status of Welf Water Supply Recharge well Observation well Abandoned, insufficient supply Dews Test Hote Abandoned, peor quality People Well Contractor/Technician Infor P2LILMBIAL6 VILLA 6F Stures Address (Street name, number, city etc.)	Ing & sir conditioning Ished Ababdoned, (Other) stering scement well matricon Well Confractor's Licence No <u>EST4</u>	Vas the well owner's info package delivered?	omation Date I stivered Tes (XINo) Ministry Use Carly	MM 10
Stuck Commercial Mort Irrigation Munkcipal Cod Water Supply Recharge well Cod Water Supply Recharge well Unifi Observation well Abandoned, insufficient supply Descent Well Contractor Well Contractor/Technician Information Well Contractor U1114.6 F Schwas Address (street name, number, city etc.) Schwas But of Well Technician (dia name first name) Contractor	Ing & air conditioning	Ø U Was the well owner's information of the package delivered? [Data Snarce [Ministry Use Cnly Contractor	
Stock Commissival Prod Irrigation Municipal Commissival Cool Irrigation Municipal Cool Final Status of Weli Cool Final Status of Weli Observation well Abandoned, insufficient supply Dever Test Hole Abandoned, peor quality Reself Weli Contractor/Technician Infor CLICATEDIALG UILLA OF Striess Address (Street name, number, gity etc.)	Ing & six conditioning Ing & six conditioning Ished Abandoned, (Other) stering scement well Intatron Well Confrictors, Licence No <u>6574</u> 12574120	C- UJ Was the well owned's info package delivered? Data Source Data Roceivoc mmm	Ministry Use Crity Contractor BM Contractor	

FROM : ROB'S SHELL		FRS NO. :	16135925	157	Nev. 05-20	04 09:26AM P3
🕅 Ontario	Minis ay of the £ hyronment	Well Tag Ni	4 0034	1477 (J-174)	- MW4 Beculations	L Well Record
Inclusion for Constant		003	347,	6	Regulations	
Instructions for Completi		· · · · · · · · · · · · · · · · · · ·	. L	~′	_	page of
 For use in the Province All Sections must be co Questions regarding cor All metre measurement 	mpleting this applicat	io celays in proces ion can be directed	Sing, Furthei Lio the Mete			
 Please print clearly in 51 	us som be reporter	1 to 1/10" of a met	re	····	Ministry U	
Well Owner's Information	and Location of V	Vell Information	MUN	· · · · · · · · · · · · · · · · · · ·	ON I	LOT
First Name NEWILL	Last Nanje	HTON		ss (Street Numb	or/Name_RR.Lot.Cor	eassion)
County/District/Municipality	Township	/City/Town/Village	_25	rovince Post	は <u> に ゆ 12</u> の al Code	et hone Number (include area code)
Address of Well Location (Count	EJON O	TTAWA			04160	<u>331 8968</u>
Address of Well Location (Count)	y/District/Municipality)		Township		Lol	Concession
WEST CAR		······································	City/Town/	UTLEY		a Iment/Block/Tract atc
GPS Reading NAD Zo	4 <u>20</u> 201	Northing	$-\mathcal{O}\mathcal{T}$	TAWA	of Operation:	R 8018
8 3 (8 9229191	= 50(h59)	N MAG	NODEL IMODE FLLIN	uton for	differentiated 💽 Averages feral-linded, acepty
Log of Overburden and B	odrock Materials (see instructions)				
General Colour Most common	materia	Other Materials		Genera	al Description	Depth Motres From To
BROWN GHI	ч.Ю		_	FI,	<u>~ /5</u>	
GREY ZAN	0	ウィスティ	_	MIF	DIUM	.9 4.5
GREY SAN			······································		ч <u>г</u>	
	·····					· · · · · · · · · · · · · · · · · · ·
······································			i			
						
				····	·	·····
			···	WELL	# 1	
Hole Diamater		Construction Re	cord		Tes	st of Well Yield
Depth Motres Diameter	Inside i	; Wall	Depth	Metres	Pumping test method	Draw Down Recovery
From To Continetres	diam Maler	ial thickness	·			Time Water Level Time Water Level
0 6 25	centemetres	 centimetres 		To	Pump intake set at -	Static
		Casing			(metres) Pumping rate -	It svel
	Steel 🗍		Ø	3	(litres/min)	11
Water Record	Galvanized				Duration of pumping	2 2/
Water found Kind of Water	Steel	Fibreglass			Final water level end	
I Gas Selly Minerala	5 Relation		0	6	of pumpingmetres	3 3
Other:	Gatvanized				Recommended pump	4 4
i mFrest/Sulphur	Steel U	1	i. G	a	Shallow D95; Recommended pump	
Gas ⊡Sojity ⊡Minerals ⊡Other	Gatvanized		τ, 1	- 1	depitmetres	5
📔 👘 📝 Fresh 🗔 Sulphur		Screen			Recommended pump	10 10
Gus Salty Minorals	Outside Steaf _	Fibregiaus Stot No.	1.5	3	If flowing give rate	15 15
After lest of well yield, water was	Plastic	Concrete	-		(litres/min)	20 25 25
Clear and sediment free	5 / Galvanized	4	4.5	6	If pumping discontin- ued, give reason.	NU 30
Other, specify		No Casing or Sc	reen		ded, give reason.	40 40
Chlorinaled ; Yes XNo	Open hole	•				10 50
Plugging and Se	aling Rucord	Annular space	Abandonment	لم <u>مسم من من</u>	Location	
Depth sat at - Metres Material and typ		nont stumi) etc. Valu	ime Placed	In diagram below	show distances of well fr	or road, lot line, and building.
			bic metres)	indicate north by	arrow. XG	>->
	ENTONITE		her.			IN I
	O GAND	<u></u>	Lury_			XS ,
	E-MTCHITE	<u>7</u>	- inge		*	,
4.5 6 #84	· G. S-JIM		Lay		~ ¢	
ļ	ethod of Construction	<u></u>		100m	1 4 1	x 3 /
Cable Tool Rolary (Digging		XL	·
Rotary (conventions!) Air perc	=	nting [tving	Other	9	These T	X ~ '
Rotary (reverse) Boring	Water Use			8	100 37m-	· ·
Domestic Industria	11P1		Other			
Stock Comme		ot used Colina & air conditionling		Audit No	CARP	2 5 A D
	Final Status of Well			Audit No. Z	03580	סק אלא צרויזי
Water Supply () Recharge we			doned, (Other)	Was the well ow	COLOR DE CONTRACTOR DE COLOR D	te Lielivered ymy Ett DC
Condense in Abandoned, Abandoned, Ki Test Hole		ewatering epiacement well	··	package delivered	1? TYes ANO	
Well Con	tractor/Technician In	formation			Ministry Us	
Name of Well Contractor	1 815	Weil Contractor's	Lipence No	Data Source	Co	alti-210r
PLUMBING LIL Business Address (street name, numb	er, city etc.)			Date Received	YVY MM DO Da	e crinspection yyry Mit DD
150× 429 (LARP ON	Woll Technician's	Licence No.		i	II C a need Minester
Name of Well Technician (last name, 1	nət natrio)	210	2	Remarks	.We	il Fecord Number
Signature of Technician/Ophtractor	6	Line Submitted YYY	בר אנא צי	1		

FAX NO. : 16135925157

Nov. 05 2004 09:25AM P2

فالأانسير واللا اتا	Minis ty of We	il Tag Nurnt		 Regulation 90	Well Record
Instructions for Completin	ng Form				pageof
 For use in the Province 	of Ontario only. This do npleted in full to avoid de ipleting this application o is shall be reported to 1	ilays in processing. Furth an be directed to the Wa	or real archoose of	ad explanations are mu) reference. Hable on the back of this form. 116-235-6203.
Well Owner's Information	and Location of Well				LOT
First Name <u>NEWILL</u> County/District/Municipality <u>WESS</u> Address of Well Location (County	Last Name <u>CRPORA</u> Township/City/ <u>FJON</u> Of Distort/Municipality)	214 25	Province Pos	2014-160 0	hone Number (incluce area code)
WEST CARL		1-41	(IZEY		7 <u> </u>
	LRP ROAT		TAWA		ntment/Block/Tractietc. R 8048
GPS Reading NAD Zor 8;3	<u> </u>	Nonhing Unit Mak	e/Model Mod		d crentizaded Avoraged
Log of Overburden and Be General Colour Most common		nstructions)	Gena	al Description	DepinMetrus
OREY HARE	· · · · · · · · · · · · · · · · · · ·	JOLIES		CIZEIS	Exam Ju
	<u> </u>		1° <u>//</u>		
		· · · · · · · · · · · · · · · · · · ·			·····
	·				· · · · · · · · · · · · · · · · · · ·
			WELL	- 46	
Hole Diameter	ic	onstruction Record		Tes	t of Well Yield
Depth Melres Diameter	Inside	Vvali Depit	Metres	Pumping test method	Draw Down Recovery
Prom To Centiscotras	diam Material pentimetres	thickness From	Тс	Pump intake set at -	min Metres min Metres
	: (Sipaul 4) Ethan	Casing		(metres) Pumping rate	L :vel
	Steel Fibres		3	(litres/min)	
Water Record	Gaivanized			Duration of pumping	2 2
Gas Salty Materials			.9	Final water level end of pumping metres	
Other:	Gsivanized	A\$\$	· · · · · · · · · · · · · · · · · · ·	Recommended pump	4 / 4
imFrestr (Sulphur □ GasSsRyMinerals	Plessic Conce	1 ;		lype. Shallow []Deep Recommended pump depth.	5 5
Other Sulphur	; Caivenized	Screen		Recommended pump	0 10
Gas / Salty Minerals	Outside Steel Fibreg			if flowing give rate /	6 <u>15</u> 20 20
After test of well yield, watch was Cloar and sediment free	5 7 Gaivanized	4	~	(iitres/min)	115 25 30 30
Other, specify		o Casing or Screen		If pumping discontin- ued, give resear.	40 40
Chlorinated Yes XNo	🗌 Opan hole				10 50 00 60
Plugging and Se		nular space 🦳 Abandonme		Location of	
Depth set et - Metres Material and by			In diagram belo Indicate north b		NI road, lot line, and building.
	SO SAND	4		8mI u/a	W.K.
	<u> </u>				
				50,	° ⊯l5 \
	lethod of Construction			±4	2 5
Cable Tool	air) 📋 Dismer		-1		# 3 (
Rotary (conventional) Air perc	🛄 Orlving	Other	= ++ (#2
Donustic Hindustra	Water Use	Supply Ditter			· · · · · · · · · · · · · · · · · · ·
Stock Commo	rcial 🛛 🖉 Not use		Audit No. 7	DOLOLO	e Will Completed
	Final Status of Well			03303	e Lietivered yyyy Mei DD
	insufficient supply Dewate	ning	package detver		
V Test Hele Abandoned. Well Con	peor quality 1 Replao tractor/Technician Inform		Data Struct	Ministry Us	e Cinly http://tor
Name of Well Contractor (-24171191116	ILLAGE	Well Contractor's Licence No			
Business Address (street name, numb	per, city etc.)	ROALLO	Dele Received		e of Inspection YVYY Kal op
Name of Well Technicism (last name, 5 · 2/2665 F2	first manne)	Well Technician's Licence Na Date Submitted YYYY 13M	Remarks	(We	if Fecord Number
Signature of TephyliciaryContingetor		Date Submitted YYIY MA L	0		

(🕅 Ontario	Ministly of Well Tax	num	MW6	
Ontano	the Environmion'	103477 Loberty	i	Well Record Intario Water Resources Act
Instructions for Completi	ng Folm 0034	122		
				page of
 All Sactions must be co 	of Ontario only. This document is a per mpleted in full to avoid delays in process inpleting this application can be directed	manent legst document sinc. Further instructions	Please retain for futur	elerenco.
 Questions regarding cor All matrix massurements 	npleting this application can be directed ts shall be reported to 1/10 th of a metr	to the Water Well Manag	ement Coordinator at 4	6-235-6203.
 Please print clearly in bli 		e,	Ministry Use (
	and Location of Well Information	MUN	CON	
First Name		Aailing Address (Street Nun		
Lifewille	-BRPORATION	2591 0	ARP ROA	
6/EST CAD?	KTON OTTHUIH	Province Po		one Number (includu area cobe)
HIFS J CH122 Address of Well Location (County	/District/Municipality)	ownship	20151C061	5 85/ 89/28
WESJCHRZ	ETON	164NTLEY		3 3
RR#/Street Number/Name		City/Town/Village	Site/Compart	nent/Block/Tract etc.
GPS Reading NAD Zo:	ARK ROAN A Fassing	Unit Make/Model Mo		2 8018
813 V S	ミド ナダダ 65% バーミロ/6778	MAGELIAN		rentiated
	edrock Materials (see instructions)			
General Colour Most common		Gene	rat Description	Ecom To
BROWN SAN	0	F	INE	
GREY CZA	¥	14 1	21)	11 1.1
MIZOWNI SALI	n	F.	V /E	
GREY GA	Un Copput		-12 \$ FE	- <u>- 1</u>
	N N UN GRAUFEL		14 > 12	7.2.0
	i	- i		
			· · /	
	······································	WELZ	<u>F1</u>	
Hole Diameter				
Depth Metres Dismeter	Construction Rec		- f f	Well Yield
From (To Contimetres	diam Material Wall	Depth Metres		Draw Down Recovery
0.6.25	continetres continetres	From To	1 1	n Melres min Metres
	Casing	<u> </u>	- Pump intake set at - Sto (metres)	lic
· · ····	i Steel EFinroglass		Pumping rate - 1	1
Water Record	5 Prastic Concrete 4	03	(litres/min)	
Water found / Kind of Morree	Savatazed		Duration of pumping 2	
at Metres Fresh Sulabur	Steel Finhroghass		Final water love! end	
Ges Saily Minerals	5 Concrete 4	0 6	ef pomping metres	7
	Steel EFBreglass	i :	type, Shallowin Deep	4
Gas Safy Minerals	15 Piestic Concrete 188	+9 9	Recommended pump	5
Other:	Galvaeized		depth,metros	
i um ZiEcosh ⊒ Sulphur ⊒Gas Zi Salty ⊒ Minerafs	Cutation I		Recommended pump () 10
Other:	Outsido Steel Fibrosiass Stot No	1.5 3	(iltres/mig)	15
After test of well yield, water was	5.7 Gebruizet 4	2011 5	(iitres/min)	
Clear/and sediment free		7.> 0	li pumping discontin- ued, give réason	with the second se
	No Casing or Sch	esn		
Chlognáted Yes Xi No	Cipen hole			
Piugging and Se	aling Record Anoular space	bandonment	Location of 'A	/eli
	a cherotopite al une peat cament duroit alo	te Placed In diagram beto	w show distances of well from r	
	PERITURITE 4	ndicato north t	y arrow. XG	
	6 SALD 8	******		x5
	F-AUTONITE 6		YЦ	
		les 1	X 4	
	J Charles Clarker -		۲.	• 3 }
M	ethod of Construction			i
Cable Tool SRotary (ik) [] Daimond []	Digging	- >	(#)
Bolary (conventional) Air perce	Jeslan 🗋 Jetting 📃	Other		
Rotary (reverse) Boring	Driving Water Use		21m	12m.
Douvestic Industria		Other		
Stock Commer	oial 🔂 Not used		CAR	PROMP
Irrigation Municipa	I Cooling & sir conditioning Final Status of Well	Audit No. Z	$03581^{\text{Date Vie}}$	all Completed
Water Supply Recharge we	I Unfinished Abarkio		wher's information Date I to	
Observation well Abandoned, i Test Hole Abandoned, g	nsufficient supply 🚺 Devatoring boor quality 🔄 Replacement well	package deliver	sd? [Yes No!	
	ractor/Technician Information		Ministry Use Or	ıly
Name of Well Contractor	Well Contractor's L	Cance No. Data Source	Contaire	tor
PLMMBINE V Business Address (street name, number 140X 429 C	(2LBGE 657	7 Date Roceived	line in the second	Inspection Yary Met DD
170X 429 C	ARDONT 1204	120	YYYY MM DD Daterri	Inspection Yvyy Mer DD
Name of Well Technician (las) name, in	stiname) Well Technician's L 3/0	icenco No. Remarks	!₩e0.5 m	cord Number
Signature of Technician/Contractor	Data Submitted			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
x & Ullevel gue	Contractor's Copy [] Ministry's Copy []	MM OD		ile est disponible en français

·

L

.

RECORD OF BOREHOLE MW4D-R

CLIENT: Cavanagh Construction Ltd. PROJECT: Hydrogeological Consultations JOB#: 61318.15

LOCATION: See Site Plan, Figure 2

SHEET:	1 OF 1
DATUM:	CGVD28
BORING DATE:	May 31 2019

щ		ДŎ	SOIL PROFILE				SAN	IPLES		● PEI RE	NETRA SISTAI	TION NCE (N), BLOV	VS/0.3n	HR 1 + ר	IEAR S	TRENG AL ⊕ I	GTH (Cu REMOU	J), kPA JLDED	<u> </u>	
DEPTH SCALE	METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m		NAMIC	PENE NCE, BI	TRATIO LOWS/(N).3m	w	WATE	R CON W	ITENT,		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	0		Ground Surface		116.35																
E			Dark brown silty sand, with organic material (TOPSOIL)		<u>116.17</u> 0.18															1	
			Brown SILTY SAND, trace gravel and cobbles		0.18	1	SS	229	4												
-	1				· · ·	2	SS	310	8												
-					<u>114.98</u> 1.37	-															
-			Brown SILTY SAND			3	SS	559	3	•											
	2				· · ·																Bentonite Above ground protector
-		er (10mm OD)				4	SS	508	5	•											
	3	Power Auger Hollow Stem Auger (210mm OD)	- -		· · ·																
		Hollow St			· • •	5	SS	483	7												
	4		Grey SILTY SAND		<u>112.44</u> 3.91	6	SS	508	7	•											
1 31/7/19					•																Filter Sand
EC 2018.GL	5					7	SS	508	3	•											50 mm diameter, 1.52
																					pipe
17-29.GPJ					· • • •	8	SS	610	2	•											Groundwater seepage observed at
	6		End of borehole		110.25 6.10																1.52 m below
																					ground surface
	7																				-
18.15_BOK																					
GEO - BOREHOLE LOG 61318.15. BOREHOLE LOGS GNT V02. 2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19																					
	8																				
3E0 - BOR			SEMTEC DINSULTING ENGINEERS AD SCIENTISTS																		ED: A.N. KED: A.P.

RECORD OF BOREHOLE MW4S-R

CLIENT: Cavanagh Construction Ltd. PROJECT: Hydrogeological Consultations JOB#: 61318.15 LOCATION: See Site Plan, Figure 2

SHEET:	1 OF 1
DATUM:	CGVD28
BORING DATE:	May 31 2019

IS SILE	THO	SOIL PROFILE	L L			SAN	IPLES		●PE RE	NETRA SISTA	ATION NCE (N), BLOV	/S/0.3m	SH + N	IEAR S NATUR	TRENG AL⊕F	TH (Cu REMOU	i), kpa Ilded	ING	PIEZOMET
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m	RE	SISTA	NCE, B	IRATIO LOWS/0	N 0.3m	W	.⊢–			% ⊣w _∟ ₽0	ADDITIONAL LAB. TESTING	STANDPIF
0		Ground Surface Dark brown silty sand, with organic material (TOPSOIL)	7 <u>11</u> 71	116.33									· · · · ·							
		material (TOPSOIL) Brown SILTY SAND, trace gravel and cobbles		<u>116.15</u> 0.18	1	SS	432	2	•											Above ground
																			· · ·	protector
1	0mm OD			• • •	2	SS	457	3	•											Bentonite
	Stem Auger (210mm OD)			114 70					-											Filter Sand
2	ow Stem A	Brown SILTY SAND		<u>114.70</u> 1.63	3	SS	508	3												50 mm diameter, 1.52
2	Hollow			113 99														· · · · · · · · · · · · · · · · · · ·		m length slotted PVC pipe
		Grey brown SILTY SAND		<u>113.99</u> 2.34	4	SS	559	7	•											50 mm diameter, 1.52 m length slotted PVC pipe
3				. <u>113.28</u> 3.05															· · ·	Groundwater seepage observed at
		End of borehole		3.05															•	1.52 m below ground surface
																			· · · · · · · · · · · · · · · · · · ·	
4																			· · · · · · · · · · · · · · · · · · ·	
																			· · · ·	
5																				
6																				
7																				
8		SEMTEC																		

CLIENT:	Cavanagh Construction Limited
PROJECT:	Hydrogeological Consultations - Rump Lands
JOB#:	61318.15
LOCATION	One Test Dit Leasting Dise. Cincer 4

RECORD OF TEST PIT 18

SHEET:1 OF 1DATUM:CGVD28BORING DATE:May 29 2019

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

	SOIL PROFILE		i	IBER	ЦЦ									μģ	WATER I EVEI
METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SAMPLE TYPE	+ •	IATUR.	al ⊕ I	GTH (Cu REMOU	Wp	.		% w _∟ 90	ADDITIONAL LAB. TESTING	WATER LEVEL OPEN TEST F OR STANDPIPE INSTALLATIC
	Ground Surface	ο.	117.1	, ",									:		
)	Dark brown sandy silt, with organic material (TOPSOIL)	<u>11, 11, 11,</u>	<u>116.9</u> 0.2	1	GS										Test pit backfilled with excavated material
	Grey brown silty sand, some gravel, some clay, cobbles, boulders (GLACIAL TILL)		0.2	2	GS		i.							мн	
														-	
	Grey sandy clayey silt, some gravel, cobbles and boulders (GLACIAL TILL)		1 <u>15.0</u> 2.1	3	GS										
			114.4												
	Practical refusal in glacial till End of test pit		<u>114.4</u> 2.7												Minor groundwater inflow at 2.13 m below
														1	ground surface. Significant groundwater
															inflow at 2.74 m below ground surface
	GEMTEC									 				LOGO	GED: A.N.

 CLIENT:
 Cavanagh Construction Limited

 PROJECT:
 Hydrogeological Consultations - Rump Lands

 JOB#:
 61318.15

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: May 29 2019

Щ	SOIL PROFILE	i	i	BER	Ш		
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	SAMPLE NUMBER	SAMPLE TYPE	SHEAR STRENGTH (Cu), kPA WATER CONTENT, % + NATURAL ⊕ REMOULDED W _P → W _L W _L W _L WATER LEVEL I OPEN TEST PIT OR STANDPIPE INSTALLATION	T
DEI		STRA	(m)	SAMF	SAI	10 20 30 40 50 60 70 80 90	N
— 0 -	Ground Surface Dark brown sandy silt, with organic material (TOPSOIL)	$\frac{1}{2\sqrt{1^{2}}} \frac{1}{2\sqrt{1^{2}}} \frac{1}{\sqrt{1^{2}}}$	117.7			Test pit backfilled with excavated material	
-	Grey brown silty sand, some gravel, some clay, cobbles, boulders (GLACIAL TILL)		<u>117.5</u> 0.3				\$Q\$4Q\$4Q\$4Q\$4Q\$
- 1							
- -							IZHOZHOZHOZHO
- - - 2			_1 <u>15.7</u>				SHOEHOEHOEHOEH
- - -	Grey sandy clayey silt, some gravel, cobbles and boulders (GLACIAL TILL)		2.0				
- - -							
- 3 - -	End of test pit		<u>114.7</u> 3.1			Minor groundwater inflow at 1.98 m below	
						ground surface	-
- - - 4							-
	GEMTEC Consulting Engineers And Scientists	I	I		1	LOGGED: A.N. CHECKED: A.P.	

CLIENT:	Cavanagh Construction Limited
PROJECT:	Hydrogeological Consultations - Rump Lands
JOB#:	61318.15

SHEET:1 OF 1DATUM:CGVD28BORING DATE:May 29 2019

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

	SOIL PROFILE			BER	ЪЕ											μŪ	
METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SAMPLE TYPE	+ 1	NATUR	TRENG	REMOU	LDED	W ₁			TENT, 9	% ⊣w_ 90	ADDITIONAL LAB. TESTING	WATER LEVEL OPEN TEST P OR STANDPIPE INSTALLATIO
	Crewed Surface	ەن ا	117.0	0)								1::::	1::::		::::		
) .	Ground Surface Dark brown silty sand / sandy silt, with organic material (TOPSOIL)	<u>17 17 11</u>	<u>117.0</u> 116.8 0.2	1	GS											-	Test pit backfilled with excavated
	Very stiff to stiff, grey brown SILT and CLAY, some sand (WEATHERED CRUST)		0.2	2	GS				C							мн	material
			110.0														
	Grey brown SILTY SAND		<u>116.2</u> 0.8	3	GS												
	Grey brown silty sand, some gravel, some clay, cobbles, boulders (GLACIAL TILL)		<u>115.3</u> 1.7	-													
	cobbles, boulders (GLACIAL TILL)																
			1 <u>14.9</u> 2.1														
	Grey sandy clayey silt, some gravel, cobbles and boulders (GLACIAL TILL)			4	GS												
		e Co g															
	End of test pit		<u>114.3</u> 2.7														Minor to moderate groundwater
																	inflow at 1.02 m below ground
																	surface
	GEMTEC	I				<u> ::::</u>	:	<u> </u>	<u> ::::</u>		::::	<u> ::::</u>				LOGG	GED: A.N.

CLIENT: Cavanagh Construction Limited PROJECT: Hydrogeological Consultations - Rump Lands JOB#: 61318.15

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: May 29 2019

ALE	SOIL PROFILE			ABER	ΥΡΕ										AL	WATER LEVEL IN
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SAMPLE TYPE	+ 1	IEAR S ⁻ NATUR/ 10 2	AL⊕I	REMOU	LDED	W _F	, 	R CONT W O 70 8	 % ⊣w_ 90	ADDITIONAL LAB. TESTING	WATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION
		°.	1175	0)												
- 0 -	Ground Surface Dark brown silty sand / sandy silt, with organic material (TOPSOIL)		_ 117.5 													Test pit backfilled with excavated material
-	Very stiff to stiff, grey brown SILT and CLAY, trace sand (WEATHERED CRUST)															
- 1	Grey brown silty sand, some gravel, some clay, cobbles, boulders (GLACIAL TILL)		<u>116.6</u> 0.9												-	
-	CODUES, DUILUEIS (GLACIAL TILL)															
-	Practical refusal in glacial till (boulders)		<u>115.7</u> 1.8													Significant
- - 2 -	End of test pit														-	Significant groundwater - inflow at 1.25 m below ground surface
-																-
-																
- 3 - -															-	-
-																-
-																-
- 4																-
	GEMTEC Consulting Engineers and Scientists	I	L	I	I	<u></u>	<u></u>			<u> </u>	<u></u>	<u> </u>		 <u></u>		ED: A.N. KED: A.P.

 CLIENT:
 Cavanagh Construction Limited

 PROJECT:
 Hydrogeological Consultations - Rump Lands

 JOB#:
 61318.15

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: May 29 2019

щ	SOIL PROFILE			BER	Щ										ں _		
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	<u>ELEV.</u> DEPTH (m)	SAMPLE NUMBER	SAMPLE TYPE	+ ٢	NATUR	AL ⊕∣	GTH (Cu REMOU 30 4	LDED	W _F	-	 	% ⊣w_ 90	ADDITIONAL LAB. TESTING	WATER LI OPEN TE OF STAND INSTALL	ST PIT ST PIT PIPE ATION
	Ground Surface	+ +	117.2														
- 0	Dark brown to black, sandy silt, with organics	<u></u>	117.2													Test pit backfilled	
-	(TOPSOIL)	1/ <u>11/</u>														with excavated	
			<u>117.0</u> 0.3													material	
	Brown SILTY SAND																
_			<u>116.7</u> 0.5														
	Very stiff to stiff, grey brown SILT and CLAY, trace sand (WEATHERED CRUST)		0.5														
	sand (WEATHERED CRUST)																
- 1																	
			115 7														
	Grev brown silty sand, some gravel, some clay.		<u>115.7</u> 1.5	1													
	Grey brown silty sand, some gravel, some clay, cobbles, boulders (GLACIAL TILL)																
- 2															-		
			1 <u>15.1</u> 2.1														
	Grey sandy clayey silt, some gravel, cobbles and boulders (GLACIAL TILL)	C O Z															
- 3	End of test pit		<u>114.2</u> 3.1													No	603
																groundwater observed entering	
																test pit during	
																time of excavation	
-																	
-																	
- 4													 		1		_
	GEMTEC														LOGO	GED: A.N.	
	Consulting Engineers and Scientists														CHEC	CKED: A.P.	

CLIENT:	Cavanagh Construction Limited
PROJECT:	Hydrogeological Consultations - Rump Lands
JOB#:	61318.15

SHEET:1 OF 1DATUM:CGVD28BORING DATE:May 29 2019

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

S	SOIL PROFILE	Ŀ	1	MBER	YPE								2/6	JAL ING	WATER LEVE
METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SAMPLE TYPE	+ 1	NATUR/	AL ⊕ I	STH (Cu REMOU 30 4	LDED	P		~ ⊣w_ 90	ADDITIONAL LAB. TESTING	WATER LEVE OPEN TEST OR STANDPIPI INSTALLATIO
	Ground Surface		116.7												
	Dark brown to black, sandy silt, with organics (TOPSOIL)	$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1}$	116.5	1	GS										Test pit backfilled with excavated material
	Grey brown SILTY SAND		0.3	2	GS										
	Grey SILTY SAND / SANDY SILT		<u>116.0</u> 0.8	3	GS										
														-	
			<u>114.9</u> 1.8												
	Stiff, grey SILT and CLAY, trace sand		1.0	4	GS			0						мн	
	End of test pit		<u>113.7</u> 3.1												Minor groundwater inflow at 0.71 m
															below ground surface

 CLIENT:
 Cavanagh Construction Limited

 PROJECT:
 Hydrogeological Consultations - Rump Lands

 JOB#:
 61318.15

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

 SHEET:
 1 OF 1

 DATUM:
 CGVD28

 BORING DATE:
 May 29 2019

Щ	SOIL PROFILE		i	BER	Ц								 		0		INI
DEPTH SCALE METRES	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	SAMPLE NUMBER	SAMPLE TYPE	1+	NATUR	al ⊕∣	GTH (Cu REMOU	ILDED	W _P	,⊢		% w _L 90	ADDITIONAL LAB. TESTING	WATER LEVEL OPEN TEST P OR STANDPIPE INSTALLATIO	IT N
	Ground Surface	ο Ο	117.2	<i>"</i>													
0	Dark brown silty sand / sandy silt, with organic material (TOPSOIL)	$\frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}}$	<u>116.9</u> 0.3													Test pit backfilled with excavated material	0404040
1	Very stiff to stiff, grey brown SILT and CLAY (WEATHERED CRUST)																
2	Stiff, grey SILT and CLAY, trace sand		1 <u>15.6</u> 1.7												-		
3	End of test pit		3.1	-											-	No groundwater observed entering test pit during time of excavation	
	GEMTEC Consulting Engineers and Scientists		-						-							GED: A.N. KED: A.P.	

Cavanagh Construction Limited
Hydrogeological Consultations - Rump Lands
61318.15

SHEET:1 OF 1DATUM:CGVD28BORING DATE:May 29 2019

LOCATION: See Test Pit Location Plan, Figure 1

GEO - TESTPIT LOG 61318.15_TEST PIT LOGS_GNT_V02_2019-07-29.GPJ GEMTEC 2018.GDT 31/7/19

DEPTH SCALE METRES	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH	SAMPLE NUMBER	SAMPLE TYPE				GTH (Cu REMOU		W _F		R CONT W	TENT, 9	% ⊣w _L	ADDITIONAL LAB. TESTING	WATER LEVEL IN OPEN TEST PIT OR STANDPIPE INSTALLATION
		STR	(m)	SAN	Ś	1	02	20 3	30 4	40 5	50 (50 T	70 8 I	30 S	90 I	< ∠ >	
- 0	Ground Surface		117.0														Test pit
	Dark brown to black, sandy silt, with organics (TOPSOIL)	$\frac{1}{2} \frac{1}{2} \frac{1}$	116.8	1	GS												Test pit backfilled with excavated material
	Brown SILTY SAND		0.3	2	GS												
- 1																	
	Stiff, grey SILT and CLAY, trace sand		<u>115.9</u> 1.1	3	GS			0								мн	
- 2																	
- 3	End of test pit		<u>114.0</u> 3.1														Groundwater
																	seepage observed at about 0.76 m below
																	ground surface
- 4																	
	GEMTEC Consulting Engineers and Scientists																GED: A.N. CKED: A.P.

TABLE I

RECORD OF TEST PITS PROPOSED RESIDENTIAL SUBDIVISION PART LOTS 7 AND 8, CONCESSION 3 HUNTLEY WARD, CITY OF OTTAWA, ONTARIO

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP1	0.00 - 0.30	TOPSOIL
	0.30 - 1.00	Red brown fine to medium SAND
	1.00 - 4.20	Grey brown fine to coarse SAND
, ,	4.20	End of test pit
Water observed in test pit at about 2.0	metres below existing ground sur	face, March 25, 2003.
TP2	0.00 - 0.30	TOPSOIL
	0.30 - 0.75	Red brown fine to medium SAND, trace to some coarse sand, gravel and cobbles
x i i i i i i i i i i i i i i i i i i i	0.75 - 4.20	Grey brown SAND and GRAVEL, some cobbles, trace silt and clay
	4.20	End of test pit
Test pit dry, March 25, 2003.		
TP3	0.00 - 0.30	TOPSOIL
	0.30 - 3.76	Yellow brown to grey brown fine to medium SAND, trace silt
	3.76 - 4.30	Grey fine to medium SAND, some silt, trace clay
	4.30	End of test pit

Water observed in test pit at about 3.8 metres below existing ground surface, March 25, 2003.

TP6

031-040

TABLE I (CONTINUED)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP4	0.00 - 0.20	TOPSOIL
	0.20 – 1.27	Red brown fine to medium SAND
	1.27 – 3.75	Grey brown fine to medium SAND
	3.75 - 4.60	Grey fine to medium SAND, some boulders
	4.60	End of test pit
Test pit dry, March 25, 2003.		
TP5	0.00 - 0.25	TOPSOIL
	0.25 – 0.80	Red brown to grey brown fine to coarse SAND, some gravel and cobbles
	0.80 - 3.50	Grey brown SAND and GRAVEL
	3.50	End of test pit
Water observed in test pit at about 3.	1 metres below existing ground su	rface, March 25, 2003.

0.00 - 0.22	TOPSOIL
0.22 - 1.34	Red brown fine to medium SAND
1.34 - 3.20	Grey brown fine to medium SAND
3.20 - 3.36	Grey SILTY SAND, trace to some clay
3.36 - 4.20	Grey SILTY CLAY
4.20	End of test pit

Water observed in test pit at about 1.3 metres below existing ground surface, March 25, 2003.

TABLE I (CONTINUED)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP7	0.00 - 0.28	TOPSOIL
	0.28 - 0.58	Red brown fine to medium SAND
	0.58 - 4.20	Grey brown fine to coarse SAND
	4.20 - 4.30	Grey brown SILTY CLAY, some silt
	4.30	End of test pit

Water observed in test pit at about 4.2 metres below existing ground surface, March 25, 2003.

TP8	0.00 - 0.30	TOPSOIL
	0.30 - 1.57	Yellow brown fine to medium SAND
	1.57 - 2.00	Grey brown fine to medium SAND
	2.00 - 4.40	Grey SILTY CLAY
	4.40	End of test pit
Test pit dry, March 25, 2003.		
TP9	0.00 - 0.28	TOPSOIL
	0.28 - 4.20	Grey brown fine to medium SAND
	4.20	End of test pit

March 2003

031-040

TABLE I (CONTINUED)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP10	0.00 - 0.30	TOPSOIL
	0.30 - 1.50	Yellow brown to grey brown fine to medium SAND, trace silt
	1.50 - 2.45	Grey fine to medium SAND
	2.45	End of test pit in grey SILTY CLAY
Test pit dry, March 25, 2003.		
TP11	0.00 - 0.25	TOPSOIL
	0.25 – 2.30	Grey brown SILTY CLAY
	2.30 - 4.26	Grey SILTY CLAY
	4.26	End of test pit
Test pit dry, March 25, 2003.		
TP12	0.00 - 0.25	TOPSOIL
	0.25 - 0.56	Yellow brown fine to medium SAND
	0.56 - 1.40	Grey brown silty clay, some gravel, cobbles and boulders (GLACIAL TILL)
	1.40	End of test pit

March 2003

031-040

TABLE I (CONTINUED)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP13	0.00 - 0.35	TOPSOIL
	0.35 - 0.70	Red brown fine to medium SAND
	0.70 - 3.30	Grey brown to grey SILTY CLAY, some cobbles
	3.30	End of test pit, refusal BEDROCK

Water observed in test pit at about 1.8 metres below existing ground surface, March 25, 2003.

TP14	0.00 - 0.23	TOPSOIL
	0.23 - 0.43	Red brown fine to medium SAND
	0.43 - 1.42	Grey brown SILTY CLAY, some cobbles
	1.42 - 3.30	Grey clayey silt, some sand gravel and cobbles (GLACIAL TILL)
	3.30	End of test pit, refusal

Water observed in test pit at about 3.2 metres below existing ground surface, March 25, 2003.

TP15	0.00 - 0.17	TOPSOIL
	0.17 - 2.00	Grey brown SILTY CLAY
	2.00 - 2.25	Grey brown clayey silt clay, some sand gravel and cobbles (GLACIAL TILL)
	2.25	End of test pit, refusal BEDROCK

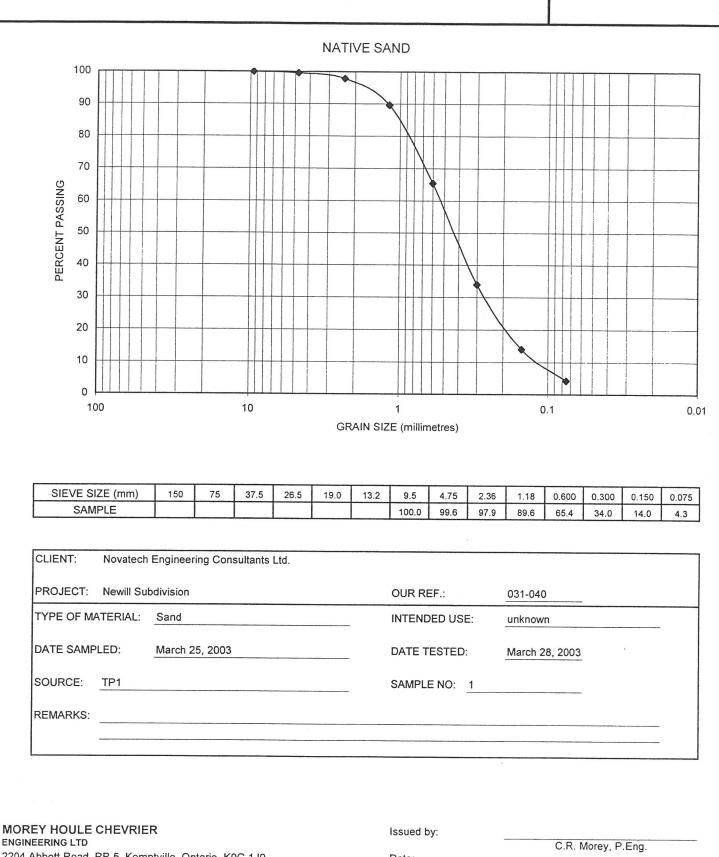
March 2003

TABLE I (CONTINUED)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP16	0.00 - 0.25	TOPSOIL
	0.25 - 2.20	Grey brown SILTY CLAY
	2.20 - 3.10	Grey clayey silt, some sand gravel and cobbles (GLACIAL TILL)
	3.10	End of test pit, refusal BEDROCK

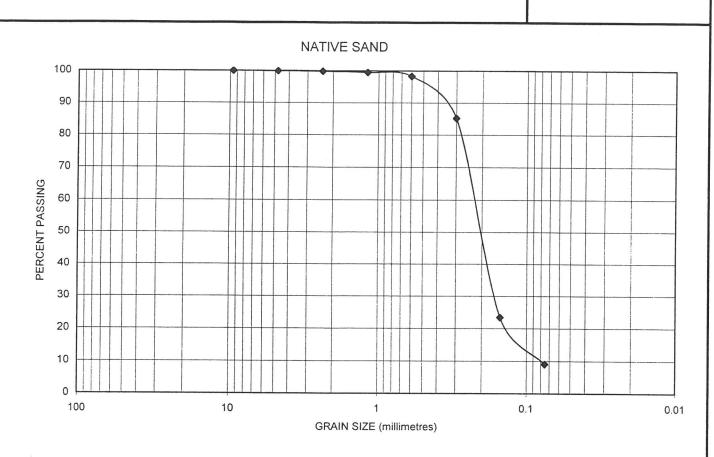
Water observed in test pit at about 3.0 metres below existing ground surface, March 25, 2003.

TP17	0.00 - 0.30	TOPSOIL
	0.30 - 2.00	Yellow brown SILTY SAND
	2.00 - 3.00	Grey brown SILTY SAND, trace clay
	3.00 - 4.60	Grey SILTY CLAY
	4.60	End of test pit


APPENDIX E

Grain Size Analyses

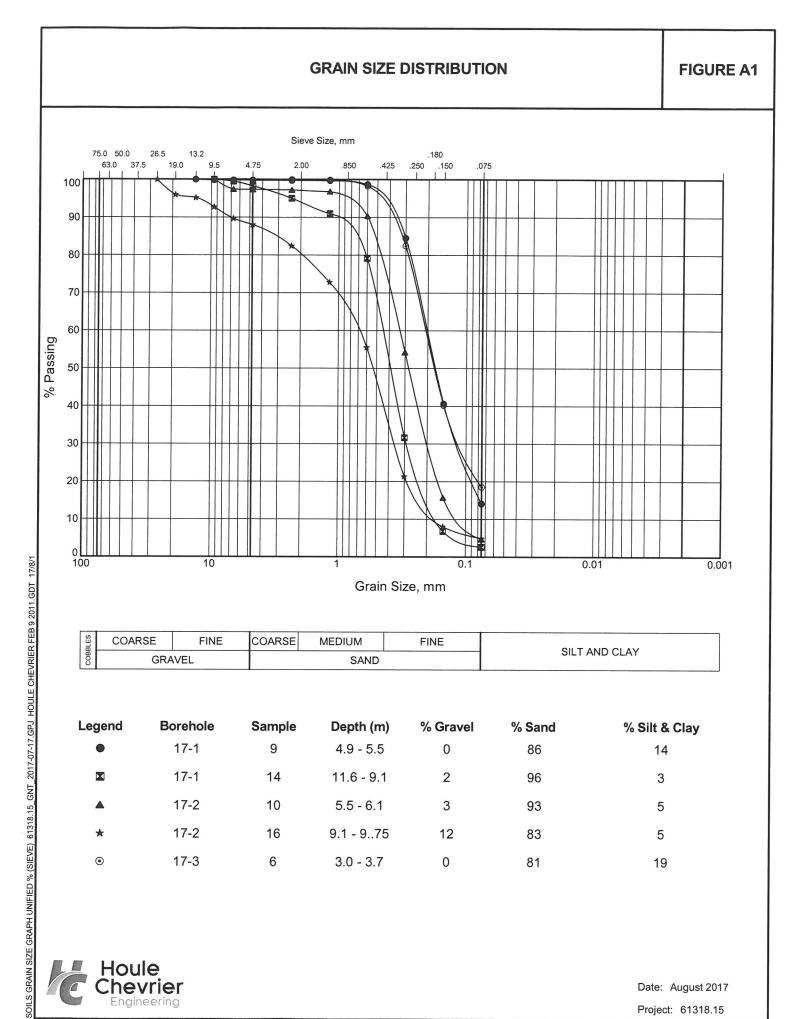
FIGURE 3

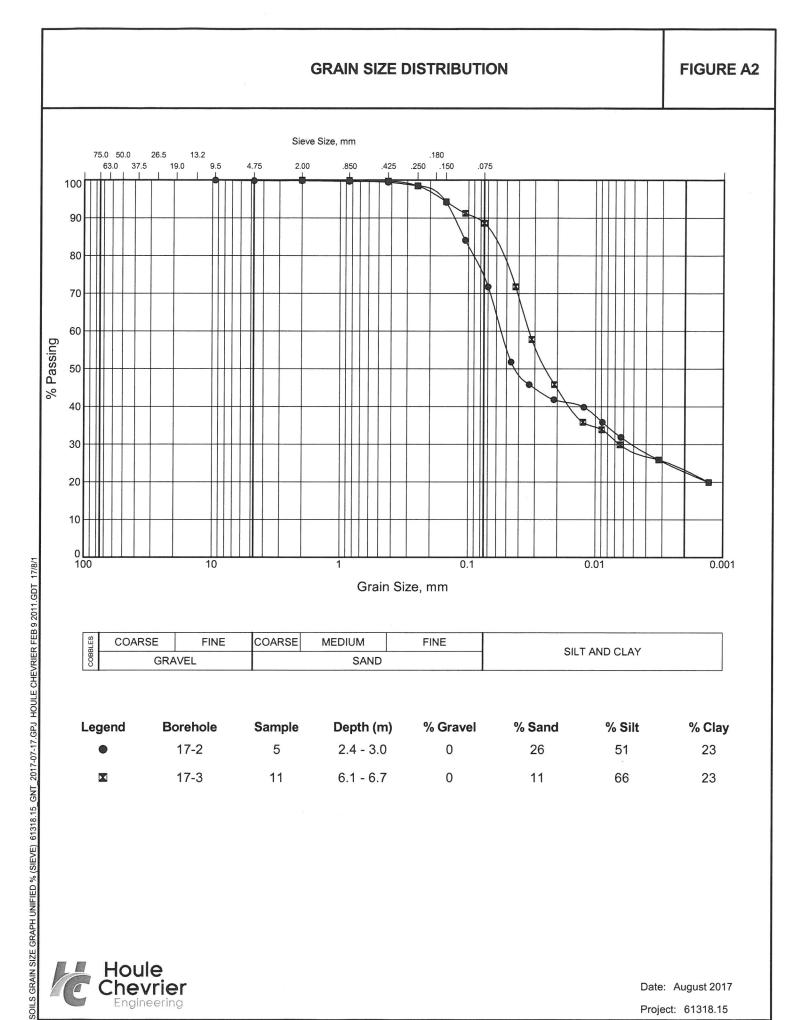


ENGINEERING LTD 2204 Abbott Road, RR 5, Kemptville, Ontario, K0G 1J0 ph: 258-3742 fax: 258-4541

Date:

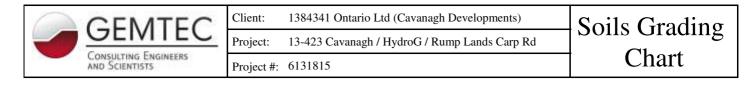
GRAIN SIZE DISTRIBUTION ANALYSIS

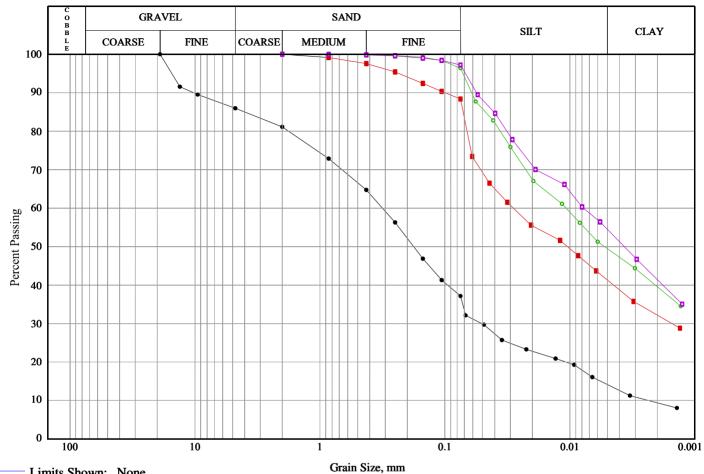

FIGURE 4


SIEVE SIZE (mm)	150	75	37.5	26.5	19.0	13.2	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075
SAMPLE							100.0	99.9	99.8	99.5	98.3	85.2	23.4	9.1

CLIENT: Novatech	Novatech Enginerring Consultants Ltd.							
PROJECT: Newill Su	bdivision	OUR REF.:	031-040					
TYPE OF MATERIAL:	Sand	INTENDED USE:	unknown					
DATE SAMPLED:	March 25, 2003	DATE TESTED:	March 28, 2003					
SOURCE: TP13		SAMPLE NO: 1						
REMARKS:								

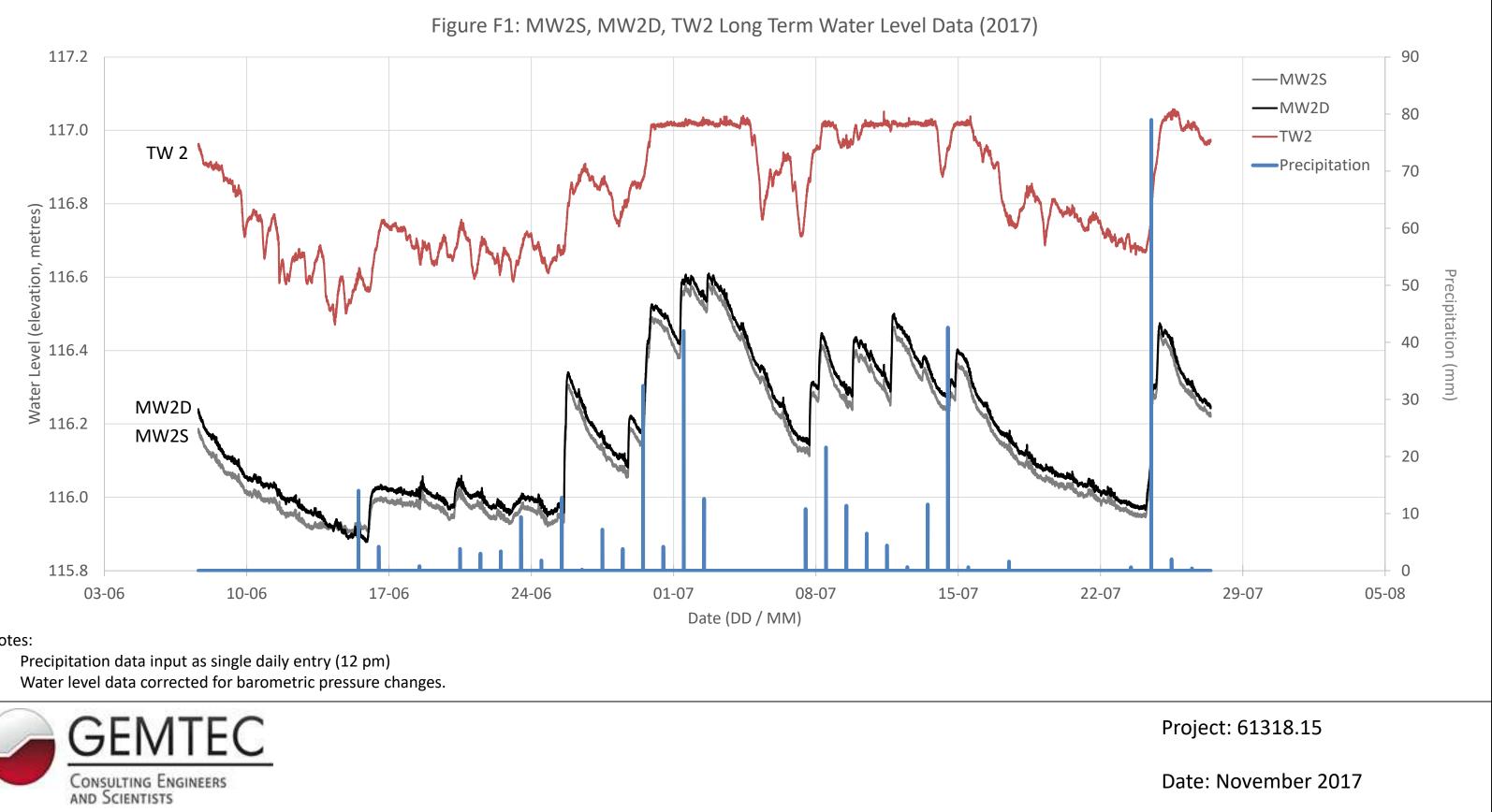
MOREY HOULE CHEVRIER ENGINEERING LTD	Issued by:	C.R. Morey, P.Eng.
2204 Abbott Road, RR 5, Kemptville, Ontario, K0G 1J0 ph: 258-3742 fax: 258-4541	Date:	





Date: August 2017 Project: 61318.15

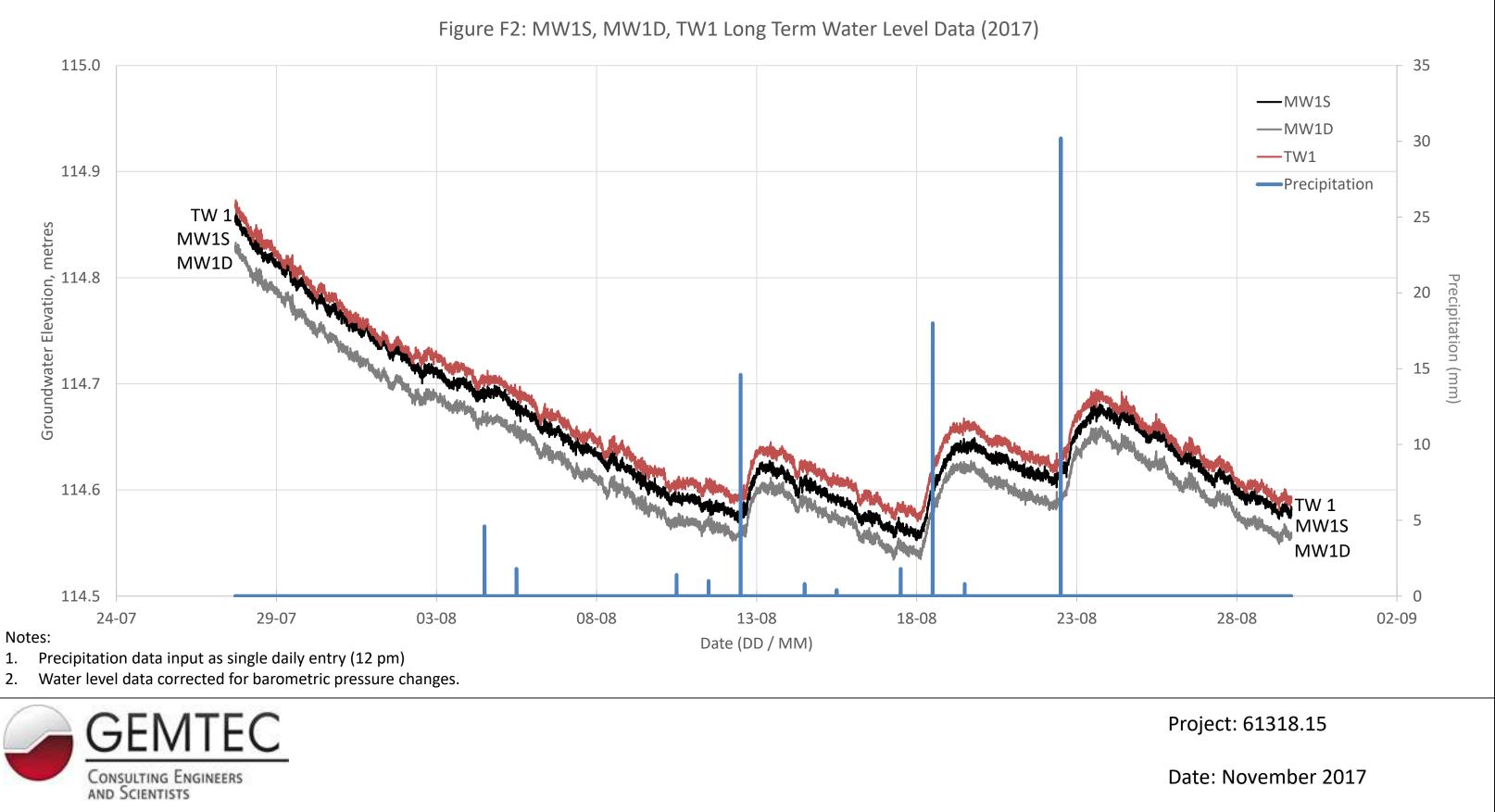
— Limits Shown:	None
-----------------	------


Grain	SIZĘ,	шш

Line Symbol	Sample		Boreho Test P			mple mber	Depth		6 Col Grav		% Sa		% Sil		% Clay				
•			18			02	0.23-0.50		14.0	0	48	.8	23.	0	14.1				
_			20			02	 0.2-0.5		0.0)	11	.6	47.	1	41.3				
o			23			04	 1.83-2.0		0.0)	3.	6	46.	9	49.4				
— o —		2:			03		1.12-1.4	4 0.		0 2		2.8 42.		8	54.4				
Line Symbol	CanFEM Classification		SCS nbol	D ₁	0	D ₁₅	D ₃₀	D ₅	0	D ₆	0	D	85	% :	5-75µm				
•	Silty sand , some gravel, some clay	N	N/A		0	0.01	0.05	0.1	8	0.3	32	4.	00		23.0				
	Silt and clay, some sand	N/A		N/A		N/A					 0.00	0.0)1	0.0)3	0.	07		47.1
o	Clay and silt , trace sand	N	/A		•		 	0.0)1	0.0)1	0.	05		46.9				
0	Clay and silt , trace sand	N	//A				 	0.0	0	0.0)1	0.	04		42.8				

APPENDIX F

Water Level Data



Notes:

- 1.
- 2.

2. Water level data corrected for barometric pressure changes.

TABLE F1 GROUNDWATER LEVELS - MONITORING WELLS

Well ID Formation Screened		Easting ¹	Northing	Northing	Northing	Northing	Northing	Northing	Northing	Northing	Northing	Ground Elevation	Top of Casing	Top of PVC	Gr	oundwater	Depth (mbgs	s) ³		Groundwate	r Elevation			٧	ertical Gradi	ent	
Weil ID	Formation Screened	Easting	Northing	(m)	Elevation (m)	Elevation (m)	Oct-04	07-Jun-16	09-Jun-17	12-Jul-19	Oct-04	07-Jun-16	09-Jun-17	12-Jul-19	Gradient	23-Oct-04	07-Jun-16	09-Jun-17	12-Jul-19								
MW1S	Sand	422570.832	5016885.222	116.158	116.897	116.864	2.19	1.94	1.35	1.65	113.97	114.21	114.81	114.51	-	-	-	-	-								
MW1D	Sand & Gravel	422570.832	5016885.222	116.158	116.897	116.782	2.19	2.03	1.38	1.66	113.97	114.13	114.78	114.50	OB ⁴	neutral	downward	downward	neutral								
TW1	Bedrock	422578.505	5016880.182	116.070	116.928	-	2.16	1.80	1.22	1.53	114.77	115.13	115.71	115.40	OB/BR ⁴	upward	upward	upward	upward								
MW2S	Silty Clay & Glacial Till	422121.607	5016509.428	116.653	117.4745	117.632	0.78	1.11	0.43	0.97	115.87	115.54	116.23	115.68	-	-	-	-	- I								
MW2D	Gravel & Bedrock	422121.607	5016509.428	116.653	117.475	117.649	0.74	1.07	0.39	0.96	115.91	115.58	116.26	115.69	OB	upward	upward	upward	neutral								
TW2	Bedrock	422115.269	5016514.614	116.733	117.05	-	0.52	0.57	-0.22	0.16	116.53	116.48	117.27	116.89	OB/BR	upward	upward	upward	upward								
MW3S	Silty Clay	422639.195	5016539.371	115.296	116.3405	116.441	0.84	1.17	-0.10	0.98	114.46	114.13	115.40	114.32	-	-	-	-	-								
MW3D	Silty Clay	422639.195	5016539.371	115.296	116.3405	116.165	0.81	1.33	0.46	0.87	114.49	113.96	114.84	114.43	OB	upward	downward	downward	upward								
TW3	Bedrock	422643.526	5016533.014	115.264	115.9985	-	0.60	0.72	0.01	0.42	115.39	115.27	115.99	115.57	OB/BR	upward	upward	upward	upward								
MW4S	Silty Sand	422941.937	5016803.806	115.785	116.795	116.783	2.00	1.63	Decom	1.78	113.79	114.16	-	114.01	-	-	-	-	-								
MW4D	Sand	422941.937	5016803.806	115.785	116.795	116.790	2.11	1.69	Decom	1.83	113.68	114.09	-	113.96	OB	downward	downward	-	downward								
TW4	Bedrock	422934.705	5016808.513	115.670	116.86	-	1.91	1.47	In Use	1.41	114.96	115.40	-	115.46	OB/BR	upward	upward	-	upward								
MW5S	Glacial Till	421944.923	5016064.413	119.647	120.598	120.060	2.80	3.27	1.85	2.66	116.85	116.38	117.80	116.99	-	-	-	-	-								
TW5	Bedrock	421953.482	5016071.737	119.861	120.24	-	2.80	3.27	1.85	32.85	117.44	116.97	118.39	87.39	OB/BR	upward	upward	upward	N/A								
MW6S	Silty Clay & Sand	422679.699	5016991.465	116.681	117.3715	117.110	2.68	2.53	1.66	2.00	114.00	114.15	115.02	114.68	-	-	-	-	-								
MW6D	Sand & Gravel	422679.699	5016991.465	116.681	117.37	117.086	2.76	2.69	1.82	2.10	113.92	114.00	114.86	114.58	-	-	-	-									
TW6	Bedrock	422419.699	5016525.753	116.505	116.954	-	-	-	-	0.33	-	-	-	116.62	-	-	-	-	-								
TW7	Bedrock	422179.235	5016179.764	117.768	118.46	-	-	-	-	1.27	-	-	-	117.19	-	-	-	-	-								
TW8	Bedrock	422694.375	5016335.988	117.010	117.426	-	-	-	-	0.53	-	-	-	116.90	-	-	-	-	-								

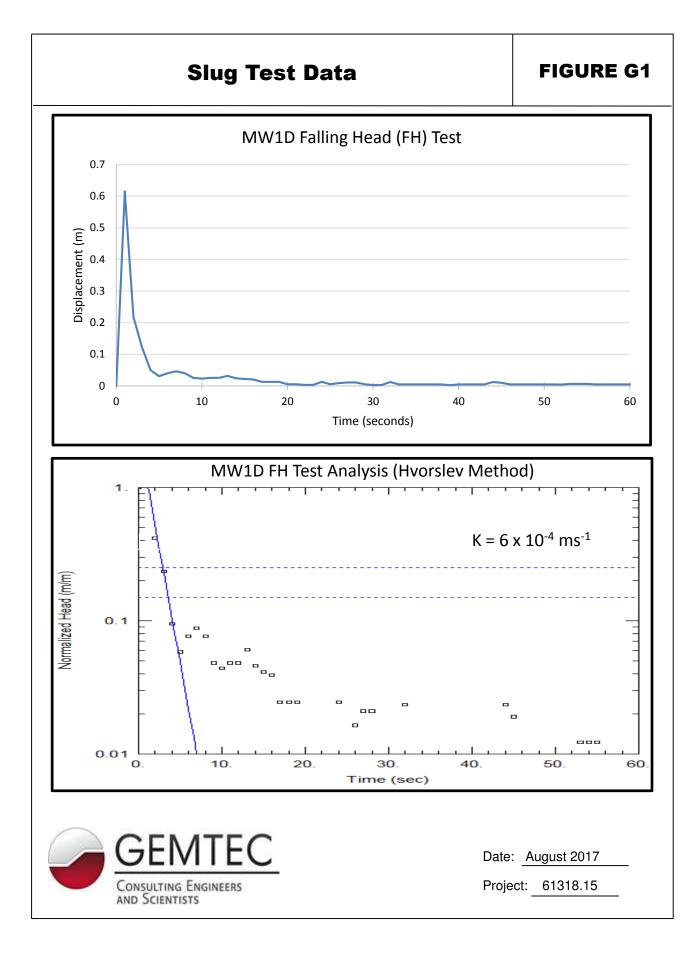
Notes:

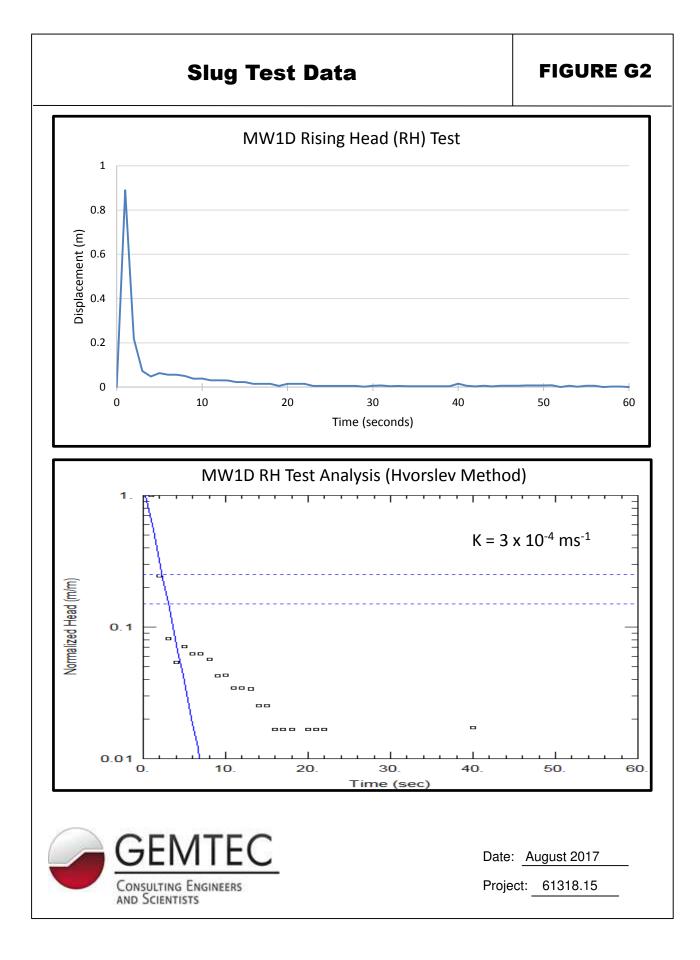
1) UTM Zone 18N NAD83

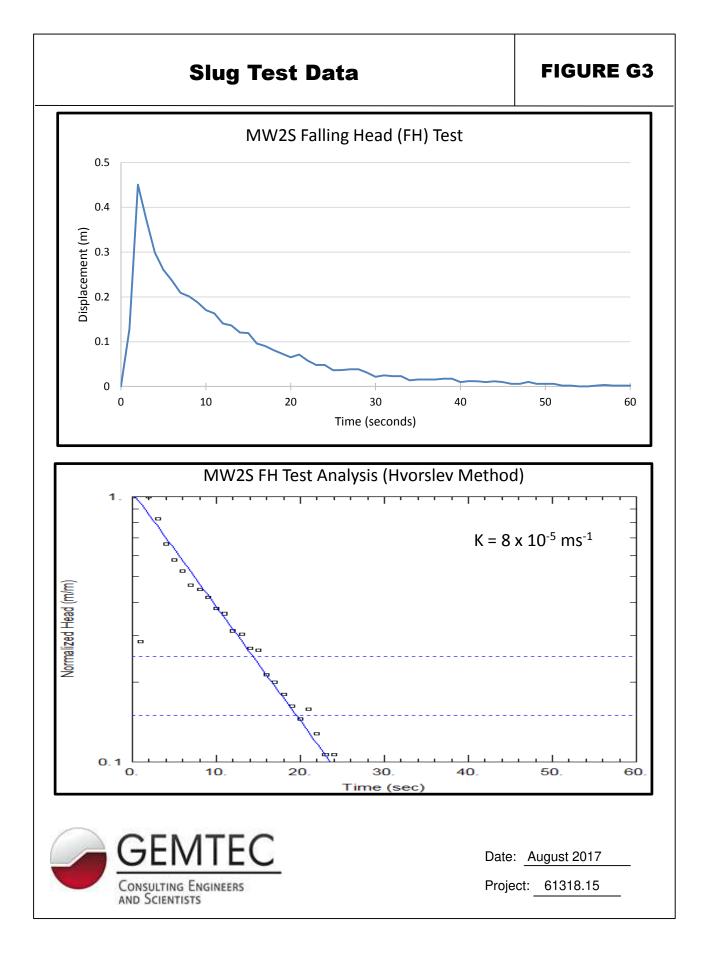
2) metres below top of casing (PVC or Steel)

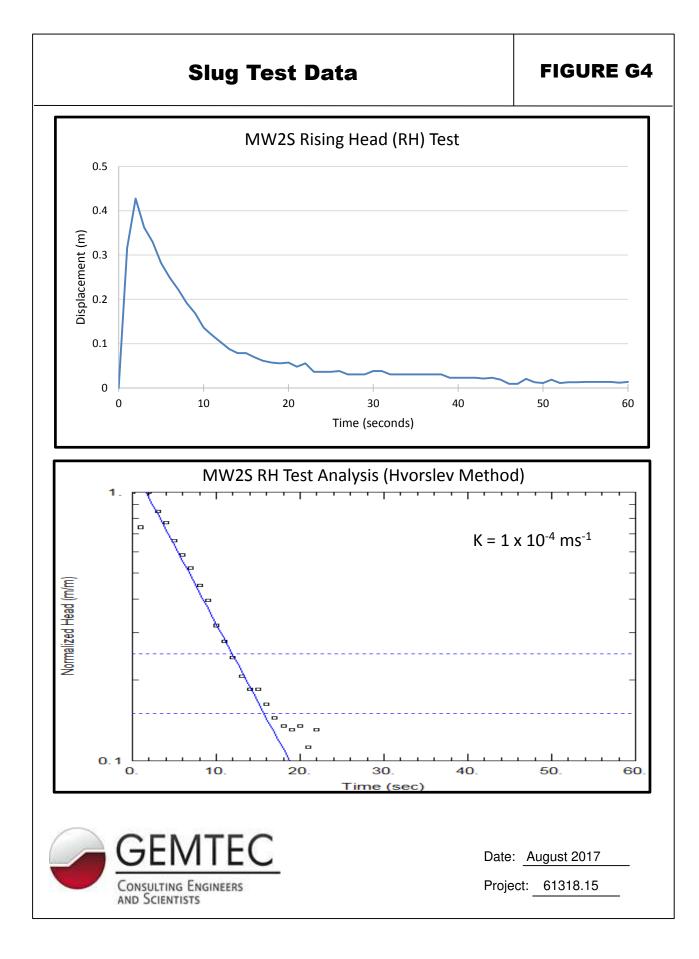
3) metres below ground surface

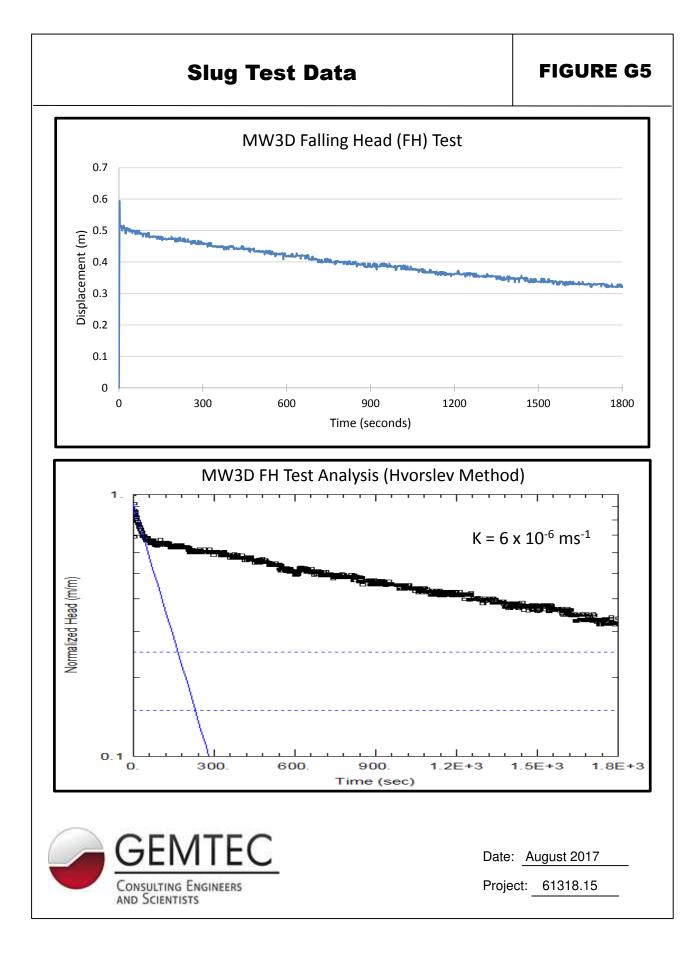
4) Gradients determined at each well nest location, within the overburden (OB) and between the overburden and bedrock (OB/BR)

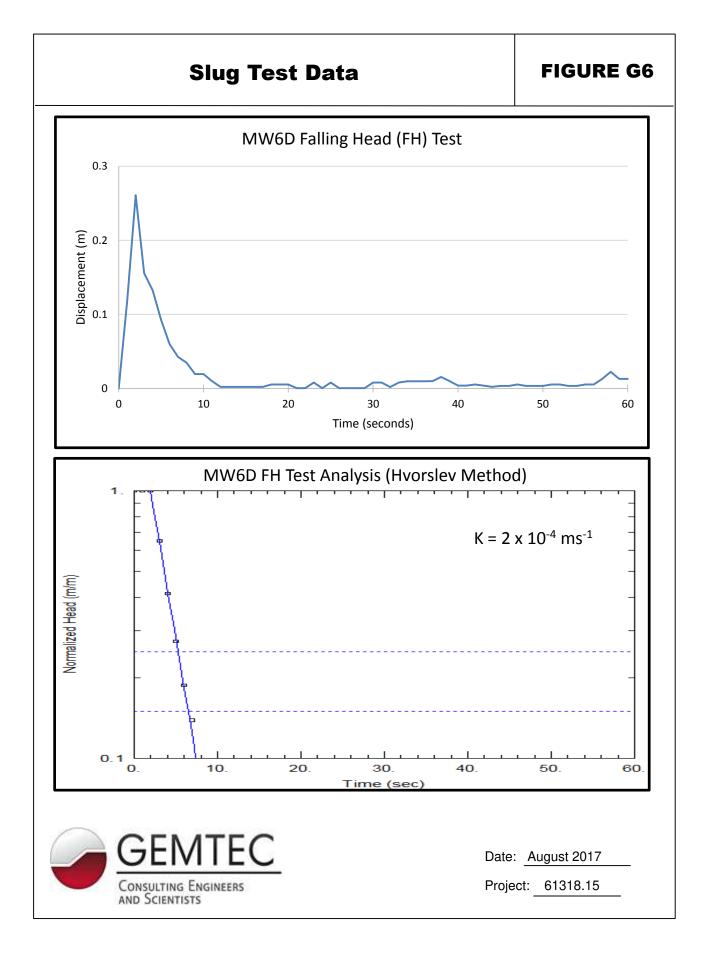

5) N/A - Not applicable (well did not fully recover)

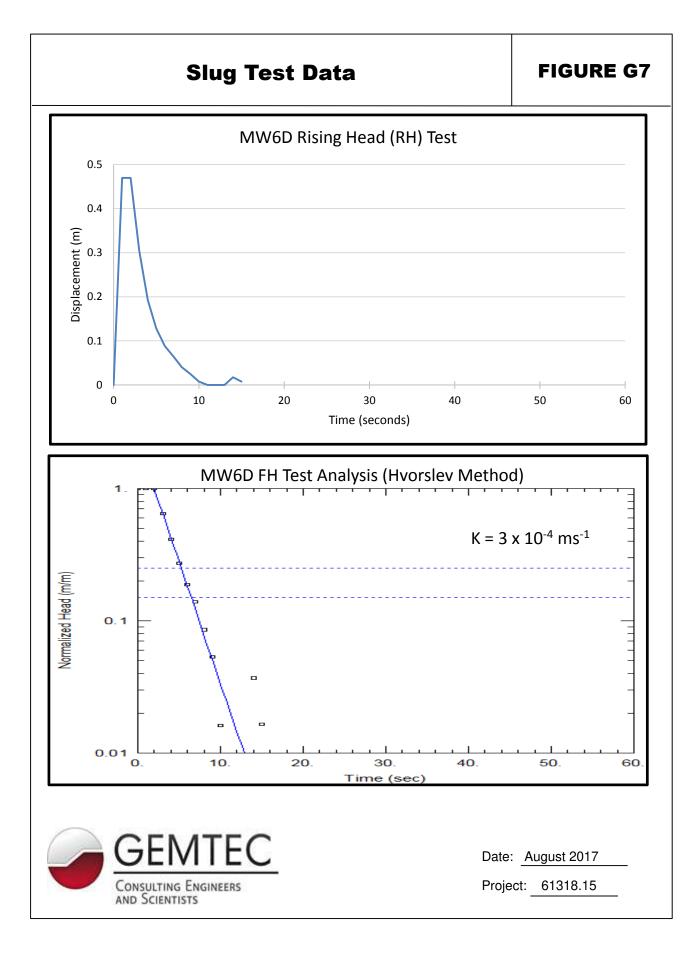



APPENDIX G


Hydraulic Testing – Monitoring Wells



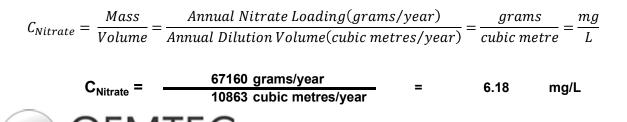




APPENDIX H

Nitrate Dilution Calculations

Nitrate Dilution Calculation Worksheet - Commercial


Nitrate Loading

Untreated Commercial Septic Systems Number of lots with untreated septic systems = Nitrate loading from untreated septic system = Total annual nitrate loading from untreated systems =	0 lots 0 grams/lot/day 0 grams/year
Treated Commercial Septic Systems (average of 1,760 litres/lot/day) Number of lots with treated septic systems = Nitrate loading from treated septic system = Total annual nitrate loading from treated systems =	4 lots 46 grams/lot/day 67160 grams/year
Total annual nitrate loading from 4 treated commercial systems =	67160 grams/year
Dilution Volumes	
Infiltration Factors Topography factor = Soil factor = Cover factor = Combined infiltration factor = Precipitation Infiltration Annual water surplus = Annual infiltration (Water Surplus x Infiltration Factor) =	0.2 0.4 0.15 0.75 0.361 metres/year 0.2708 metres/year
Infiltration Area and Infiltration Volumes Total commercial site area Area available for infiltration (Site Area - Hard Surface Area) = (assumes 40% HS in commercial lots)	51056 square metres 30633 square metres
Total Annual Volume of Infiltration (Infiltration x Area) =	8294 cubic metres/year
Annual Flow from Commercial Lots (assuming avg. 1760 L/day/lot) Total Annual Volume of Septic Effluent =	2570 cubic metres/year 2570 cubic metres/year
Total Annual Volume Available for Dilution =	10863 cubic metres/year

Dilution Calculation

CONSULTING ENGINEERS

AND SCIENTISTS

Nitrate Dilution Calculation Worksheet - Residential

Nitrate Loading

Residential Septic Systems (assumes 1,000 L/day/lot) Number of lots with untreated septic systems = Nitrate loading from untreated septic system = Total annual nitrate loading from untreated systems =	78 lots 40 grams/lot/day 1138800 grams/year
Total Annual Nitrate Loading from all Systems =	1138800 grams/year
Dilution Volumes	
Infiltration Factors Topography factor = Soil factor = (Weighted Avg) Cover factor = Combined infiltration factor =	0.2 0.3 0.1 0.6
Precipitation Infiltration Annual water surplus = Annual infiltration (Water Surplus x Infiltration Factor) = Infiltration Area and Infiltration Volumes	0.336 metres/year 0.2014 metres/year
Area available for infiltration (Site Area - Hard Surface Area) = (assumes varying % HS in residential lots/roadways/walkways, 0% HS in O	593716 square metres open Space)
Total Annual Volume of Infiltration (Infiltration x Area) =	119586 cubic metres/year
Annual Flow from Commercial Lots (assuming avg. 2,300 L/day/lot Annual Flow from Residential Lots (assuming 1000 L/day/lot) = Total Annual Volume of Septic Effluent =	0 cubic metres/year 28470 cubic metres/year 28470 cubic metres/year
Total Annual Volume Available for Dilution =	148056 cubic metres/year
Dilution Calculation	
$C_{Nitrate} = rac{Mass}{Volume} = rac{Annual Nitrate Loading(grams/year)}{Annual Dilution Volume(cubic metres/year)}$	$=rac{grams}{cubic\ metre}=rac{mg}{L}$

C =	1138800 grams/year	=	7.69	mg/L
C _{Nitrate} –	148056 cubic metres/year	-	7.00	iiig/L

Nitrate Dilution Infiltration Factors

Infiltration Factors Topography Factors	
Flat Land (not to exceed 0.6 m per km	0.3
Rolling Land (2.8 to 3.8 m per km)	0.2
Hilly Land (28 to 47 m per km)	0.1
Soil Factors Tight Impervious Clay Medium combo of Clay and Loam Open Sandy Loam	0.1 0.2 0.4
Cover	
Cultivated Land	0.1
Woodland	0.2

	Carleton Place	Ottawa Airport	
	Water Surplus	Water Suplus	Average Surplus
Soil Type	(mm)	(mm)	(mm)
Sand	363.0	359	361.0
Silty Sand	338	328	333.0
Glacial Till	325	311	318.0
Silty Clay	314.0	299	306.5

Weighted Water Suplus for 2727 Carp Road Site Based on Soil Types

<u>Weighted Average Water Surplus (COMMERCIAL LOTS 79 – 82) =</u>

[100% * 361.0] + [0% * 333.0] + [0% * 318.0] + [0% * 306.5] = 361 mm

<u>Weighted Average Water Surplus (RESIDENTIAL LOTS 1 - 78) =</u>

[51% * 361.0] + [0% * 333.0] + [12% * 318.0] + [37% * 306.5] = 335.7 mm

					Scenario No. 1 (40% hard surface and no treatment) Scenario No. 2 (40% hard surface and u				
Block	Area m2	Infiltration Factor	Annual Water Surplus (m3/year)	Precipitation Surplus (m3/year)	available infiltration (litres per day)	maximum septic flow (litres per day)	available infiltration (litres per day)	maximum septic flow (litres per day)	
79	11300.0	0.75	0.361	4079	5029	1676	5029	5029	
80	7600.0	0.75	0.361	2744	3383	1128	3383	3383	
81	20100.0	0.75	0.361	7256	8946	2982	8946	8946	
82	11800.0	0.75	0.361	4260	5252	1751	5252	5252	

TABLE 1: Allowable Flows - Commercial Septic Systems

Notes:

1. Scenario No. 1 values are calculated assuming:

a) A total of 40% hard surface from which runoff is not available for infiltration

b) No use of tertiary treatment systems (nitrate reduction technology)

2. Scenario No. 2 values are calculated under the following:

a) Carried out in accordance with Section 5.6.3 of the MOECC Procedure D-5-4

b) Incorporates a value of 20 mg/L nitrate in the discharged effluent from the tertiary treatment system

c) The calculated maximum allowable flow is based on a simplification of the formula provided in Section 5.6.3, utilizing a concentration of 20 mg/L of Nitrate in the effluent discharging from the tertiary treatment unit

d) A total of 40% hard surface from which runoff is not available for infiltration

Sand 100mm_WBNRMSD_comp CarletonPlace-Appleton WATER BUDGET MEANS FOR THE PERIOD 1984-2006 DC2049											
	ли тасе-Арр	Tecon	MAIL				\ III⊑ F	LNIOD	1704-2	000	0020492
LAT.	45.15	WA	TER HO	LDING	CAPAC	ETY1	100 MM	HE	AT IND	EX	35.93
LONG 76.20 LOWER ZONE 60 MM A						••••	1.068				
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-9.9	68	18	20	1	1	0	36	63	98	303
28- 2	-8.1	51	16	28	1	1	0	41	71	100	354
31- 3	-2.4	60	28	81	7	7	0	102	21	100	414
30- 4	6.1	71	67	25	34	34	0	59	0	98	485
31- 5	12.9	83	83	0	80	80	0	16	0	86	566
30- 6	18.0	88	88	0	115	111	-4	7	0	56	657
31- 7	20.4	96	96	0	133	116	-17	2	0	34	753
31- 8	19.3	81	81	0	116	90	-26	1	0	24	833
30- 9	14.7	88	88	0	75	68	-7	3	0	40	923
31-10	8.1	84	83	1	36	36	0	17	0	71	86
30-11	1.5	85	65	12	10	10	0	43	8	94	172
31-12	-5.9	67	26	16	2	2	0	36	33	98	238
AVE	6.2 TTL	921	739	183	610	556	-54	363			

Carleto	onPlace-App	leton	STAN	STANDARD DEVIATIONS FOR THE PERIOD 198		1984-	2006	DC20492			
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	3.4	33	23	20	1	1	0	41	40	9	64
28- 2	2.4	23	18	27	1	1	0	35	45	0	71
31- 3	2.2	28	19	36	4	4	0	39	42	0	74
30-4	1.6	40	38	43	8	8	0	47	0	6	96
31- 5	1.6	35	35	0	11	11	0	20	0	23	100
30- 6	1.4	38	38	0	9	12	11	14	0	34	106
31- 7	1.1	42	42	0	8	25	25	7	0	37	127
31- 8	1.2	38	38	0	8	27	29	2	0	39	135
30- 9	1.5	34	34	0	8	15	13	14	0	39	139
31-10	1.3	35	37	5	6	6	0	31	2	31	35
30-11	1.8	26	24	10	4	4	0	37	17	13	50
31-12	3.4	28	24	17	2	2	0	32	31	6	60

Silty Sand 150mm_WBNRMSD_comp CarletonPlace-Appleton WATER BUDGET MEANS FOR THE PERIOD 1984-2006 DC204											0020402
Cartett	летасе-арр	Teron	WATE	K BUDG		ANS FUI	N INE P	EKIOD	1904-2	000	DC20492
LAT 45.15 WATER HOLDING CAPACITY150 MM LONG 76.20 LOWER ZONE								_	AT IND		
LONC	/0.20	LU	WEN 20		• • • • •	• • • • • •	50 1111	д.	••••	••••	1.000
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-9.9	68	18	20	1	1	0	33	63	144	303
28- 2	-8.1	51	16	28	1	1	0	38	71	148	354
31- 3	-2.4	60	28	81	7	7	0	100	21	150	414
30- 4	6.1	71	67	25	34	34	0	59	0	148	485
31- 5	12.9	83	83	0	80	80	0	16	0	136	566
30- 6	18.0	88	88	0	115	114	0	7	0	103	657
31- 7	20.4	96	96	0	133	127	-6	2	0	70	753
31- 8	19.3	81	81	0	116	98	-17	1	0	51	833
30- 9	14.7	88	88	0	75	69	-6	3	0	67	923
31-10	8.1	84	83	1	36	36	0	13	0	101	86
30-11	1.5	85	65	12	10	10	0	35	8	133	172
31-12	-5.9	67	26	16	2	2	0	31	33	142	238
AVE	6.2 TTL	921	739	183	610	579	- 29	338			

Carleto	onPlace-App	leton	STAN	DARD [DEVIATIO	NS FOR THE PERIOD 1984-2006		DC20492			
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	3.4	33	23	20	1	1	0	40	40	16	64
28- 2	2.4	23	18	27	1	1	0	35	45	8	71
31- 3	2.2	28	19	36	4	4	0	38	42	0	74
30-4	1.6	40	38	43	8	8	0	47	0	6	96
31- 5	1.6	35	35	0	11	11	0	20	0	23	100
30- 6	1.4	38	38	0	9	9	1	14	0	40	106
31- 7	1.1	42	42	0	8	15	13	7	0	52	127
31- 8	1.2	38	38	0	8	23	25	2	0	55	135
30- 9	1.5	34	34	0	8	13	11	14	0	54	139
31-10	1.3	35	37	5	6	6	0	29	2	46	35
30-11	1.8	26	24	10	4	4	0	39	17	26	50
31-12	3.4	28	24	17	2	2	0	33	31	15	60

Glacial Till 200mm_WBNRMSD_comp CarletonPlace-Appleton WATER BUDGET MEANS FOR THE PERIOD 1984-2006 DC2049											
	ли тасе-Арр	Teron	MAIL				\ III⊑ F	LNIOD	1704-2	000	0020492
LAT.	45.15	WA	TER HO	LDING	CAPAC	ЕТΥ2	200 MM	HE	AT IND	EX	35.93
LONG	5 76.20	LO	WER ZO	NE	• • • • •	•••••	120 MM	Α.	••••	••••	1.068
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-9.9	68	18	20	1	1	0	28	63	190	303
28- 2	-8.1	51	16	28	1	1	0	37	71	196	354
31- 3	-2.4	60	28	81	7	7	0	98	21	200	414
30- 4	6.1	71	67	25	34	34	0	59	0	198	485
31- 5	12.9	83	83	0	80	80	0	16	0	186	566
30- 6	18.0	88	88	0	115	115	0	7	0	153	657
31- 7	20.4	96	96	0	133	131	-2	2	0	116	753
31- 8	19.3	81	81	0	116	105	-10	1	0	90	833
30- 9	14.7	88	88	0	75	71	-4	3	0	104	923
31-10	8.1	84	83	1	36	36	0	13	0	138	86
30-11	1.5	85	65	12	10	10	0	34	8	171	172
31-12	-5.9	67	26	16	2	2	0	27	33	185	238
AVE	6.2 TTL	921	739	183	610	593	-16	325			

Carleto	onPlace-App	leton	STAN	DARD [RD DEVIATIONS FOR THE PERIOD 1984-2006		DC20492				
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	3.4	33	23	20	1	1	0	39	40	24	64
28- 2	2.4	23	18	27	1	1	0	36	45	14	71
31- 3	2.2	28	19	36	4	4	0	40	42	0	74
30- 4	1.6	40	38	43	8	8	0	47	0	6	96
31- 5	1.6	35	35	0	11	11	0	20	0	23	100
30- 6	1.4	38	38	0	9	9	0	14	0	41	106
31- 7	1.1	42	42	0	8	8	5	7	0	58	127
31- 8	1.2	38	38	0	8	17	17	2	0	65	135
30- 9	1.5	34	34	0	8	10	8	14	0	66	139
31-10	1.3	35	37	5	6	6	0	29	2	58	35
30-11	1.8	26	24	10	4	4	0	38	17	38	50
31-12	3.4	28	24	17	2	2	0	35	31	24	60

Silty Clay 280mm_WBNRMSD_comp CarletonPlace-Appleton WATER BUDGET MEANS FOR THE PERIOD 1984-2006 DC204											DC20492
	45.15 6 76.20		-	-		ETY2			AT IND		
							1.008				
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-9.9	68	18	20	1	1	0	24	63	264	303
28-2	-8.1	51	16	28	1	1	0	33	71	274	354
20- 2 31- 3	-2.4	60	28	28 81	7	7	0	96	21	280	414
30- 4	6.1	71	67	25	, 34	, 34	0	59	0	278	485
31-5	12.9	83	83	0	80	80	0	16	ø	266	566
30- 6	18.0	88	88	õ	115	115	0	7	õ	233	657
31- 7	20.4	96	96	õ	133	132	0	2	õ	194	753
31-8	19.3	81	81	0	116	111	-4	1	0	162	833
30-9	14.7	88	88	0	75	73	-2	3	0	174	923
31-10	8.1	84	83	1	36	36	0	13	0	208	86
30-11	1.5	85	65	12	10	10	0	33	8	242	172
31-12	-5.9	67	26	16	2	2	0	27	33	256	238
AVE	6.2 TTL	921	739	183	610	602	-6	314			

Carleto	onPlace-App	leton	STAN	DARD [DEVIATIONS FOR THE PERIOD 1984-2006		DC20492				
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	3.4	33	23	20	1	1	0	39	40	31	64
28- 2	2.4	23	18	27	1	1	0	36	45	20	71
31- 3	2.2	28	19	36	4	4	0	43	42	0	74
30- 4	1.6	40	38	43	8	8	0	47	0	6	96
31- 5	1.6	35	35	0	11	11	0	20	0	23	100
30- 6	1.4	38	38	0	9	9	0	14	0	41	106
31- 7	1.1	42	42	0	8	7	1	7	0	60	127
31- 8	1.2	38	38	0	8	10	9	2	0	74	135
30- 9	1.5	34	34	0	8	8	3	14	0	76	139
31-10	1.3	35	37	5	6	6	0	29	2	69	35
30-11	1.8	26	24	10	4	4	0	38	17	49	50
31-12	3.4	28	24	17	2	2	0	35	31	33	60

OttawaIntlA_100mm_WBNRMSDdasdasda Ottawa Intl A WATER BUDGET MEANS FOR THE PERIOD 1939-2013 DC20											
	45.32 G 75.67					ETY1			AT IND		
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	23	85	98	296
28- 2	-9.0	55	10	16	1	1	0	25	115	98	352
31- 3	-2.7	66	31	79	6	6	0	102	71	100	418
30-4	5.7	71	67	76	32	32	0	111	0	100	489
31- 5	13.0	76	76	0	80	80	0	14	0	82	566
30- 6	18.3	84	84	0	116	113	-4	5	0	48	649
31- 7	20.9	86	86	0	136	114	-22	2	0	19	735
31- 8	19.6	83	83	0	117	86	-32	1	0	15	818
30- 9	14.7	84	84	0	75	65	-10	3	0	31	902
31-10	8.2	75	75	0	37	36	-1	9	0	62	76
30-11	1.3	78	60	8	10	10	0	31	10	89	154
31-12	-7.1	81	27	15	1	1	0	33	49	97	234
AVE	6.0 TTL	901	694	208	611	544	-69	359			

Ottawa	Intl A		STAN	DARD D	EVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	8	59
28- 2	2.5	27	14	25	1	1	0	35	60	7	63
31- 3	2.6	28	22	50	5	5	0	56	90	0	70
30-4	1.8	31	32	91	9	9	0	90	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	12	10	17	0	35	101
31- 7	1.1	40	40	0	8	27	29	10	0	29	104
31- 8	1.3	38	38	0	8	28	30	4	0	28	117
30- 9	1.4	40	40	0	8	16	16	14	0	35	124
31-10	1.5	36	36	1	7	6	2	19	0	36	36
30-11	1.7	27	27	8	4	4	0	33	13	20	45
31-12	2.9	30	23	14	1	1	0	30	35	9	56

OttawaIntlA_150mm_WBNRMSDasdasdasd Ottawa Intl Airport WATER BUDGET MEANS FOR THE PERIOD 1939-2013 DC20492												
	45.32 G 75.67					ETY1			AT IND			
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P	
31- 1	-10.7	62	11	14	0	0	0	21	85	142	296	
28- 2	-9.0	55	10	16	1	1	0	23	115	144	352	
31- 3	-2.7	66	31	79	6	6	0	99	71	149	418	
30- 4	5.7	71	67	76	32	32	0	110	0	150	489	
31- 5	13.0	76	76	0	80	80	0	14	0	132	566	
30- 6	18.3	84	84	0	116	116	0	5	0	95	649	
31- 7	20.9	86	86	0	136	126	-9	2	0	52	735	
31- 8	19.6	83	83	0	117	97	-21	1	0	38	818	
30- 9	14.7	84	84	0	75	67	-8	2	0	52	902	
31-10	8.2	75	75	0	37	36	-1	7	0	85	76	
30-11	1.3	78	60	8	10	10	0	20	10	123	154	
31-12	-7.1	81	27	15	1	1	0	24	49	139	234	
AVE	6.0 TTL	901	694	208	611	572	- 39	328				

Ottawa	Intl Airpo	rt	STAN	DARD D	EVIATI	ONS FO	DR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	29	45	19	59
28- 2	2.5	27	14	25	1	1	0	34	60	17	63
31- 3	2.6	28	22	50	5	5	0	55	90	5	70
30- 4	1.8	31	32	91	9	9	0	90	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	8	1	17	0	41	101
31- 7	1.1	40	40	0	8	19	20	10	0	42	104
31- 8	1.3	38	38	0	8	23	24	4	0	42	117
30- 9	1.4	40	40	0	8	13	13	13	0	48	124
31-10	1.5	36	36	1	7	7	2	18	0	47	36
30-11	1.7	27	27	8	4	4	0	29	13	34	45
31-12	2.9	30	23	14	1	1	0	29	35	22	56

Ottawa	Intl Airpo			_	_		asdasda R THE P		1939-2	013	DC20492
	45.32 G 75.67					[TY2		_	AT IND		
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	19	85	184	296
28- 2	-9.0	55	10	16	1	1	0	21	115	188	352
31- 3	-2.7	66	31	79	6	6	0	95	71	198	418
30-4	5.7	71	67	76	32	32	0	109	0	200	489
31- 5	13.0	76	76	0	80	80	0	14	0	182	566
30- 6	18.3	84	84	0	116	116	0	5	0	144	649
31- 7	20.9	86	86	0	136	132	-4	2	0	96	735
31- 8	19.6	83	83	0	117	105	-12	1	0	74	818
30- 9	14.7	84	84	0	75	69	-5	2	0	86	902
31-10	8.2	75	75	0	37	36	0	6	0	118	76
30-11	1.3	78	60	8	10	10	0	17	10	160	154
31-12	-7.1	81	27	15	1	1	0	20	49	180	234
AVE	6.0 TTL	901	694	208	611	588	-21	311			

Ottawa	Intl Airpo	ort	STAN	DARD D	DEVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	28	45	28	59
28- 2	2.5	27	14	25	1	1	0	34	60	26	63
31- 3	2.6	28	22	50	5	5	0	55	90	8	70
30- 4	1.8	31	32	91	9	9	0	89	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	8	0	17	0	41	101
31- 7	1.1	40	40	0	8	11	11	10	0	49	104
31- 8	1.3	38	38	0	8	18	19	4	0	52	117
30- 9	1.4	40	40	0	8	11	10	13	0	58	124
31-10	1.5	36	36	1	7	7	1	17	0	56	36
30-11	1.7	27	27	8	4	4	0	27	13	44	45
31-12	2.9	30	23	14	1	1	0	28	35	31	56

Ottawa	Intl Airpo			_	_		sadasda R THE P		1939-2	013	DC20492
	45.32 G 75.67					ETY2			AT IND		
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	-10.7	62	11	14	0	0	0	17	85	257	296
28- 2	-9.0	55	10	16	1	1	0	20	115	262	352
31- 3	-2.7	66	31	79	6	6	0	91	71	276	418
30- 4	5.7	71	67	76	32	32	0	107	0	280	489
31- 5	13.0	76	76	0	80	80	0	14	0	262	566
30- 6	18.3	84	84	0	116	116	0	5	0	224	649
31- 7	20.9	86	86	0	136	135	-1	2	0	173	735
31- 8	19.6	83	83	0	117	112	-5	1	0	143	818
30- 9	14.7	84	84	0	75	72	-3	2	0	153	902
31-10	8.2	75	75	0	37	36	0	6	0	185	76
30-11	1.3	78	60	8	10	10	0	16	10	228	154
31-12	-7.1	81	27	15	1	1	0	18	49	250	234
AVE	6.0 TTL	901	694	208	611	601	-9	299			

Ottawa	Intl Airpo	ort	STAN	DARD D	EVIATI	ONS FO	OR THE	PERIOD	1939-	2013	DC20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1	2.9	26	15	18	1	1	0	27	45	40	59
28- 2	2.5	27	14	25	1	1	0	34	60	37	63
31- 3	2.6	28	22	50	5	5	0	56	90	16	70
30-4	1.8	31	32	91	9	9	0	87	3	2	78
31- 5	1.9	32	32	3	12	12	0	23	0	22	90
30- 6	1.2	39	39	0	8	8	0	17	0	41	101
31- 7	1.1	40	40	0	8	8	3	10	0	53	104
31- 8	1.3	38	38	0	8	12	12	4	0	62	117
30- 9	1.4	40	40	0	8	9	6	13	0	69	124
31-10	1.5	36	36	1	7	7	1	17	0	66	36
30-11	1.7	27	27	8	4	4	0	27	13	55	45
31-12	2.9	30	23	14	1	1	0	28	35	42	56

APPENDIX I

Water Well Records and Certificates of Well Compliance

Ontario Ministry of the		The	Ontario Water Resources Act WATER WELL RECORD
Environment Print only in spaces provided. Mark correct box with a checkmark, where applicable.	11	1533700	
County or District	Township/Borough/City/To DOJ	ownVillage t Grleton	Con block tract survey, etc. Lot 25-27 Date completed Lat 0.3 023 month year
	Northing	RC Elevation RC	Basin Code ii 'iii iv
General colour Most common material	Other materials	OCK MATERIALS (see instructio General of	description To
Brown Sand	gravel		0 40
Scery linestone	0		40 205
		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>
Water found Kind of water diam	ASING & OPEN HOLE RI Wall Material thickness	Depth - feet	
	Steel ¹² Galvanized Concrete	From To Material at	nd type Depth at top of screen 30 41-44 feet
$\left 14 \right _{2}^{15\cdot18} \left _{2}^{1} \left _{2}^{15\cdot18} \right _{2}^{1} \left _{2}^{1} \left _{3}^{1} \left _{3}^{1} \right _{3}^{1} \right _{3}^{1} \left _{3}^{1} \left _{3}^{1} \left _{3}^{1} \right _{3}^{1} \right _{3}^{1} \left _{3}^{1} \left _{3}^{1} \left _{3}^{1} \right _{3}^{1} \left _{3}^{1} \left _{3}^{1} \left _{3}^{1} \right _{3}^{1} \right _{3}^{1} \left _{3}$	Open hole Plastic 19 Steel 19		PLUGGING & SEALING RECORD
20-23 1 □ Fresh 3 □ Sulphur 24 2 □ Salty 6 □ Gas 2 2 1 4 □	Galvanized Concrete Open hole	C 46 From	Annular space C Abandonment - feet To Material and type (Cament grout, bentonite, etc.)
2 Salty 6 Gas 24-25 1	Plastic Steel ²⁶ Galvanized	27.30 72.13 L	18 Bentouite
2 Solt 4 Minerals 4	Concrete Open hole Plastic	46 205 26.29	30-33 80
71 Pumping test method 10 Pumping rate 11-14 Bu	ration of pumping 15-16 17-18 Hours Mins	LOC	ATION OF WELL
Static lavel Water level 25 Water levels during 1 3 Put	mping 2 Recovery	In diagram below show Indicate north by arrow.	distances of well from road and lot line.
Z feet Zoo feet 182 feet 164 feet 1	minutes 32-34 60 minutes 35-37 4 6eet 128 feet		TW1
Lif flowing give rate 38-41 Pump intake set at Wa GPM feet Becommended nump time Becommended 43-45 B	Iter at end of test 42 Clear Se Cloudy		
The continiended pump type The continiended	lecommended 46-49 ump rate 1 1/2 GPM		
FINAL STATUS OF WELL 54 12 Water supply 5 Abandoned, insufficient supply 5 	⁹ \Box Unfinished	UH0	Ϋ́́Α
2 ☐ Observation well 6 ☐ Abandoned, poor quality 3 ☐ Test hole 7 ☐ Abandoned (Other) □ Recharge well 8 ☐ Dewatering	¹⁰ Replacement well	K	
WATER USE 55-56 1 Domestic 5 Commercial	9 🐔 Not use	and the second se	Le file
2 Stock 3 Irrigation 4 Industrial 8 Cooling & air conditioning	10 Other	۷	
METHOD OF CONSTRUCTION 57		• *	and the second
1 Cable tool 5 If Air percussion * 2 Rotary (conventional) 6 Boring 3 Rotary (reverse) 7 Diamond 4 Rotary (air) 8 Jetting	⁹ Driving ¹⁰ Digging ¹¹ D Other		C. 10 4 240250
	Wolf Contractoria Lissan At	Data 58 [Contractor	59-62 [Date received 63-68] 80
Air-RocEDrillingCoLtd	Well Contractor's Licence No.	Source	1 9 SP 62 Date received 8 2003 SP 68 MAY 0 8 2003 SP 68 SP 68
RR + Richmond, il			
Ken Desaulniers	TY I		CSS.ES3
Kongez	Submission date	2	

* * * *

-

0506 (07/00) Front Form 9

🕅 Ont	ario Ministry of the Environment			The Ontar WAT	io Water I ER WEI		
Print only in space Mark correct box		able. [11]	15337		Cor Cor Cor 14		
County or District	as carleton	Township/Borough/City/ WeSt Can Address		contley Con ble	Date	1	<u>ろ</u> ろろ
				vation RC Basin Co		day n [*] iii	ionth year
		FOVERBURDEN AND BEDR	OCK MATERIALS (see instructions)		Depti	n - fee t
General colour	Most common material	Other materials		General description		From	To .6
	clay	gravel, sa				15	15
gay	Cristian						10
		· · · · · · · · · · · · · · · · · · ·					
	<u> </u>	<u> </u> 				<u> </u>	
	ER RECORD 51		RECORD Depth - feet	Sizes of opening (Slot No.)	31-33 Diameter		th 39-40
at - feet	Kind of water diam Fresh 3 Sulphur 14 Winerals		From To 13-16	Material and type		Depth at top	feet of screen 30 41-44
5 2 C		2 Galvanized 3 Concrete 4 Open hole	0 77	S			feet
<u>115</u> ²		5 Plastic I I OCS 8 1 1 Steel 19 19	20-23	61 PLUGGIN		RECORD	
2 [Salty 6 Gas	2 Galvanized 3 Concrete 4 Copen hole	0 20	From 10	aterial and type (Ce	ement grout, be	entonite, etc.)
	Fresh 3 Sulphur 29 4 Minerals 24-2 Salty 6 Gas	5 Plastic 5 1 Steel 26 2 Galvanized 26	27-30	18-21 22-25	benti	Inte	5
	☐ Fresh ³ ☐ Sulphur ³⁴ ⁶⁰ ⁴ ☐ Minerals ⁶⁰ 6 ☐ Gas	3 Concrete 4 3 Open hole 5 D Plastic	20 120	26-29 30-33 80			
Pumping test m		-14 Duration of pumping	ı				
	Water level 25 Mater levels during	2M 15-16 17-18 Hours Mins 1 □ Pumping 2 Recovery		m below show distance north by arrow.		oad and lot	line.
LSI 16 19-21 16 10 19-21 16 10 10 10 10 10 10 10 10 10 10 10 10 10	22-24 15 minutes 30 minutes		Indicater	* *			Λ
	20.41	feet feet feet 42		TW2			N
Recommended p	GPM	reet Cloudy 3-45 Recommended 46-49		``			
□ Shallow	pump setting	feet GPM					
50-53	S OF WELL 54		and the second second	Ser of	State Cay		
 Water sup Water sup Observation Water sup Water sup 	on well ⁶ Abandoned, poor qual				the second		
4 🗌 Recharge					YPU -		
1 Domestic 2 Stock	55-56 5	9 7Not use		200,	X) 7		
3 🗌 Irrigation 4 🗌 Industrial	 7 Public supply 8 Cooling & air condition 	_	-	4			
					100'		
 Cable tool Rotary (cc Rotary (re Rotary (ai 	onventional) ⁶ Boring everse) ⁷ Diamond	9 Driving 10 Digging 11 Other	0	Protine 101 2	•	248	255
Name of Well Contr		Well Contractor's Licence No.	Data source	58 Contractor 1 1 9	59-62 Date rece	0 8 2	63-68 80
hadless 24	sch. Dr. Ungle		Source Date of inspection		MAY	002	
Name of Well Techn	T KICH MO	Well Technician's Licence No.		<u>;</u>]		000	DCA
Shan Signatupe of Techni	nonfucell	72122		1.		CSS	.ES3
		Submission date	ÚW I) Front Form 9

The second secon		The	Ontario Water F WATER WEL	
Print only in spaces provided. Mark correct box with a checkmark, where applicat		1533704		N 1 1 1 1 1 1 1 22 23 24
County or District	Township/Borough/City/ WeS+ Can Address	rown/Village Leton(Hun+ley	Con block tract survey, 3 Date completed /	4es3 day month year
	Northing Northing	RC Elevation RC 24 25 26 30	Basin Code ii	
LOG OI General colour Most common material	F OVERBURDEN AND BEDR Other materials	OCK MATERIALS (see instruction General	ons) description	Depth - feet
grey clay				From To 0 33 33 168
grey linestone	·····			<u>33 168</u> 168 181
			· · · · · · · · · · · · · · · · · · ·	
41 WATER RECORD Water found Kind of water Jinside diam	CASING & OPEN HOLE R Wall Material thickness	Depth - feet Z (Slot No.)		34-38 Length 39-40 inches feet
135 ¹⁰⁻¹³ 1 - Fresh 3 - Sulphur 14 2 - Salty 3 - Gas	inches 1 MrSteel 12 2 Galvanized 3 Concrete	From To 13-16 Material a		Depth at top of screen 41-44 feet
15-18 1 - Fresh ³ - Sulphur ¹⁹ 2 - Sulpt - Sulphur ²⁴ 12-23 1 - Fresh ³ - Sulphur ²⁴ 4 - Minerals	4 Open hole 5 Plastic 1 Steel 9 2 Galvanized 5 5 5 5 5 5 5 5 5 5 5 5 5			RECORD Abandonment
1 Fresh 4 Minerals 2 Sathy 6 Gas 25-28 1 Fresh 3 Sulphur 29 2 Sathy 4 Minerals 24-25 2 Sathy 6 Gas 24-25	3 Concrete 4 S Open hole 5 Plastic 1 Steel 26 2 Galvanized	27-30 From 27-30 18-21	To Material and type (Cen	nent grout, bentonite, etc.)
30-33 1 □ Fresh 3 □ Sulphur 34 60 2 □ Salty 6 □ Gas	2 Galvanized 3 Concrete 4 Open hole 5 Plastic	40 181 26-29	30-33 80	
71 Pumping test method 10 Pumping rate 7 [11-1] Pump 2 Bailer GPM			ATION OF WELL	ad and lot line.
Static loval Water Water lovale during	Pumping Image: Constraint of the state of t	Indicate north by arrow		
If flowing give rate feet feet<	et reet reet reet values 42 et Cloudy			ng-
Recommended pump type Recommended 43-4 Shallow Properties 70 feeting 50-53 50-53 50-53 50-53	pump rate			A
FINAL STATUS OF WELL 54 1 Water supply 5 Abandoned, insufficient 2 Observation well 6 Abandoned, poor quality 3 Dest hole 7 Abandoned (Other)			2 400m.	
4 Recharge well 8 Dewatering WATER USE 55-56				2 P
1 Domestic 5 Commercial 2 Stock 6 Municipal 3 Irrigation 7 Public supply 4 Industrial 8 Cooling & air conditionin	9 #Not use 10 🗌 Other		. Ithe le	- /
METHOD OF CONSTRUCTION 57 1 Cable tool 5 Ari percussion 2 Rotary (conventional) 6 Boring 7 Detrop (conventional) 7 Detrop determined	 ⁹ Driving ¹⁰ Digging ¹¹ Digging 	Car	lamore Rd.	
³ ☐ Rotary (reverse) ⁷ ☐ Diamond ⁴ ☐ Rotary (air) ⁸ ☐ Jetting	11 🗌 Other			248252
Name of Well Contractor Aprikod Dr. Ung (D)	Well Contractor's Licence No.	Data 58 Contractor source Date of inspection	19 59-62 Date receiver MAY	0 8 2003 63-68 80
Name of Well Technician Ker Desauhiers	S TY	Remarks	(CSS.ES3
		NW	n an Santana Santana Santana	0506 (07/00) Front Form 9

The second secon	Ario Ministry of the Environment		i series de la companya de la company La companya de la comp		Ontario Water WATER WE		
Print only in space Mark correct box		ble. [11]	1533	703		on. DiN 1 1 1 22	03 2 23 24
	a Carleton	Township/Borough/City/ West Ca Address Northing	nteton (Elevation RC	Con block tract surv Date completed Basin Code ii	1	25-27 - 03 year
1 2		F OVERBURDEN AND BEDR	OCK MATERIALS	6 (see instruction	31 (S)		47
General colour	Most common material	Other materials		General de	escription	Depth - feel	
grey	Cnestone	gravel			······································	25 2	5 20
·		/		·			
41 WATE Water found at - feet 10,13 1 2 15-18 1 2 20-23 1 2 20-23 1 2 20-23 1 2 20-23 1 2 2 2 25-28 1 2 2 30-33 1 2 2 30-33 1 2 2 30-33 1 2 2 30-33 1 2 2 1 30-33 1 2 2 1 30-34 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1	Bailer GP Mater level ad of pumping 25 Water levels during 1 Soft 15 minutes 25/22 30 1 Soft 13 26/22 30 1 Soft Feet 13 16/22 1 Pump intake set at GPM Pump intake set at pump setting 16/20 1 Poep Recommended 43 1 Soft ELL 54	a Galvanized a Concrete d Open hole f Plastic a Galvanized a Concrete f Open hole f Plastic a Galvanized a Concrete f Open hole f Plastic a Galvanized a Concrete f Open hole f Plastic f Open hole f	Depth - feet From To 0 33 0 31 0 31 20-2 31 21 20-2 0 31 20-2 31 20-2 31 20-2 31 20-2 31 20-2 31 20-2 31 20-2 1 20-2 1	61 Pl 61 Pl 61 A Depth set at - f From T 18-21 26-29 LOCA	1 type	r 34-38 Length inches Depth at top of scree 41- fee G RECORD Abandonment Cament grout, bentonite	9, etc.)
Test hole A Pecharge v WATER USE 1 Domestic 2 Stock 3 Irrigation 4 Industrial METHOD OF C 1 Cable tool 2 Rotary (cor 3 Rotary (rev 4 Rotary (air)	55-56 5 Commercial 6 Municipal 7 Public supply 8 Cooling & air conditioni CONSTRUCTION 57 5 Mair percussion nventional) 6 Boring rerse) 7 Diamond	9 Not use 10 Other 9 Driving 10 Digging 11 Other		3UN	toute Contract	24825	3
Name of Well Contra Address Rame of Well Technic Signature of Technic Signature of Technic	1 Richmon Inon Purce	Well Contractor's Licence No.	A Data source Date of inspecti ABSN ABLSININ	58 Contractor 111	19 spector		

.....

Ontario Ministry of the		The	Ontario Water Resources Act WATER WELL RECORD
Print only in spaces provided. Mark correct box with a checkmark, where application	able.	1533702	
County or District	Township/Borough/City/T WeSt C Address	ownVillage	bon block tract survey, etc. Lot 25-27 Date completed 18 03 0 30 30 30 30 30 30 30 30 30 30 30 3
		RC Elevation RC	
LOG C	T	OCK MATERIALS (see instruction	Depth - feet
General colour Most common material	Other materials		description From To
grey cnotone	м 		3.5 220
		······································	
31 1	Material thickness s inches	43 43 43 ECORD Depth - feet From To 13-16 13-16 Material a	inches feet
2 Saity 6 Gat 15-18 1 Fresh 3 Sulphur 19 2 Saity 6 Gas 17-1 20-23 1 Pesh 3 Sulphur 24 2 Saity 6 Gas 17-1 20-23 1 Pesh 3 Sulphur 24 2 Saity 6 Gas 3 3 25-29 1 Fresh 3 Sulphur 29 2 Saity 6 Gas 3 3 2 Saity 6 Gas 60 6 30-33 1 Fresh 3 Sulphur 34 60 6 30-33 1 Fresh 6 Gas 60 6 6	* 1 □ Steel ¹⁹ 2 □ Galvanized 3 □ Concrete 4 ጬ Copen hole 5 □ Plastic	0 2 Z 2023 0 2 Z Depth set at From	feet PLUGGING & SEALING RECORD Annular space Abandonment t-feet Material and type (Cement grout, bentonits, etc.) 14:17 Cement Qrout 22:25 30-33
Pumping test method 10 Pumping rate 11 Pump 2 Bailer Gl Static level Water level end of pumping 25 Water levels during 19-21 22-24 15 minutes 26-28 30 minutes 26-28 19 feet feet feet 19-21 22-24 15 minutes 26-28 30 minutes 26-28 11 flowing give rate GPM Recommended pump type Recommended 4 Pump setting pump setting	Image: PM Duration of pumping [5-16] Mins I Pumping 2 Recovery 9-31 45 minutes (32-34) 60 minutes (32-37) feet feet feet I Clear Cloudy 345 Recommended pump rate 46-49 GPM		CATION OF WELL v distances of well from road and lot line.
FINAL STATUS OF WELL 54 1 Water supply 5 Abandoned, insufficier 2 Observation welt 6 Abandoned, poor qual 3 Test hole 7 Abandoned (Other) 4 Recharge well 8 Dewatering WATER USE 55:56 1 Domestic 5 2 Stock 6 Municipal 3 Irrigation 7 Public supply 4 Industrial 8 Cooling & air condition	Ity 10 Replacement well 9 Phot use 10 Other	William	Noney Wards
METHOD OF CONSTRUCTION 57 1 Cable tool 5 Air percussion 2 Rotary (conventional) 3 Rotary (reverse) 7 Diamond 4 Rotary (air) 8 Jetting	9 Driving 10 Digging . 11 Other		۶× 248254
Name of Well Contractor Ar Roch Dr. U.g. 6 U	d Well Contractor's Licence No.	A Data se Contractor 111	19 59-62 Date received 8 2003 63-68 80 Inspector
Name of Well Technician Signature of Technician/Contractor	Well Technician's Licence No. TO 122 Submission date	Remarks	CSS.ES3
L'ANK C	U, 0, 0,	<	0506 (07/00) Front Form 5

Measuren	Dintario	and Cli	/ of the Envi mate Chang Wetric	je .	. <u>V</u> T	ag#:/		072	t Below)	Regulation	1 903 O		ter Res	ources Act
8-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	vner's Inforn		_ast Name /	Orgonizatio	-				E-mail Address					
First Nam			13	-				avan	nagh Cons	st)			by We	Constructed ell Owner
•	ddress (Street N					Municipality Ash		ľ	Province On	Postal Code		Telephone	No. (inc.	area code)
Well Loc	94 Cavan: cation	agii Ro	au		and the second	<u></u>				N	11 142			
	of Well Location	•	nber/Name)			Township Hunt	lou			Lot	788	Concessio 3	n !	
	27 Carp R istrict/Municipali			<u>.</u>		City/Town/V				176	Provin	ce	Postal	Code
	twa-Carle	ton	N	orthing		Car Municipal F) Ian and Subic	of Num	ber		Onta	ario		
	83 49			50165	181	Manopart		otrian				ST WE	11 #	1 OF 3
Concernence of the second	den and Bedro	ock Materi	als/Abando	onment Se	aling Rec			ie back						
General (Colour	Most Comr	non Material			ther Materia			Ge	neral Descriptior	1			th (m)
			Sand		٩	ł	Gravel							21'
	k a Grey			stone					·				21 ' 30 '	301
	k & Droy			stone stone									1081	
	k a Gray						<u></u>						137.	143
Black	k & Gray		Lime	stone									194	140
					· · · · · · · · · · · · · · · · · · ·									+
			Annular	Snace	- Contraction of the Contraction	and the second		1 1958-8		Results of W	all Vial	d Testing	CLERING	
	Set at (m@		Type of Sea	alant Used		Volun	ne Placed	After	r test of well yield	d, water was:	Dra	aw Down	R	ecovery
Erom	To	RIL-	(Material ar	nd Type)			n°@D) .36		Clear and sand Other, specify	l free Not teste	Time (min)	Water Leve (m/ft)	I Time	Water Level (m/ft)
$\frac{21}{17^{l}}$	01	Neat c								ued, give reason:		2'9"		96.7"
<u> </u>	<u> </u>	Bentor	nite slurry			-	3.4		X		1	13.3	1.11	81. 3"
								Pum	np intake set at (i	m @	2	20.4	2	69.3
								Dum	120 nping rate (I/min /	GDM	3	25.9	3	57.1
2018/03/02/10/1909/1	thod of Cons	Construction of the second	SAGALA DISCHARMOND	- H-	Well U	NINGER CONTRACTOR OF THE OWNER	T Netwood		20		4	30.4		45.7
Cable To Rotary (Diamond			Comm	pal] Not used] Dewatering	Dura	ation of pumping		5	36.1		35.9
Rotary (Boring		Driving	Live		Test H	ole g & Air Conditi] Monitoring oning	Final	1 hrs + 0	of pumping (m/ft)		53.2		23.6
Air perci	ussion		🗌 Ind						96.7 "					
	1999 (A. 1997)	ruction Re	ecord - Cas		(450)2.4 4 44	Statu	s of Well	l If flov	wing give rate (1/	min / GPM)	15	61.2		12.7
Inside	Open Hole O	R Material	Wall	and the second second	(m @)	Water	Supply	Reco	ommended pum	p depth (mt)	20	74.8		5.8
Diameter (cm/@	(Galvanized, F Concrete, Pla	stic, Steel)	Thickness (cm	From	То	_ C Replace	cement Well ole	Poor	100 ommended pum	n rato	25	80.5	25	2.9
614"	Steel		.188″	+2'	27'	Recha	rge Well ering Well	(I/mir	n (SEA) 20	prete	30	89.8	30	2.9
6"	Open H	ole		27	143	Obser	vation and/or pring Hole	Well	production (Vmir	i Cent	40	93.6	40	2.9
						Alterat	ion	Disin	20 fected?	and a second second second	50	95.4	50	2.9
						Aband		Œ	Yas 🗌 No		60	96.7	" 60	2.94
	Const	ruction Re	ecord - Scr	een		📓 🔲 Aband	cient Supply oned, Poor			Map of W		a far and a far and a far a		
Outside Diameter	Mater (Plastic, Gettar		Slot No.	Depth	(<i>m/ft</i>) To		Quality oned, other,	Plea	ise provide a m	ap below followi	ng instru	lctions on t	ne back.	
(cm/in)			>			specify	, ,			TW6		Ν	-	
		6				Other,	specify			.\		\		~
		Water Det		-	ANDREAMAN	Hole Diame		.,		The .	vm	د	12	121
Water foun	A STAND DESIGNATION OF STANDING COLORS			Untested	Dep	oth (<i>m/ft</i>)	Diameter				Ku		-\ '	-nol
And and a second s		Other, spec		<u>^</u>	From	То	(cm/in)			W/	<u> </u>		1C	1 mg
		Other, spec	Fresh [Intested		0' 2	19/4"		-1+		2		1	Re.
Water foun	nd at Depth Kin			Intested		27' 14:	3 6"	5-	TWOI	FTP	M.			
(1	•	Other, spec							~				Ņ	۱
Business N	Well Name of Well Co	Sector and the sector and	r and Well	recnnician	0.1120-0212-02-024	tion ell Contractor'	s Licence No.			1				\
	ock Drilling					1119							No average	<u>۲</u>
Business A	ddress (Street I Franktown	Road, R	me) R#1		M	unicipality Richmo i	nd		ments: 3/4 HP - 15	GPM SET	@ 100	FI	ESTI	NELL)
Province		al Code	Business	E-mail Addr				L					<u><u></u></u>	<u>of3</u>)
ON Bus.Telepho	one No. (inc. area	COA 2ZO	ne of Well Te			patico.ca First Name]	inform	nation	Package Delivere		Minist Audit No. 🍃	try Use	AVER ALL AVERAGE AND A MARKED
1 1611292			Honer	n Den .				packa delive	ered	2017 M MO			201	2255
Well Technic	ian's Licence No.	Signature	of Technician	and/or Cor			10 31	1×	res	2017 . 10	11			
0506E (2014/1			nip		1	يل جرا حد اب ا	ry's Copy		ΥY	YYMM		Received © Queen's	Printer for	Ontario, 2014

av

CERTIFICATE OF WELL COMPLIANCE

		1
I,	Ken Desau niers DO HEREBY CERTIFY that I am licensed to drill	
	wells in the Province of Ontario, and that I have supervised the drilling of a well on the	
	property of 1384341 ONTARIO LIMITED (Construction)	
	located #2727 CARP ROAD Carp	
	Lot/Plan No.) in the City of Ottawa (Geographical Township of	
	bot 78 CONC 2 PLAN# X S/L# X	
	CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines,	
	recommendations and regulations of the Ministry of the Environment governing well	2
	installations in the Province of Ontario, and the standards specified in any subdivision	
	agreement and hydrogeological report applicable to this site and City Standards.	
~	· ·	
-	AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted	
	(cement or bentonite) as applicable and constructed in strict conformity with the	:
	standards required.	
	Signed this day of OCTOBEL 2017	:
	Kamie Air Rock Drilling Co. Ltd.	

Well Driller/Company

The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

day of Nov. SIGNED this 2017 LICE A. C. HOULE Engineer emtec Limited 9 Shaping our future together Ensemble, formons notre avenir City of Ottawa Ville d'Ollawa Client Service Centre Centre de service 8243, rue Victoria 8763 Virtoria Street Gittawa; ON KOA 2PO

OTTAWA, ON KOA 290

Ministry of the Environment and Climate Change	ag#:A2290 A229073		ntion 903 C	We Ontario Wate	1	ecord
Measurements recorded in: Metric Mimperial	AZZ9073			Page		of
Well Owner's Information				e generationer		
First Name Last Name / Organization	o Limited (c/o Ca	E-mail Address				Constructed
Mailing Address (Street Number/Name)		Province Postal (Code	Telephone No	-	
9094 Cavanagh Road	Ashton	On Ki	0A 1B0			
Well Location						
Address of Well Location (Street Number/Name) 2727 Carp Road	Township Huntley	Lot	VL 7&	Concession		
County/District/Municipality	City/Town/Village	· ·	Provi	nce	Postal	Code
Ottawa-Carleton	Carp			tario		
UTM Coordinates Zone Easting Northing	Municipal Flan and Sublo	ot Number	Other		1 #	2052
NAD 8 3 18 422183 5016181 Overburden and Bedrock Materials/Abandonment Sealing Rec	cord (see instructions on th	e back of this form)		<u>est wei</u>	.L #	<u>z of J</u>
And a second	ther Materials	General Descri	ption	F	Dept rom	th (<i>m</i>)
Sand & Cm	wel & Clay					13'
Black & Crock Limestone					13 /	1081
					108'	183 1
Black & Group Limestone		14			100	
· · ·						
		:				
Annular Space		Results	if Well Yie	ld Testing		
Depth Set at (mm) Type of Sealant Used	Volume Placed	After test of well yield, water was	D	raw Down		ecovery
From To (Material and Type)	(m³/f®)	Clear and sand free	Time (min)		Time ((min)	Water Level (m/ft)
20 / 10 / Neat cement	10.9	Other, specify Not te	Static			21.4 "
10 ' Bentonite slurry	8.4		Lever	12.9		14.6
			1			
		Pump intake set at (m D 160	2	15.1	2	10.1
		Pumping rate (I/min CPM)	3	16.3	3	87
Method of Construction Well U Cable Tool Diamond Comm	2445 MARAN RUDA TAR SERVICE AND SERVICE	20	4	17.1	4	7.7
Rotary (Conventional) Jetting Munici	pal 🗌 Dewatering	Duration of pumping	5	17.8	5	7.7
Rotary (Reverse) Driving Livestock Digging Digging Irrigation Coolin	ole Monitoring g & Air Conditioning	<u>1</u> hrs + <u>0</u> min Final water level end of pumping	((7))			7.7
	9 9	21.4 "	^(m/π) 10	19.9	10	
		If flowing give rate (I/min / GPM)	15	20.3	15	7.7
Construction Record - Casing Inside Open Hole OR Material Wall Depth (mRP)	Status of Well Water Supply	Recommended pump depth (ma	20	20.7	20	7.7
Diameter (Galvanized, Fibreglass, Thickness	Replacement Well		25	21.4	25	7.7
	Test Hole	Recommended pump rate	30	21.4	30	7.7
614	Dewatering Well	(<i>l/min / 684)</i> 20		21.4	40	7.7
6" Open Hole 20 183	Observation and/or Monitoring Hole	Well production (Vmin / P)	40	12.45.0000000000		
	Alteration	20 Disinfected?	50	21.4	50	7.7
	(Construction)	to s □ No	60	21.41	60	7.7%
Construction Record - Screen	Insufficient Supply	Mapic	of Well Loo	sation		
Outside Material Diameter (Pleotic Cohonized Stool) Slot No. Depth (m/tt)	Water Quality		7	on the	e back.	
(cm/in) (Plastic, Galvanized, Steel) Slot NC. From To	Abandoned, other, specify					Δ
		•		\		21
	Other, specify		\mathbf{D}	N.	$\langle \mathcal{X} \rangle$	<u>۱</u> ۳۵
Water Details	Hole Diameter	and the second		N 7	No	R. A
Water found at Depth Kind of Water: Fresh Wintested Dep	pth (<i>m/ft</i>) Diameter		.)	11.//	~~~	Optim
108 (m/) Gas Other, specify From			70			14
Water found at Depth Kind of Water: Fresh Untested	0 20 7/4		//			\
(<i>m/ft</i>) Gas Other, <i>specify</i> Water found at Depth Kind of Water: Fresh Untested	20 183 6"		1			\mathbf{N}
(<i>m/ft</i>)		$\cap (\mathcal{X})$		3		
Well Contractor and Well Technician Informa		FIND	$\land \checkmark$	W	-	$\sim N$
	/ell Contractor's Licence No.			× .		\
Air Rock Drilling Co. Ltd. Business Address (Street Number/Name).	1119	Comments:		1-13	5-	WETL
Business Address (Street Number/Name) M 00599:Franktown Road, RR#1	Richmond	3/4 HP - 15 GPM SI	ET @ 10	0.FT / \	ST	WLLC C2
Province Postal Code Business E-mail Address	nation ca				-2	010
ON KOA 220 air-rock@sym Bus.Telephone No. (inc. area code) Name of Well Technician (Last Name	·	Well owner's Date Package De information	livered	Ministr Audit No. 7	y Use D (C /	Unly つにフ
Bus Telephone No. (<i>inc. area code</i>) Name of Well Technician (Last Name	, i list Maille)	package Y Y 2017 M		20	200	2231
Well Technician's Licence No. Signature of Technician and/or Contractorip.	ate Sydemitted 10 31	Yes Date Work Compl	eted 10 10			
Rowry R			MDD	Received		
0506E (2014/11)	Ministry's Copy	*		⊌ Queen's Pi	niter tor	Ontario, 2014

CERTIFICATE OF WELL COMPLIANCE

I.	Ken Desau niers DO HEREBY CERTIFY that I am licensed to drill	
	wells in the Province of Ontario, and that I have supervised the drilling of a well on the	and the second division of the second
	property 1384341 ONTARIO LIMITED (Construction)	
	locatediat #2727 CARP ROAD Carp	
	Lot/Plan No.) in the City of Ottawa (Geographical Township of	
	Lort 78 CONC 3 PLAN# × S/L# ×	
	CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines,	
	recommendations and regulations of the Ministry of the Environment governing well	
	installations in the Province of Ontario, and the standards specified in any subdivision	
	agreement and hydrogeological report applicable to this site and City Standards.	
~		
	AND DO HEREBY CERTIEV THAT the said well has been drilled cased grouted	÷

AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required.

Signed this 10TH day of OCTOBEL -AirRock Drilling (ell Driller/Company

Client Service Centre

RJAR Victoria Street Cutawa; ON KOA 200

The Engineer on behalf of the landowner set out above Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in O.Reg.903, this report and the Hydrogeological Report with regards to casing length and grouting requirements.

day of Nov. 2017 SIGNED this in the A. C. HOULE Engineer Gem tec Shaping our future together Ensemble, formons notre avenir City of Ottawa Ville d'Ottawa

Centre de service 8243, rue Victoria

KOA 2PC

OTTAWA, ON

9094 Cavanagh R Well Location	Name) {Oad	lion Ontari	o Limited (c/o C Municipality Ashton	E-mail Address avanach Const) Prevince Postal Code On KOA	180		Well C by We . (inc.
2727 Carp Road County/District/Municipality			Huntley City/Town/Village	P/L		3 • P	Postal
UTM Coordinates Zone Easting NAD 8 3 18 A	2692 Northing	337	Carp Municipal Plan and Suble	ot Number	Other	ST WEL	1 #
Overburden and Bedrock Mat		Sealing Red	cord (see instructions on th ther Materials	ne back of this form) General Description			Dept
	Sand	 	Grey Clay		•	Fr	om
Black & Grey	Limestone		aleq only				41
Black + Crey	Limestone				1 A	2	81
Black of Grey	Limestone				· · ·	9	18 /
Black & Groy	Limestone				- NA	<u></u>	33.1
29 07 Neat	: cement		10:9	Other, specify <u>Not teste</u> If pumping discontinued, give reason: V Pump intake set at (mm)		3'8'' 4.3	nin) 1 2
				120 Pumping rate (I/min / @)	3		3
Method of Construction		Well U	en de la companya de	20	4	4.6	4
Rotary (Conventional) Jetting Rotary (Reverse) Driving			bal 🗌 Dewatering	Duration of pumping	5	4.8	5
Boring Digging	ig 🗌 Inigation	Cooling	e & Air Conditioning	Final water level end of pumping (mff)	10	4.8	10
Other, specify Construction	Record - Casing		Status of Well	If flowing give rate (I/min / GPM)	. 15		15
	Wall Dep	ith (<i>m@</i>	Water Supply	Recommended pump depth (mag	20	- 5. 2	20
Inside Open Hole OR Material		То	Replacement Well		12 - 1 - 2	1 A. 2 1 1 1 1 1	
Inside Diameter (cmm) Concrete, Plastic, Steel)	and the state of the state of the state of the state of the	1		Recommended pump rate	25		25.
Inside Diameter (cmt) 6 ¹ /4 ⁴ Steel	.188'' +2'	210	Recharge Well Dewatering Well	Recommended pump rate (//min / QUA) 20	25 30 40	5.1	
Inside Diameter (cmm) Concrete, Plastic, Steel)	and the state of the state of the state of the state of the	1	Recharge Well	Recommendation of the second s	30	5.1 3 5.1 4	25.
Inside Diameter (cmt) 6 ¹ /4 ⁴ Steel	.188'' +2'	210	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned,	Recommended pump rate (//min / QUA) 20	30 40	5.1 3 5.1 4 5.1 5	25 30 40
Inside Diameter (om@) Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel) 6/44" Steel 0 Open Hole Construction	.188 ¹¹ +2 ¹ 220 Record - Screen	270 ⁷ 143 ⁷	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor	Recommendation pump rate (Vmin / Q24) 20 Well production (Vmin / Q24) 20 Districted?	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (cm@) 6/14 ^u Steel 6 ^u Open Hole	Record - Screen	210	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply	Recommendation pump rate (//min / 2010) Well production (//min / 2010) 2010 Disinfected? Disinfected? No	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 ⁶	25. 30 10 50
Inside Diameter (cm@) Concrete, Plastic, Steel Concrete, Plastic, Concrete, C	.188 ¹¹ +2 ¹ 220 Record - Screen	220 ⁷ 143 ⁷	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify	Recommendation pump rate (Vmin / QLA) Well production (Vmin / QCA) 20 Disinfected? Disinfected? No Map of We	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (cm@) Concrete, Plastic, Steel Concrete, Plastic, Steel Concrete, Plastic, Steel Concrete, Plastic, Steel Concrete, Plastic, Steel Concrete, Plastic, Steel Construction Outside Diameter (cm/in)	.188 ¹¹ +2 ¹ 220 Record - Screen i) Slot No.	2 20 1431	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Other, specify	Recommendation pump rate (Vmin / QLA) Well production (Vmin / QCA) 20 Disinfected? Disinfected? No Map of We	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (cm0) Concrete, Plastic, Steel Concrete, Plastic, Steel Concrete, Plastic, Steel Concrete, Plastic, Steel Construction Outside Diameter (cm/n) Couster Construction Material (Plastic, Galvanized, Steel Water for Water for Water for Kind of Wate	.188 ^(*) +2 ^{*/} .220	220' 143' th (m/t) To To	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Other, specify tole Diameter th (m/ft) Diameter	Recommendation pump rate (Vmin / QLA) Well production (Vmin / QCA) 20 Disinfected? Disinfected? No Map of We	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (cm0) Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel) 6.1.4.4.1 Steel 6.1.4.4.1 Steel 6.1.4.4.1 Steel 6.1.4.4.1 Steel 6.1.4.4.1 Open Hole 0 Material	.188 ¹¹ +2 ¹ .220 Record - Screen Slot No. Depl From etails er: □Fresh ↓Untestec	220' 143' th (m/t) To From	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Other, specify icle Diameter	Recommendation pump rate (Vmin / QLA) Well production (Vmin / QCA) 20 Disinfected? Disinfected? No Map of We	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (cm0) Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel) 6//4" Steel 6//4" Steel 6//4" Open Hole 6//4" Steel 6//4" Open Hole 6//4" Open Hole 0//4" Steel 6//4" Open Hole 0//4" Open Hole 0//4" Material 0//4" Construction 0//4" Material 0//4" Material 0//4" Construction 0//4" Material 0//4" Construction	.188 ^(*) +2 ' 220 220 Record - Screen Dept i) Slot No. From etails From From etails General Screen Screen etails From From etails From Screen etails From Screen etails Screen Screen etails Screen Screen	220' 143' th (m/t) To to to From	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Other, specify tole Diameter th (m/ft) Diameter	Recommendation pump rate (//min / @B49) 20 Well production (//min / @B40) 20 Disinfected? No Map. of We TW8	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (GRUVANIZEA, Fibreglass, Concrete, Plastic, Steel) Concrete, Plastic, Steel) Construction Construction Construction Material (Plastic, Galvanized, Steel (Plastic, Galvanized, Steel (.188 ^(*) +2 ' .220	220' 143' th (m/t) To To to the form the form th	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Other, specify Iole Diameter th (m/ft) Diameter To 0 ' 20 9 3/4 '' 20 ' 143 6 ''	Recommendation pump rate (Vmin / QLA) Well production (Vmin / QCA) 20 Disinfected? Disinfected? No Map of We	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (GRUVANIZEA, Fibreglass, Concrete, Plastic, Steel) Concrete, Plastic, Steel) Construction Construction Construction Material (Plastic, Galvanized, Steel (Plastic, Galvanized, Steel (.188 ^(*) +2 ' 220 Record - Screen a) Slot No. period From etails er: Fresh Presh Writestec pecify	220' 143' th (<i>m</i> /t) To to th Dep From ti to the dep the dep the dep the dep the dep the dep the dep the depth term	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Insufficient Supply Abandoned, Poor Water Quality Abandoned, other, specify Other, specify Iole Diameter th (m/ft) Diameter To 0 ' 20 9 3/4 '' 20 ' 143 6 ''	Recommendation pump rate (//min / @B49) 20 Well production (//min / @B40) 20 Disinfected? No Map. of We TW8	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 5.1 6 5.1 6	25. 30 10 50
Inside Diameter (cm/0) Open Hole OR Material (Galvanized, Fibreglass, Concrete, Plastic, Steel) 6.1.4.1 Steel 6.1.4.1 Open Hole 0.1.5.1 Material Diameter (cm/in) Material 0.1.6.1 Material 10.1.6.1 Material 11.6.1 Material 12.6.1 Material 13.6.1 Material 14.1.1 Material 14.1.1 Material 15.1.1 Material 16.1.1 Material 17.1.1 Material 18.1.1 Material	.188 ^(*) +2 ^{*/} 220 Record - Screen a) Slot No. From etails etails er: Fresh Vintestec becify er: Fresh Vintestec becify er: Fresh vintestec becify er: Fresh vintestec becify er: for and Well Technicia d.	220' 143' th (m/tt) To I Dep From I I I I I I I I I I I I I I I I I I I	Recharge Well Dewatering Well Observation and/or Monitoring Hole Alteration (Construction) Abandoned, Poor Water Quality Abandoned, Poor Water Quality Other, specify Other, specify Other, specify Other, specify Diameter To Construction Other, Specify Other, S	Recommendation pump rate (//min / @B49) 20 Well production (//min / @B40) 20 Disinfected? No Map. of We TW8	30 40 50 60	5.1 3 5.1 4 5.1 5 5.1 6 on on the t	25. 30 10 50

Ministry's Copy

© Queen's Printer for Ontario, 2014

.

CERTIFICATE OF WELL COMPLIANCE

property of <u>1384341</u> Outperfor Limited <u>Construction</u> located <u>#2727</u> CARP BOAD <u>Construction</u> Lot/Plan No.) in the City of Ottawa (Geographical Township of <u>Huantley</u> <u>1478</u> <u>Conc</u> <u>3</u> <u>Plank</u> <u>X</u> <u>Shert</u> <u>X</u> CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this <u>674</u> day of <u>OctoBER</u> <u>2017</u>	here
Lot/Plan No.) in the City of Ottawa (Geographical Township of CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this <u>CT</u> day of <u>OCTOBER</u> <u>DOT</u>	
CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this $\mathcal{L}_{\mathcal{A}}$ day of $\mathcal{D}_{\mathcal{C}}$	
installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards. AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	2 7
AND DO HEREBY CERTIFY THAT the said well has been drilled, eased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required.	
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this 6th day of Octobel 2017	
(cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
(cement or bentonite) as applicable and constructed in strict conformity with the standards required. Signed this 4 day of 2 COCOBER 2017	
standards required. Signed this 674 day of Ocrobel 2017	
Signed this 6th day of Octobel 2017	
De la	
Well Driller/Company	

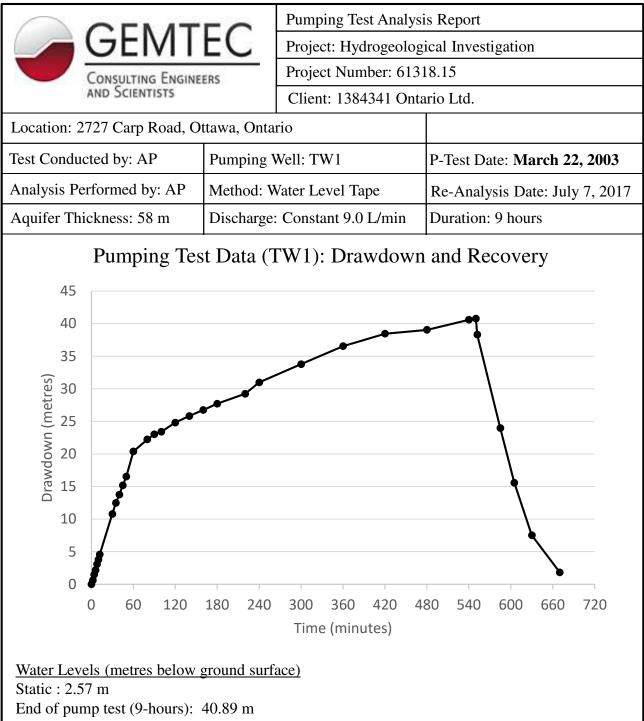
____ day of Nov. 2017 SIGNED this P.Eng. LICEN Joule, Nov. 2 Engineer Gentec Limited Shaping our future together Ensemble, formons notre avenir ('m)

City of Ottawa **Client Service Centre** 9763 Victoria Street Cattawa; ON KOA 2PO

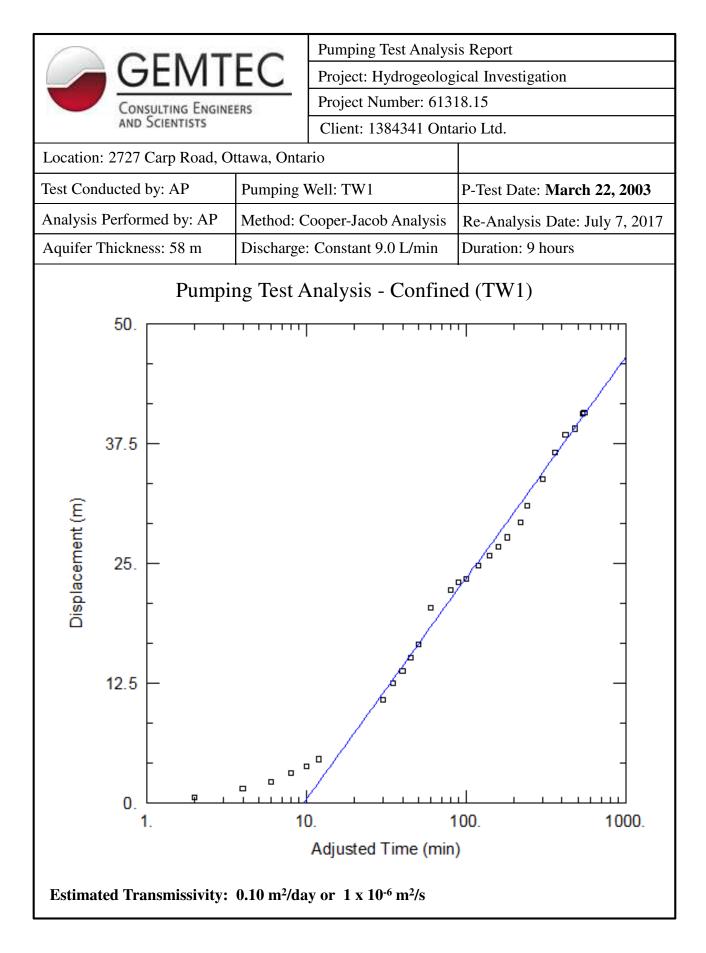
requirements.

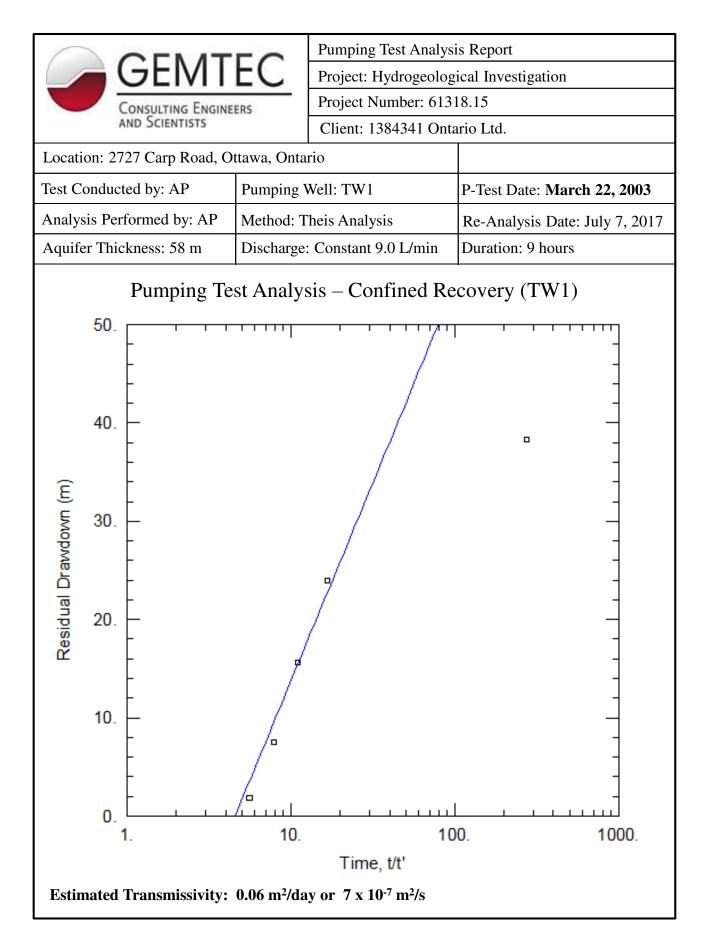
Ville d'Ottawa Centre de service 8243, que Victoria Ottawa, ON KOA 220

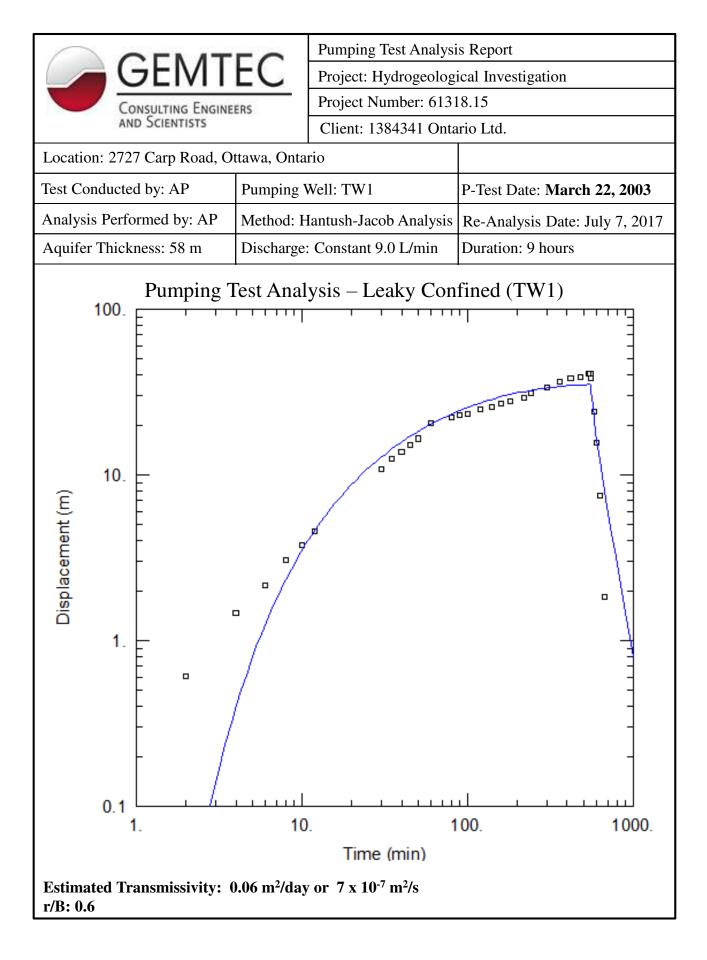
2

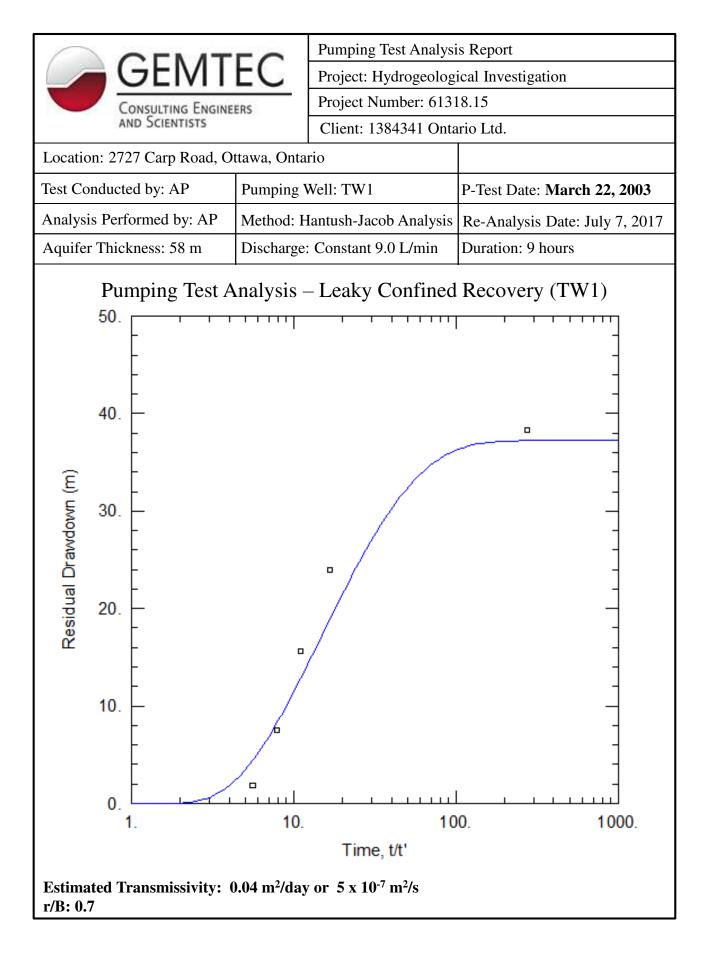

Annao miornati

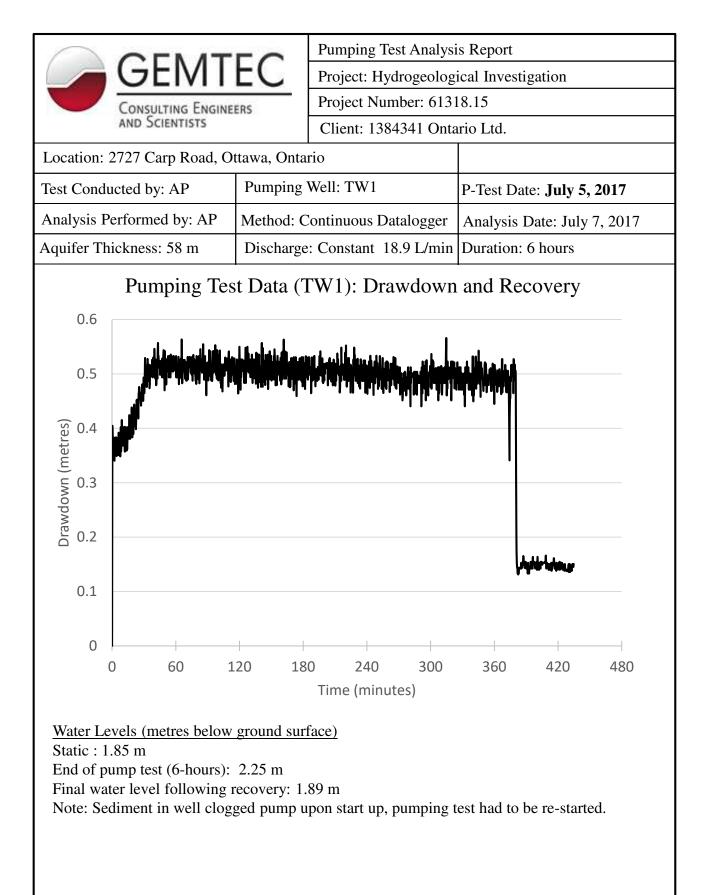
0

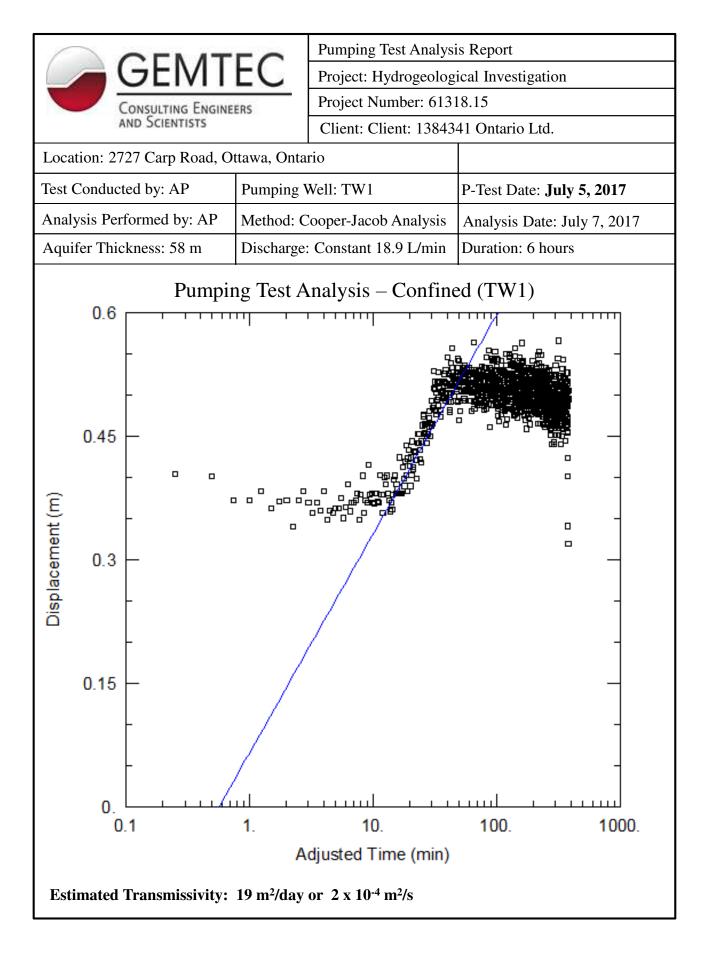

APPENDIX J

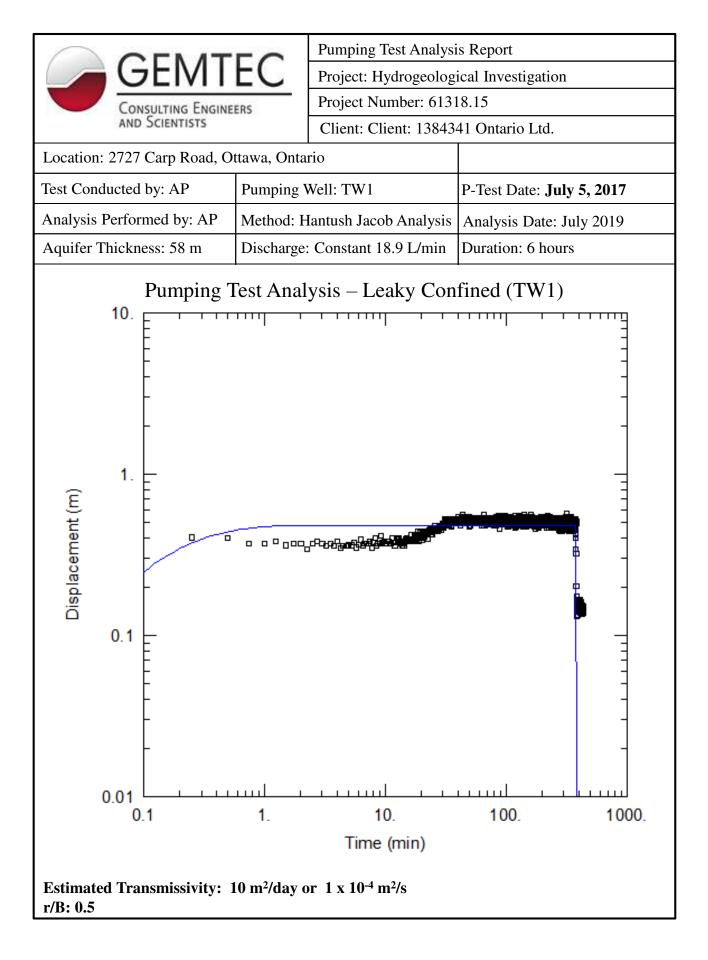

Drawdown and Transmissivity Estimates

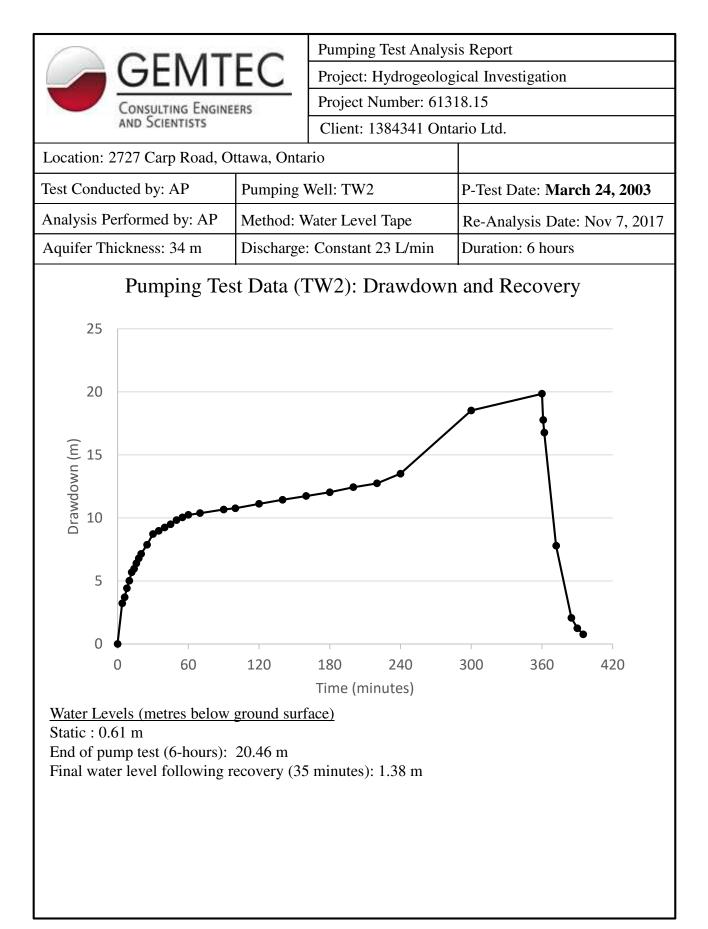


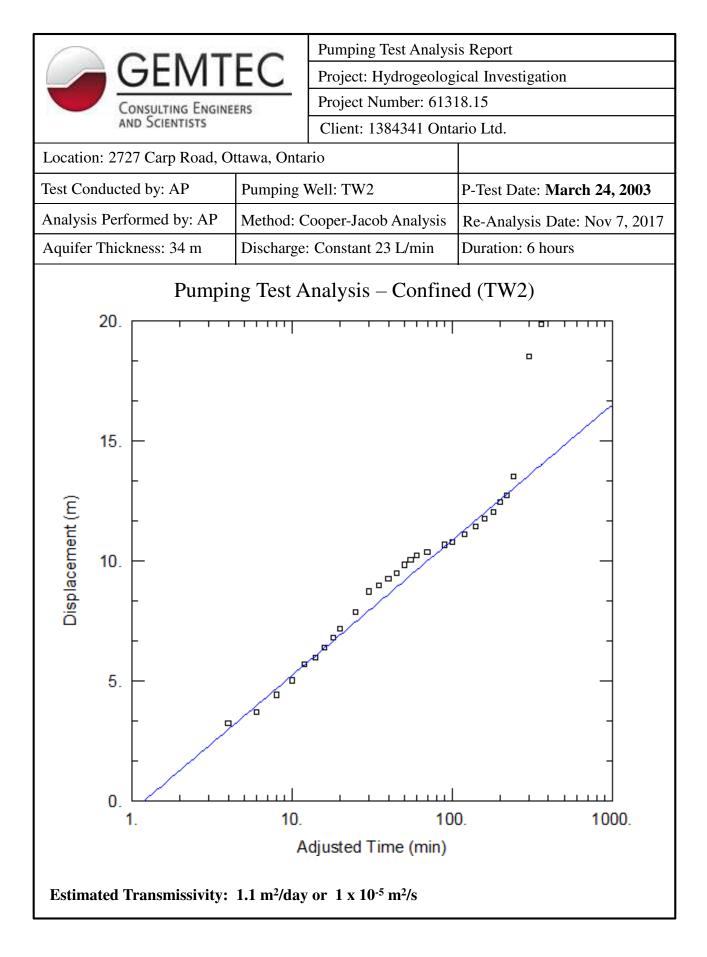


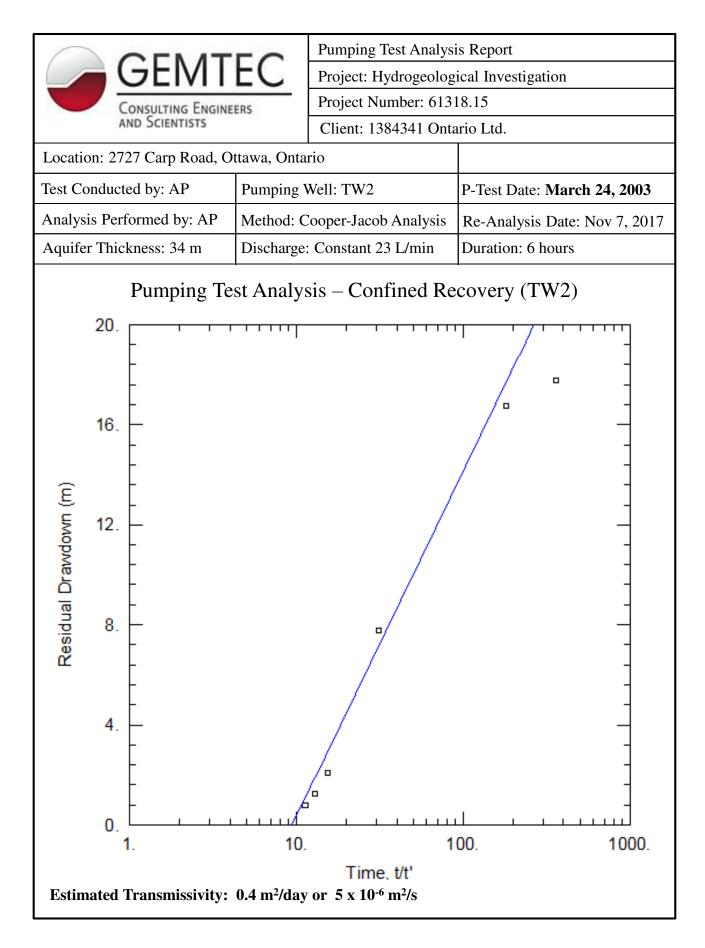

Final water level following recovery: 4.39 m

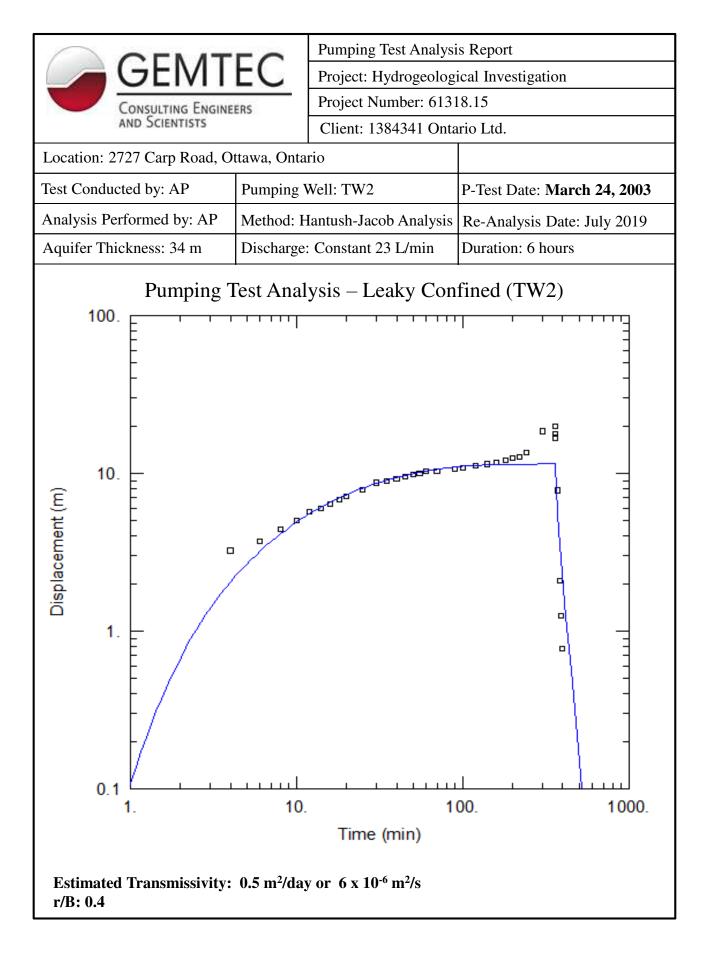


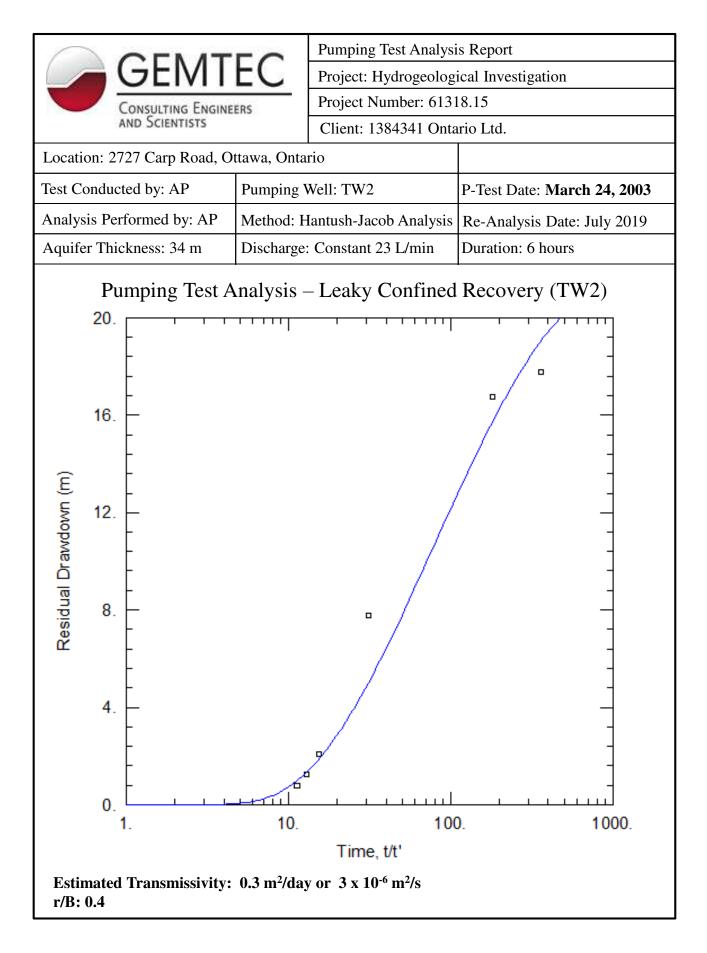


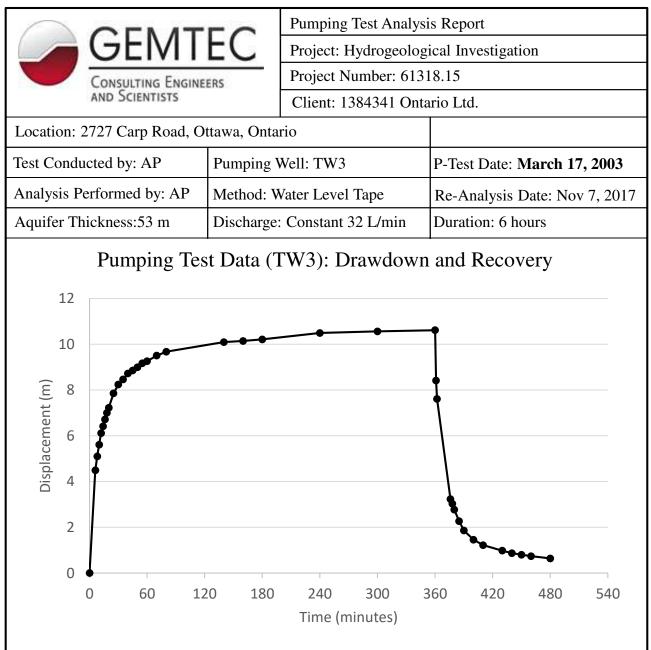


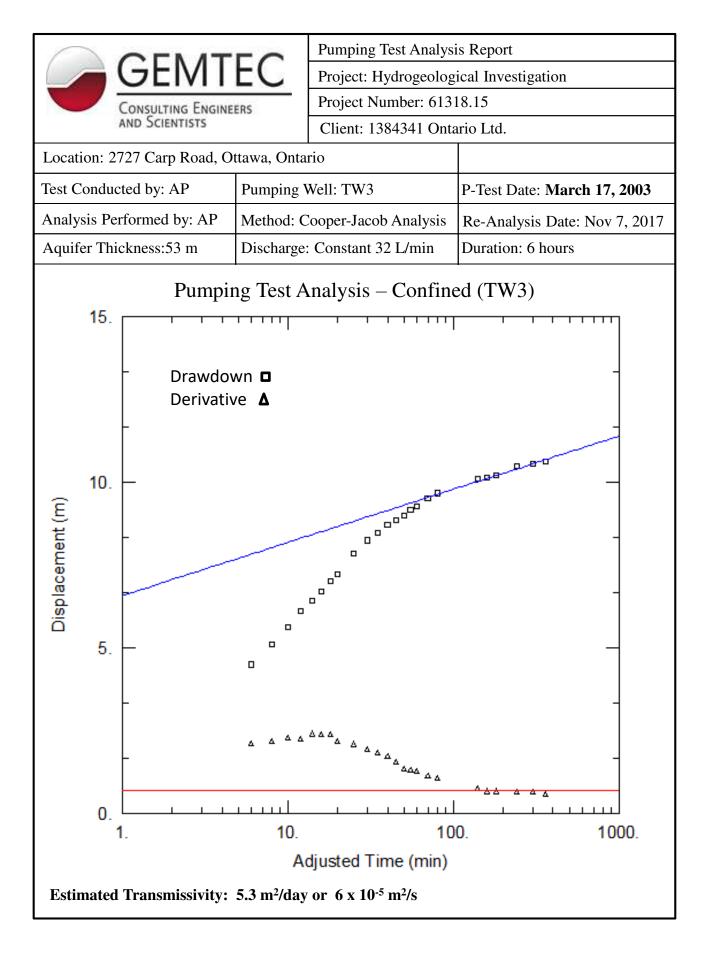


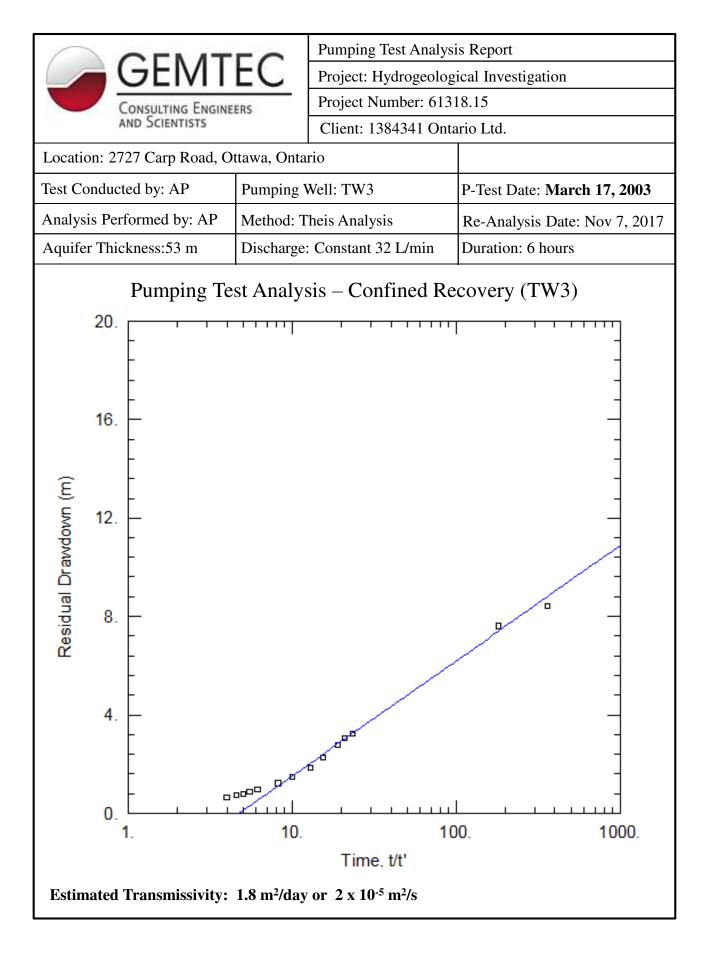


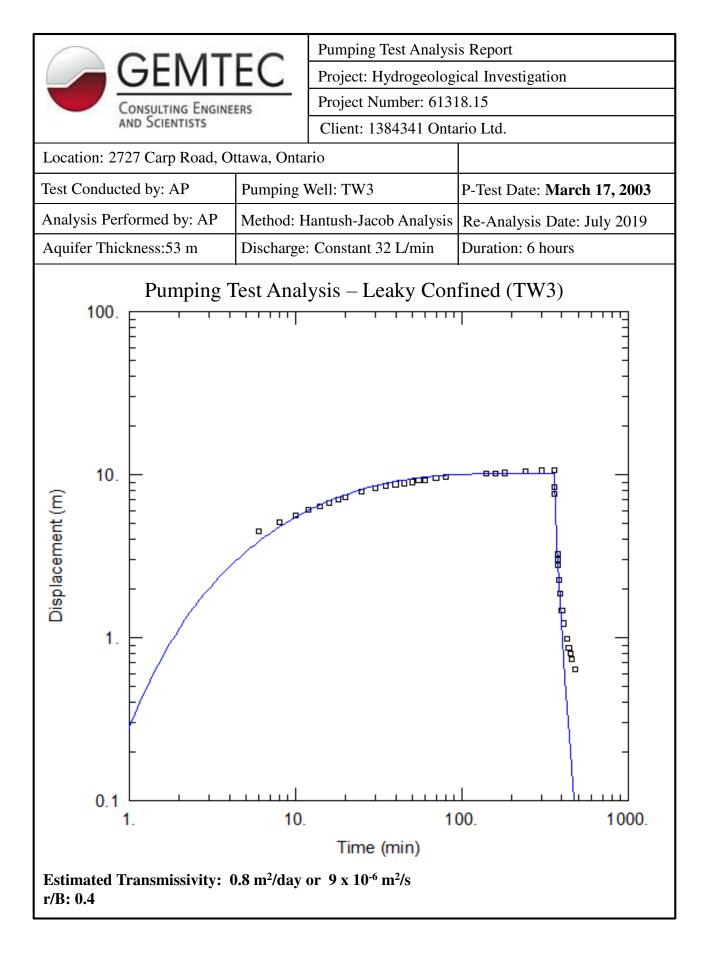


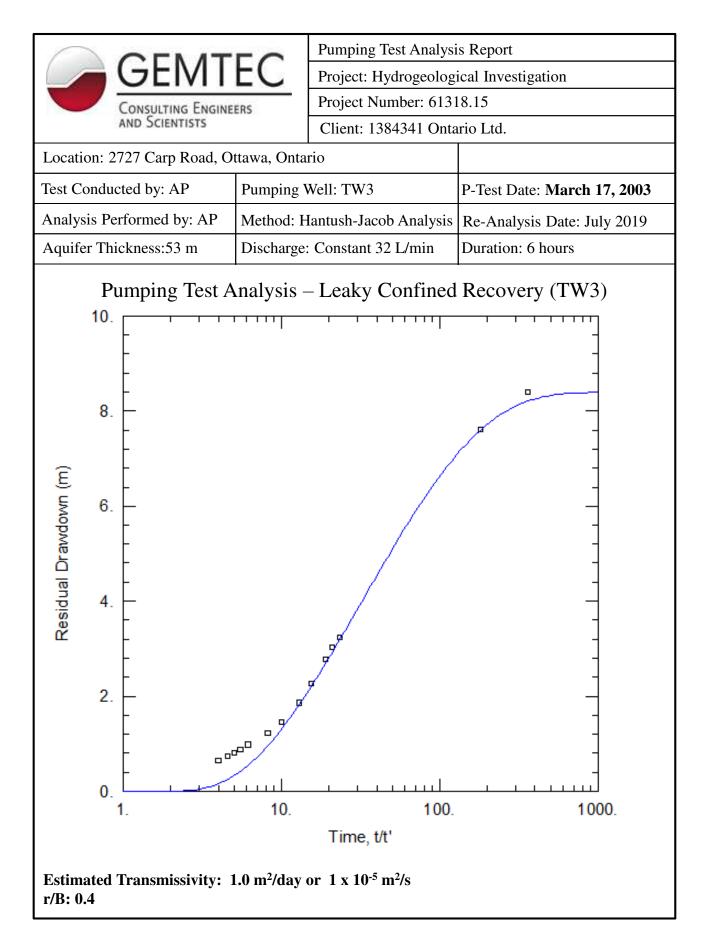


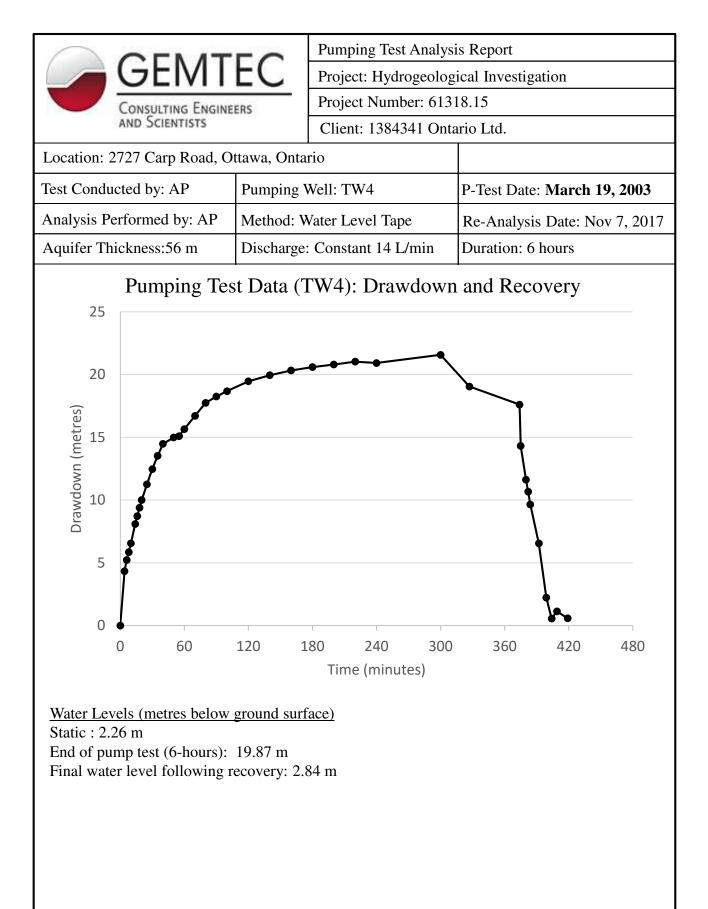


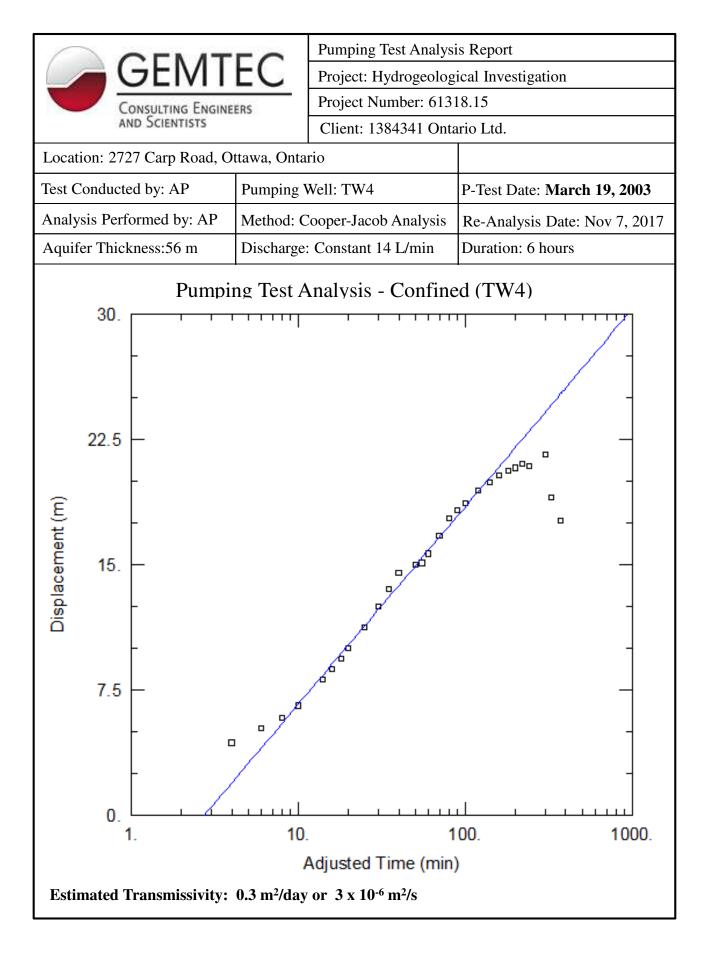


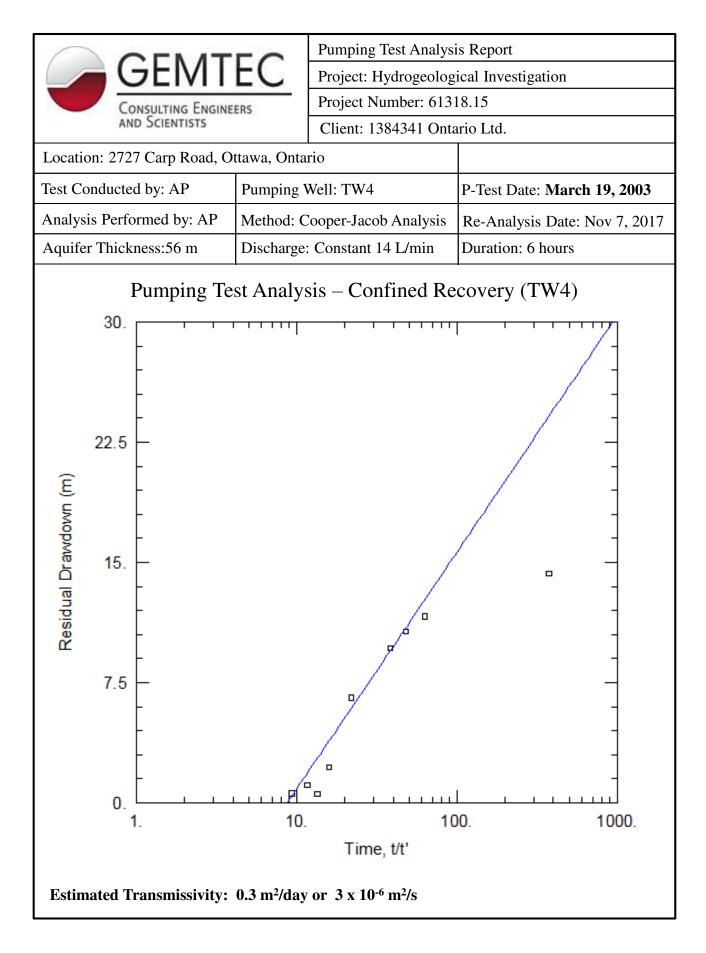


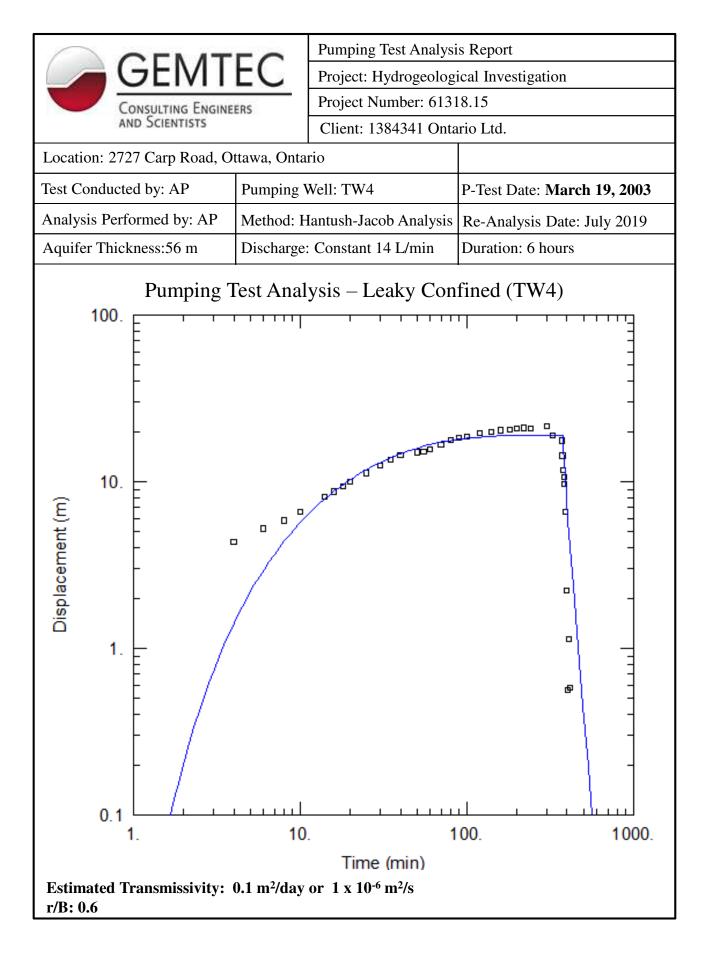


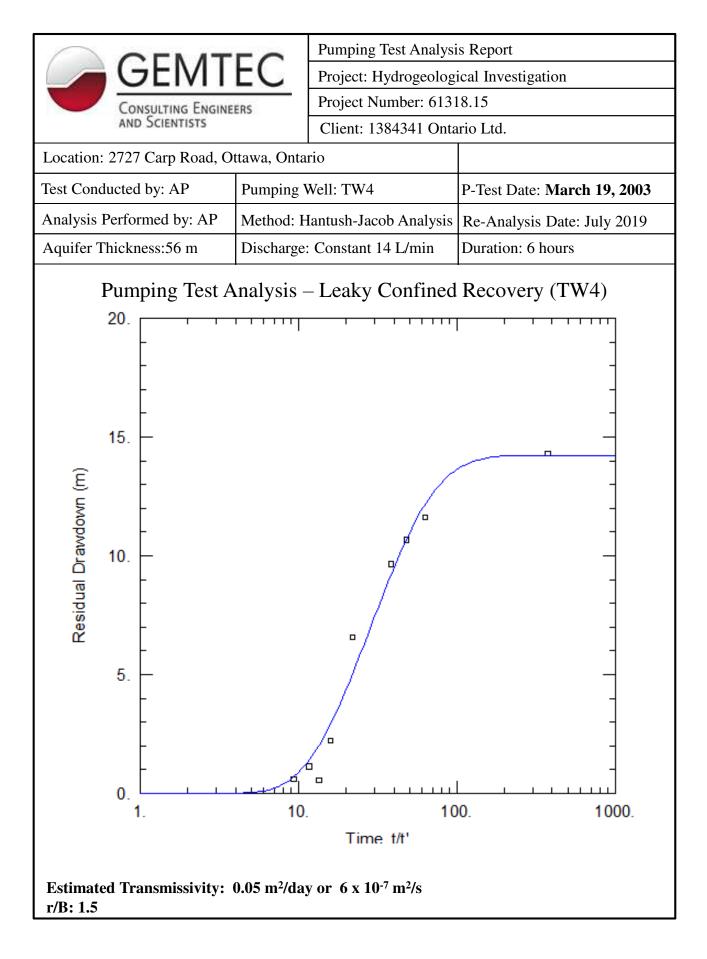


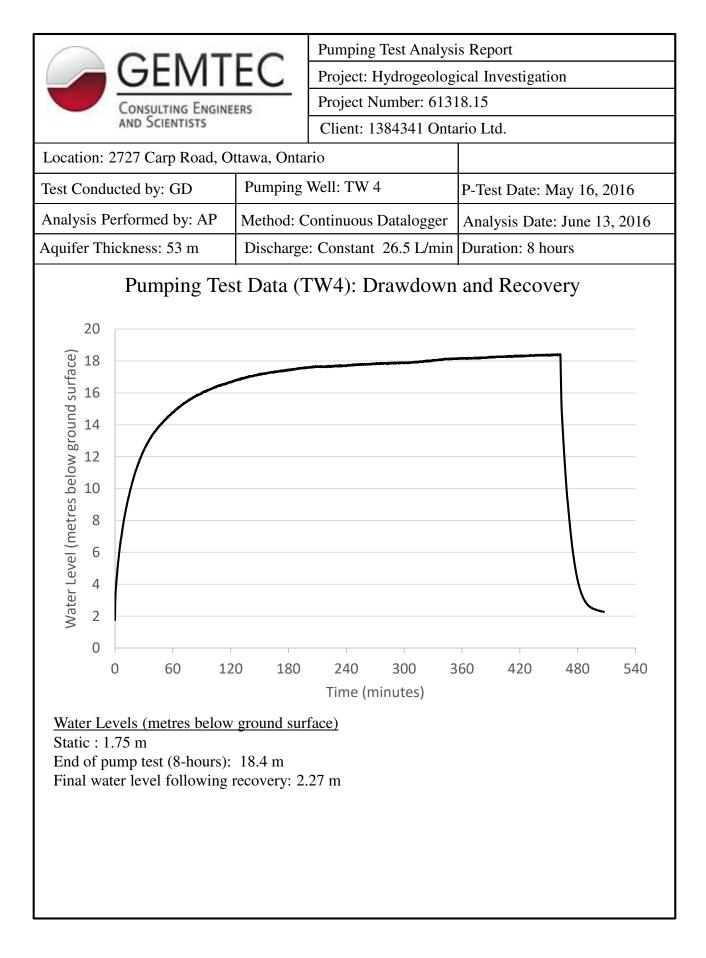

<u>Water Levels (metres below ground surface)</u> Static : 0.46 m End of pump test (6-hours): 11.07 m Final water level following recovery: 1.10 m

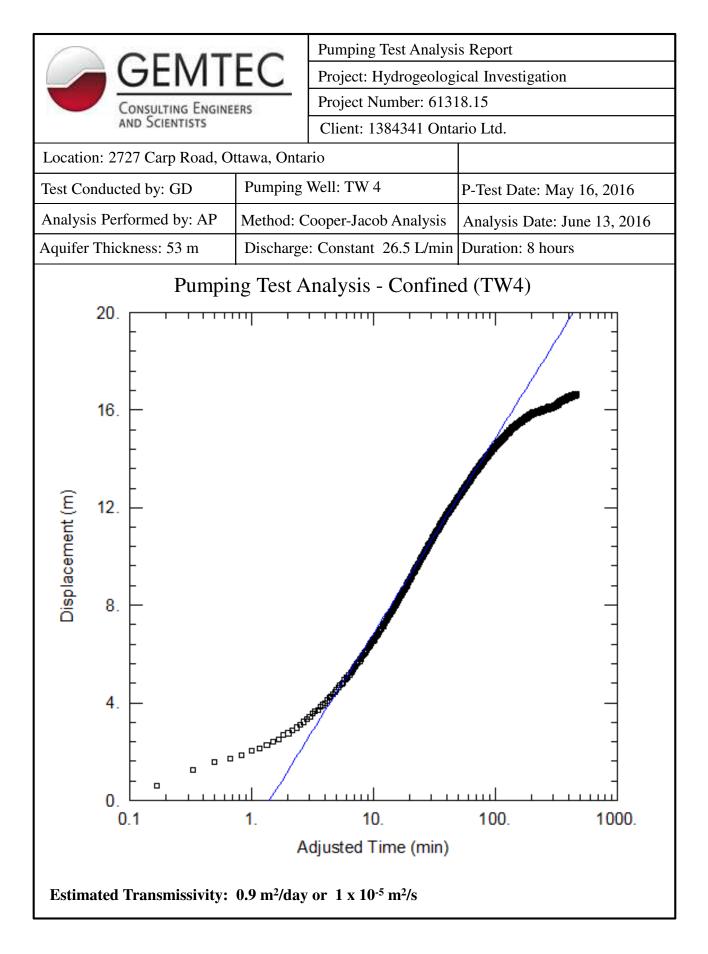


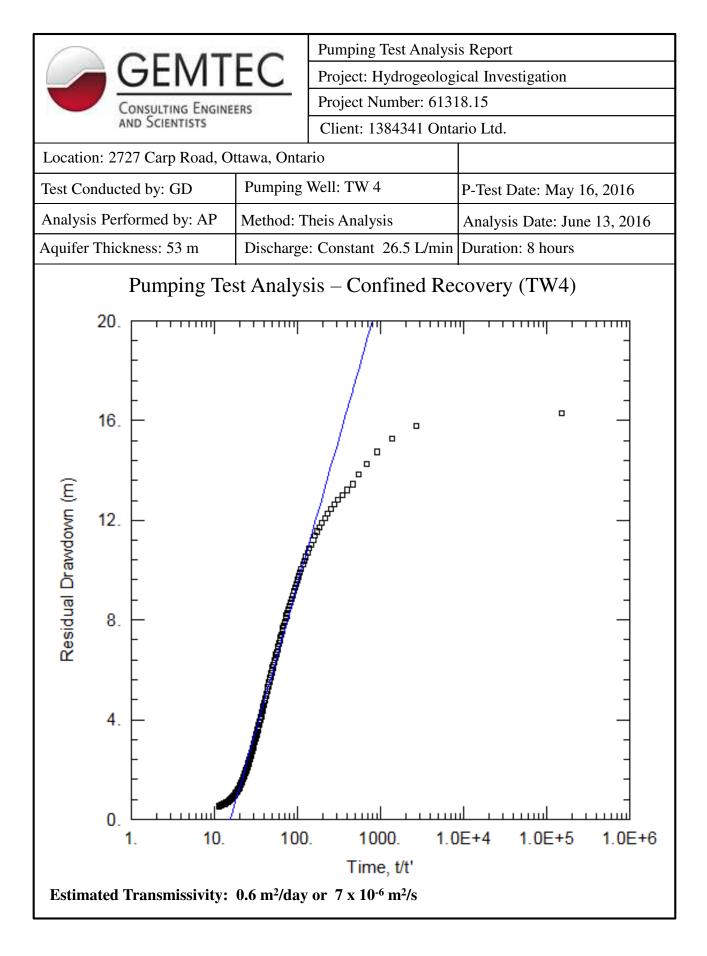


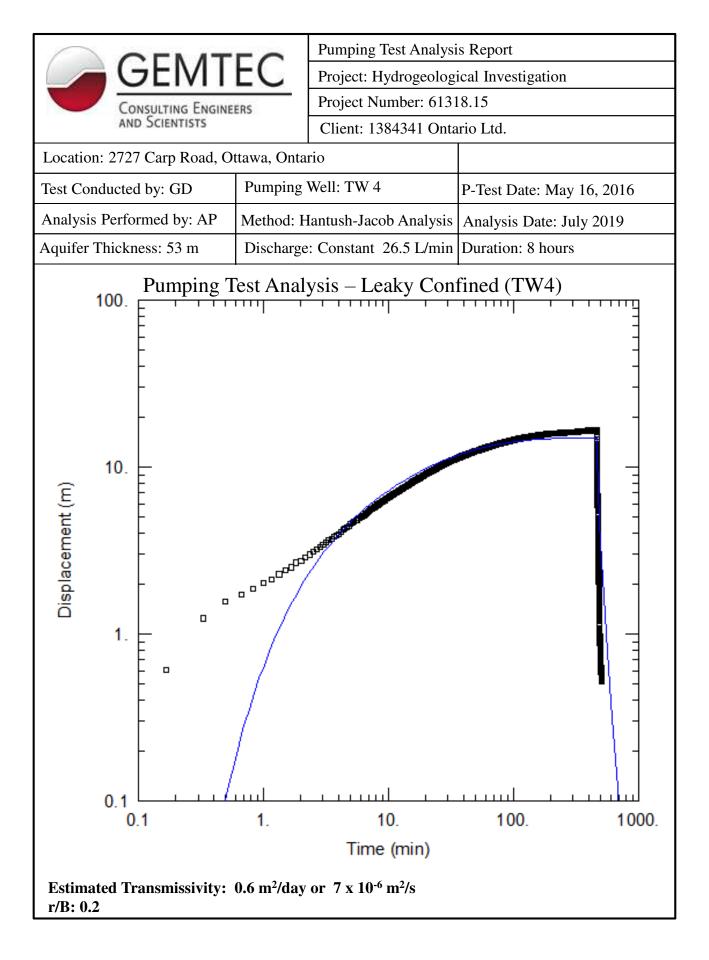


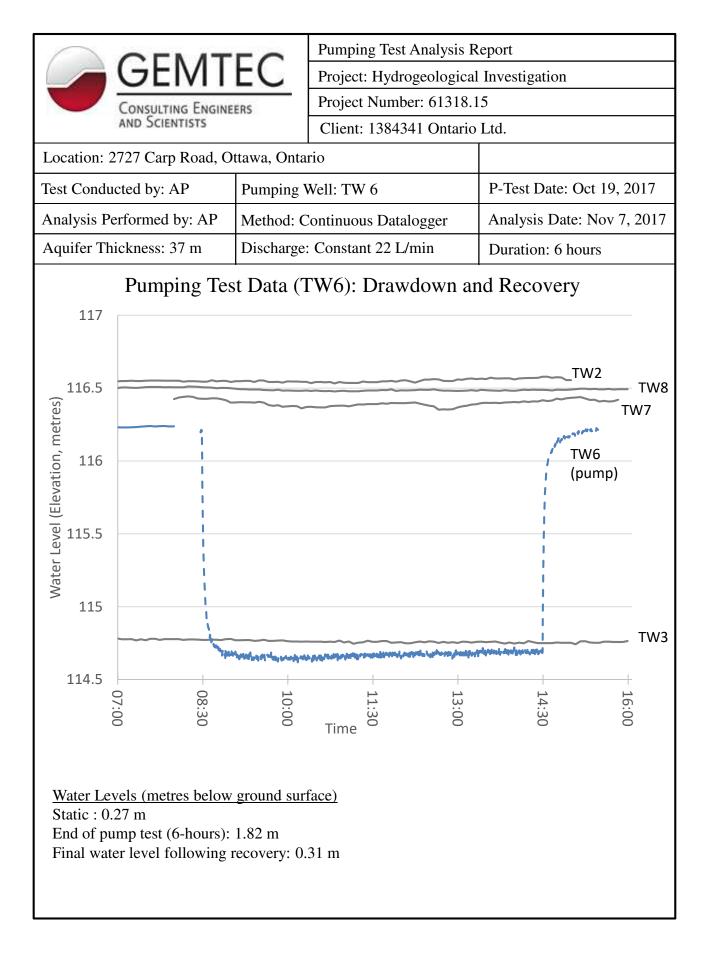


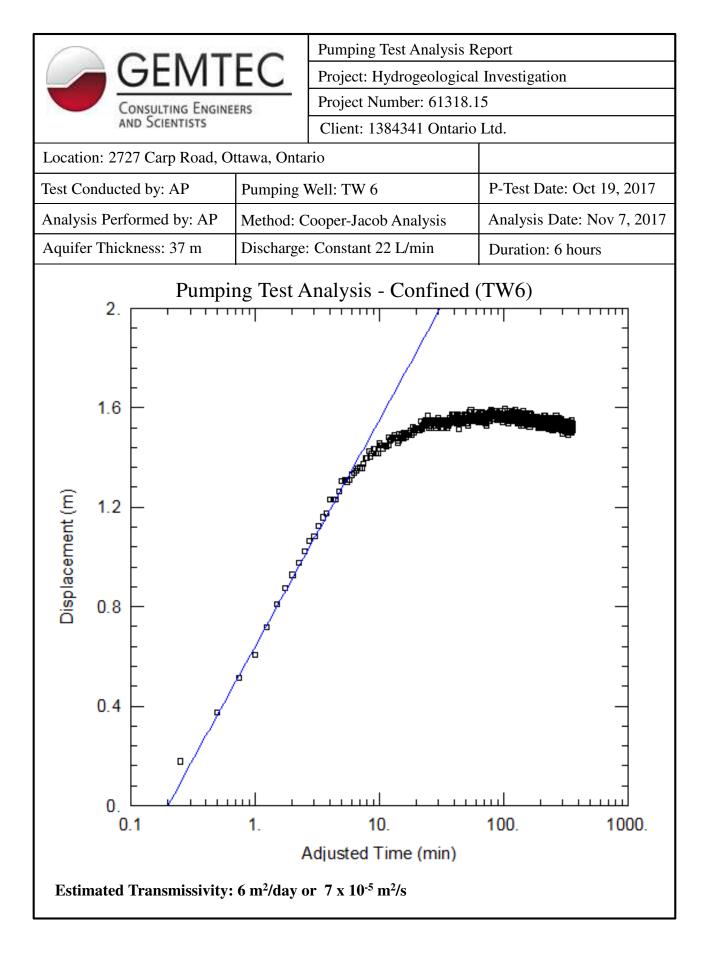


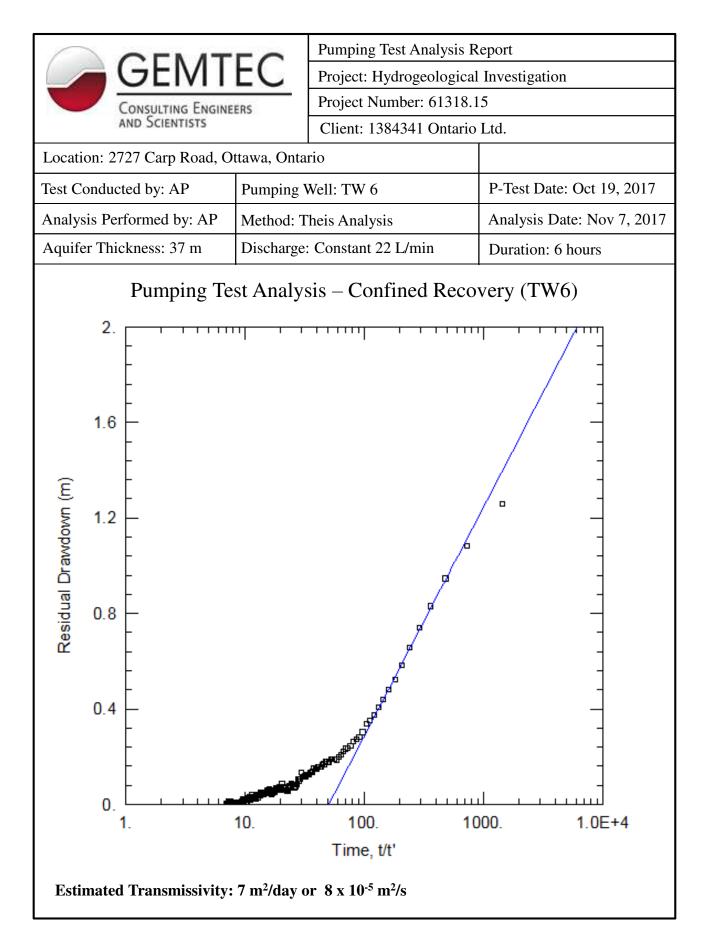




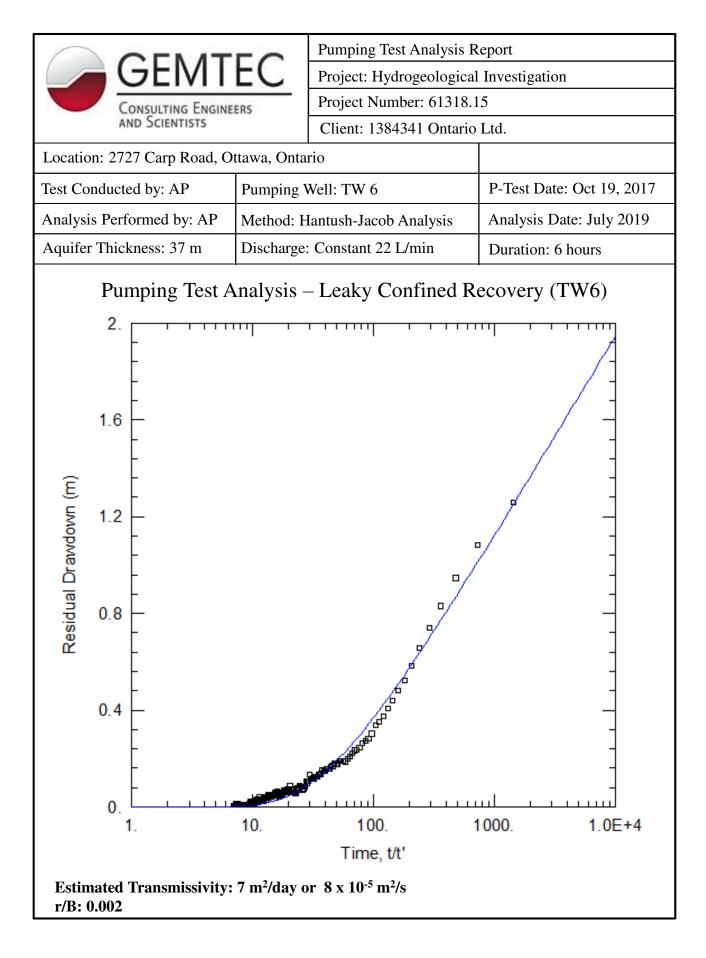


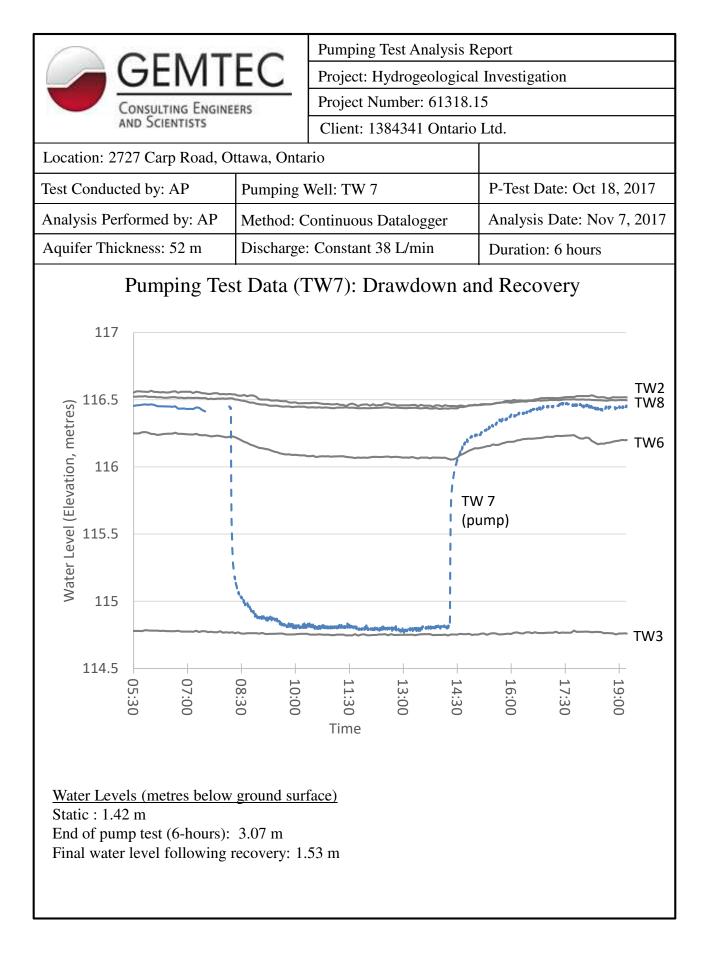


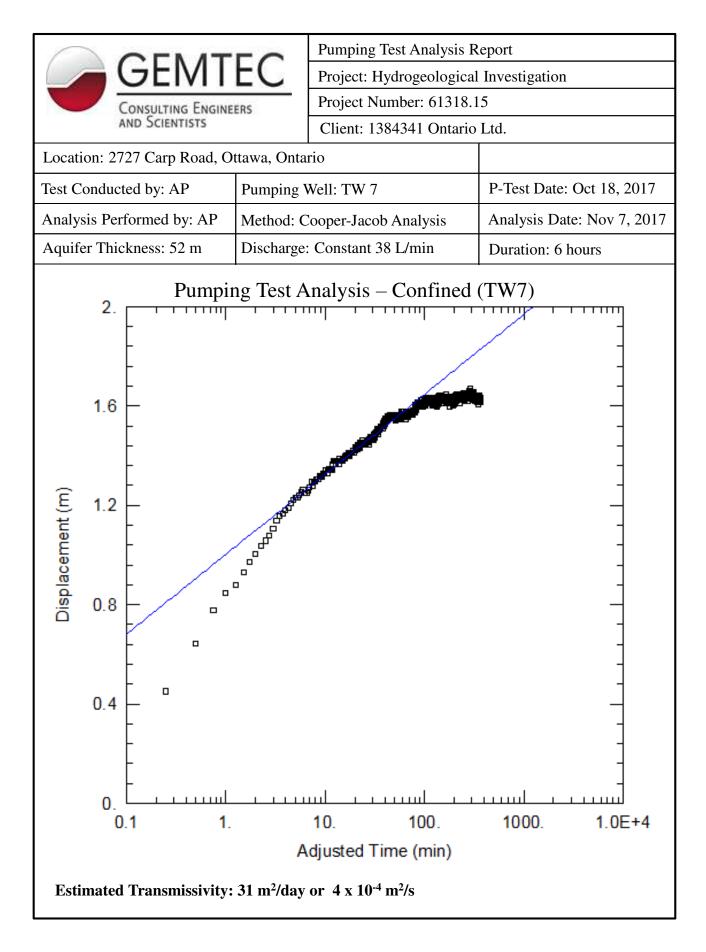


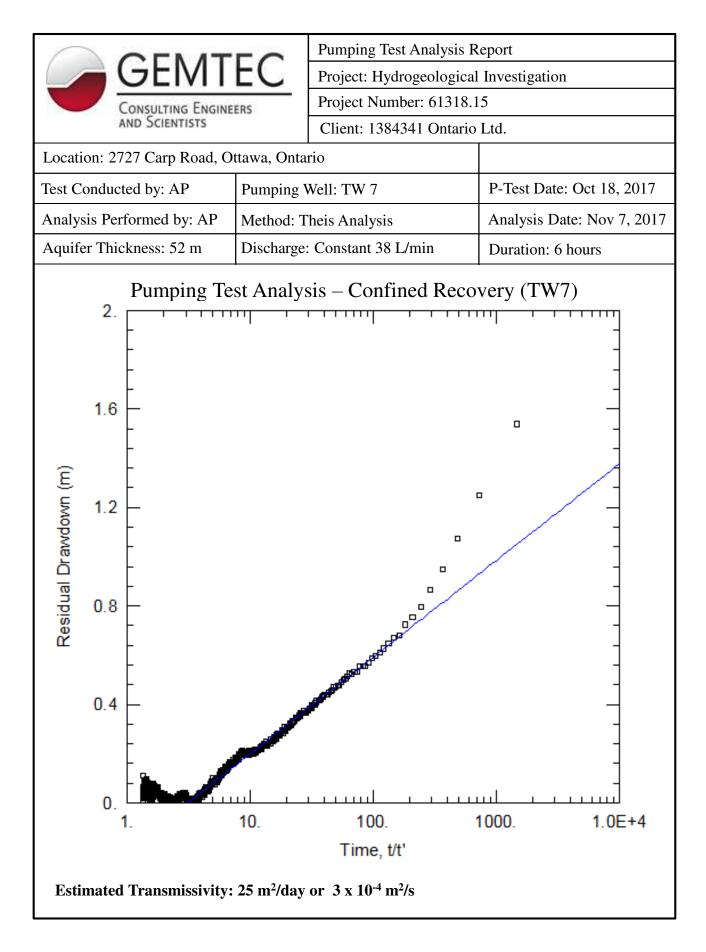


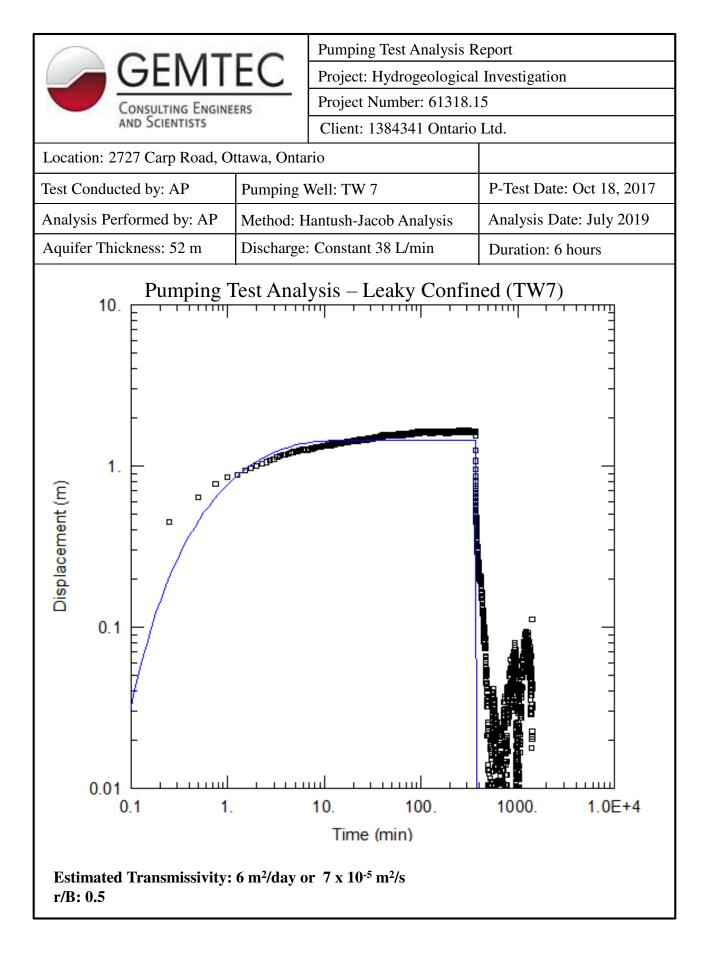


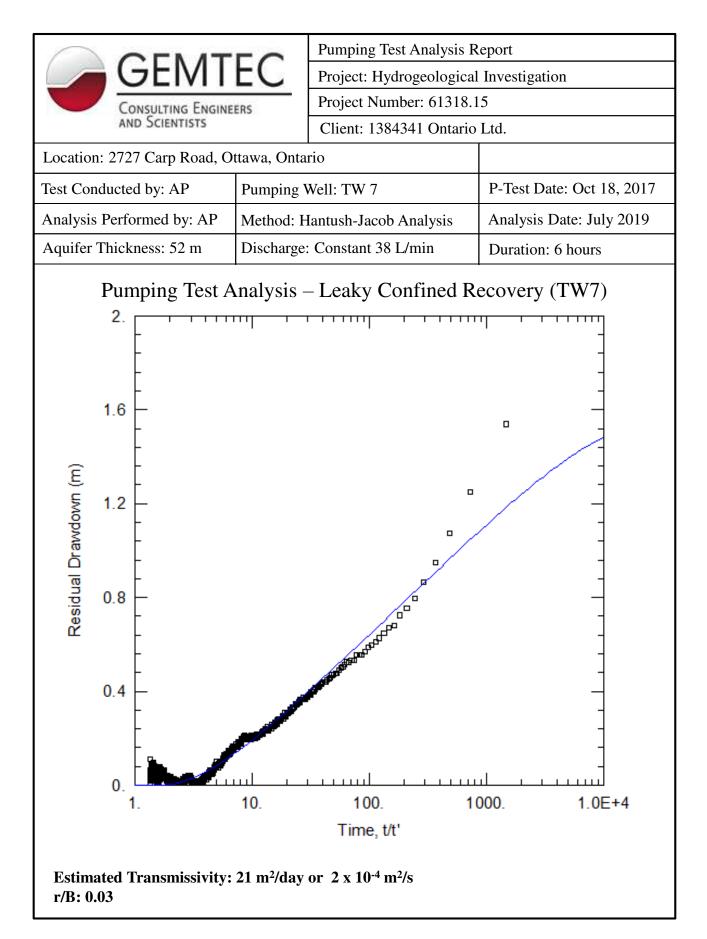


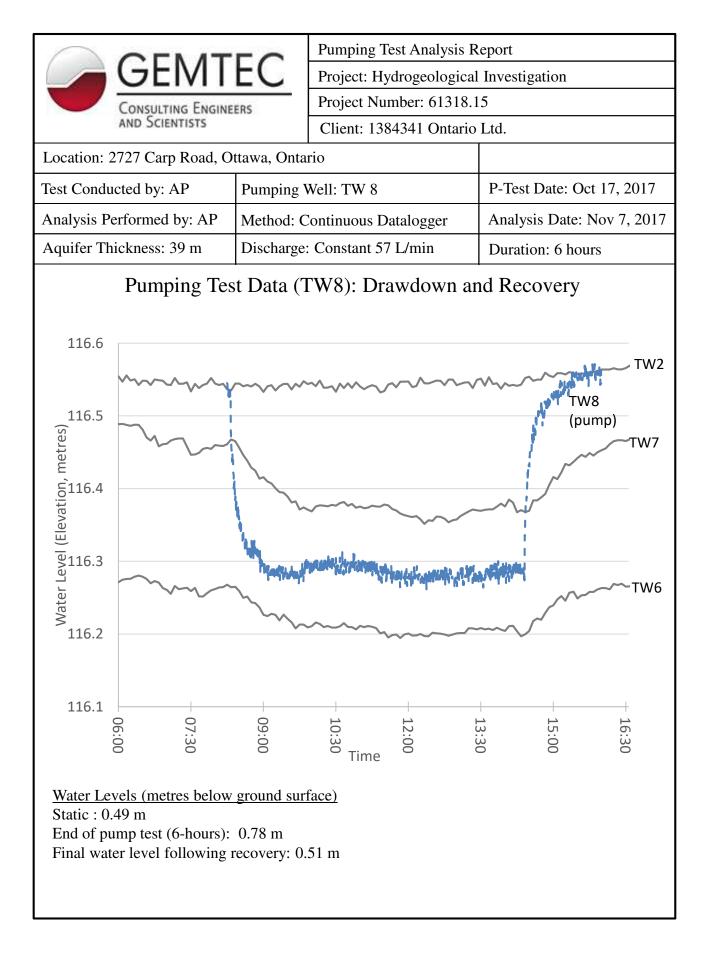


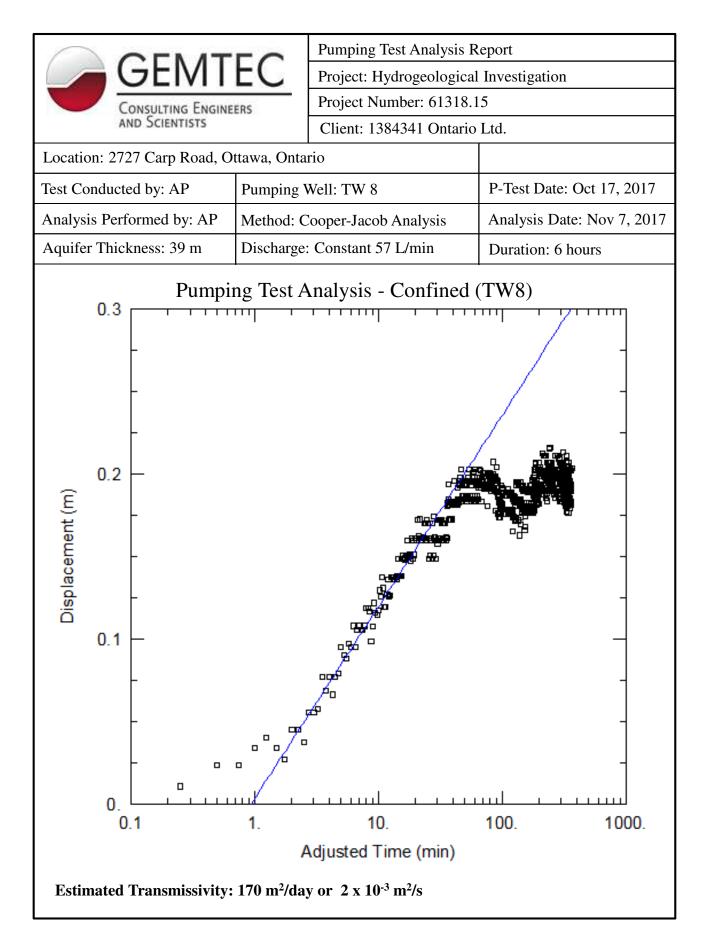


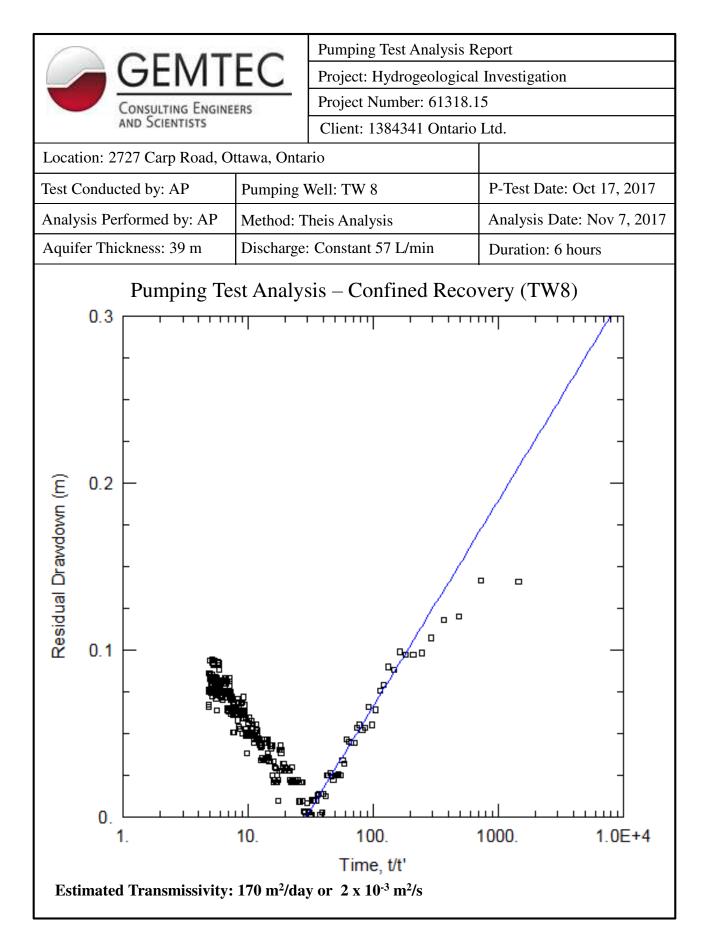


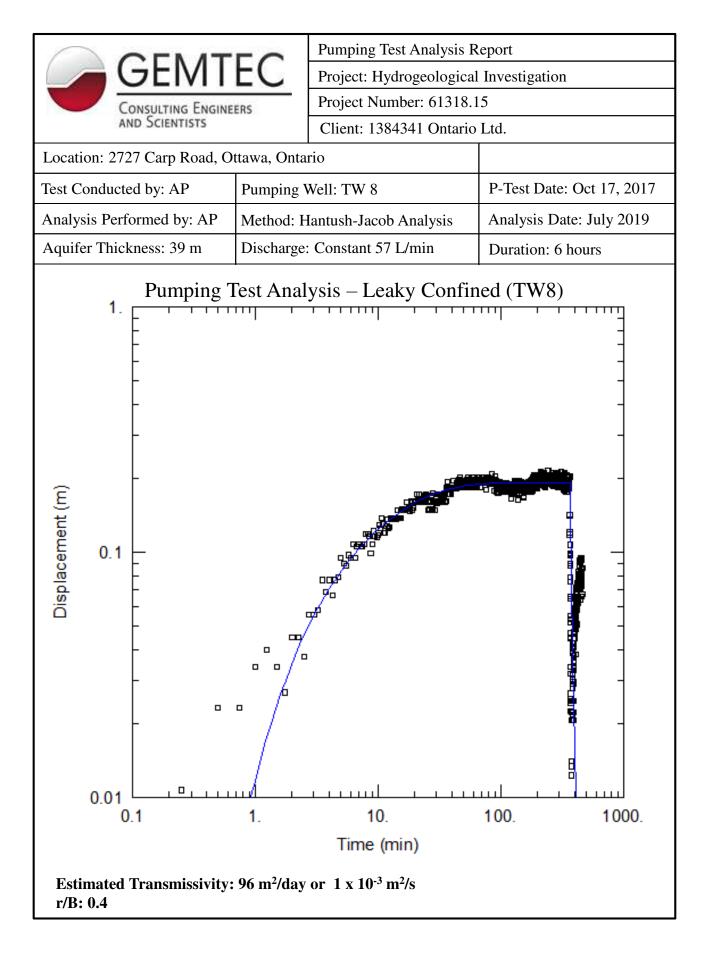












APPENDIX K

Pumping Test Water Quality Summary (Field and Lab)

Table 1 (1/2) Summary Field Parameters – Pumping Tests									
Test Well	Date	Hours Since Pumping Started (h)	Temp (°C)	Conductivity (us/cm)	Total Dissolved Solids (ppm)	pH (pH Units)	Turbidity (NTU)	Free Chlorine (ppm)	Sulphide (mg/L
TW 1	22-Mar-03	2	8.8	377	188	7.8	3.5	0	0
		4	9.1	266	133	6.2	3.9	3	0
		5	9.2	432	216	5.7	-	2.3	0
		6	9.3	460	230	-	0.6	2	0
		7	9.2	465	232	-	0.7	2.2	0
		8	-	407	203	3.6	-	0.6	0
TW 1	05-Jul-17	1	8.9 ¹	3363	1681	7.34	127.0	-	-
		2	8.9	1781	890	7.61	35.0	0	-
		3	8.9	1687	843	8.15	24.0	0	-
		4	8.9	1200	600	8.18	9.7	0	-
		5	8.9	1019	509	7.73	3.9	0	-
		6	8.9	1020	510	7.79	4.0	0	-
TW 2	24-Mar-03	1	-	-	-	-	7.1	0	0.2
		2	-	-	-	-	0.3	0	0.2
		3	-	-	-	-	0.4	0	0.2
		4	-	-	-	-	0.9	0	0.2
		5	-	-	-	-	0.7	0	0.2
		6	-	-	-	-	0.4	0	0.3
TW 3	17-Mar-03	1	10.1	416	208	-	194.0	0	5
		3	9.8	406	203	-	121.0	0	5
		5	10	404	202	-	51.0	0	5
		6	9.8	411	205	-	42.0	0	-
TW 3	25-Aug-03	7	-	-	-	-	<1.0	-	-
TW 4	19-Mar-03	1	10.3	482	241	7.9	5.9	0	0
		2	10.6	449	224	7.1	0.8	0	0
		3	10.5	328	164	7.2	0.5	0	0
		4	10.5	230	115	7.7	1.5	0	0
		5	10.7	441	220	7.4	0.8	0	0
		6	9.2	441	220	7	0.4	0	0

Notes: 1. Temperature data recorded from datalogger, field measured temperature erroneous.

Date: November 2017

Table 1 (2/2) Summary Field Parameters – Pumping Tests									
Test Well	Date	Hours Since Pumping Started (h)	Temp (°C)	Conductivity (us/cm)	Total Dissolved Solids (ppm)	pH (pH Units)	Turbidity (NTU)	Free Chlorine (ppm)	Sulphide (mg/L)
TW 4	10-May-16	1	10.7	909	454	8.35	22.4	0	-
		2	11.4	903	451	8.13	17.6	0	-
		3	11.4	910	455	8.23	3.0	0	-
		4	12.3	877	438	8.13	1.1	0	-
		5	12.8	864	432	8.07	1.0	0	-
		6	12.9	900	450	8.06	0.9	0	-
		7	13.3	871	435	8.1	0.7	0	-
		8	12.7	845	422	8.15	0.6	0	-
TW 5	12-Jul-17	1	-	-	-	-	-	-	-
TW 6	19-Oct-17	1	10.3	731	365	7.71	36.4	0	-
		2	10.6	722	361	7.47	27.5	0	-
		3	10.7	720	360	7.48	15.0	0	-
		4	10.9	725	362	7.47	5.0	0	-
		5	11.3	720	360	7.41	3.4	0	-
		6	11.2	715	357	7.59	2.7	0	-
TW 7	18-Oct-17	1	8.8	716	358	8.23	16.6	0	-
		2	9.2	720	360	8.04	9.7	0	-
		3	9.6	724	362	8.08	4.7	0	-
		4	9.9	727	363	8.01	4.0	0	-
		5	10	730	365	7.83	2.5	0	-
		6	10.2	734	367	7.9	1.0	0	-
TW 8	17-Oct-17	1	8.6	800	400	7.75	1.0	0	-
		2	9.1	800	400	6.68	0.7	0	-
		3	9.4	799	399	6.68	0.8	0	-
		4	9.3	800	400	6.67	2.2	0	-
		5	9.3	800	400	7.66	0.7	0	-
		6	9.4	799	399	7.68	0.4	0	-

Date: November 2017

	Summary of Laboratory	Table Y Parameters		TW 1; Mar 21, 2	.003)
	Parameter	Units	9Hr	Ontario Drinking Water Standard	Type of Standard
ical s	Escherichia coli	CFU/100mL	NDOGN / 0*	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	0/0*	0	MAC
	Total coliforms	CFU/100mL	0/0*	0	MAC
ž d	Heterotrophic Plate Count	CFU/1mL	- / 5*	-	-
	Alkalinity (as CaCO ₃)	mg/L	251	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.25	-	-
	Dissolved Organic Carbon (DOC)	mg/L	1.7	5	AO
	Colour	TCU	3	5	AO
	Electrical Conductivity	uS/cm	700	-	-
nics	Total Hardness (as CaC0 ₃)	mg/L	248	80-100	OG
lorga	рН	pH units	7.99	6.5-8.5	OG
- ral Ir	Phenols	mg/L	<0.001	-	-
General Inorganics	Total Dissolved Solids (TDS)	mg/L	455	500	AO
	Sulphide (S ₂)	mg/L	0.01	0.05	AO
	Tannins and Lignins	mg phenol/L	<0.1	-	-
-	Total Kjeldahl Nitrogen (TKN)	mg/L	0.35	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.10	0.15	OG
-	Turbidity	NTU	6.3	5	AO
	Chloride (Cl)	mg/L	66	250	AO
-	Fluoride (F)	mg/L	0.23	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.10	10	MAC
A -	Nitrite as N (NO ₂)	mg/L	<0.10	0.1	MAC
-	Sulphate (SO ₄)	mg/L	19	500	AO
	Calcium (Ca)	mg/L	53	-	-
[Iron (Fe)	mg/L	0.18	0.3	AO
Metals	Magnesium (Mg)	mg/L	28	-	-
В	Manganese (Mn)	mg/L	0.016	0.05	AO
	Potassium (K)	mg/L	8	-	-
	Sodium (Na)	mg/L	47	200	AO

MAC = Maximum acceptable concentrationNR = Not ReportableAO = Aesthetic objectiveND = Not Detectable* Sample retaken August 22, 2003 (well chlorinated August 21, 2003)

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

	Summary of Laborate	Table ory Parameter		l (TW 1; Jul 5, 20)17)
	Parameter	Units	6Hr	Ontario Drinking Water Standard	Type of Standard
cal s	Escherichia coli	CFU/100mL	ND / ND*	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	ND / ND*	0	MAC
crobi aram	Total coliforms	CFU/100mL	7 / ND*	0	MAC
P	Heterotrophic Plate Count	CFU/1mL	30 /<10*	-	-
	Alkalinity (as CaCO ₃)	mg/L	347	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.16	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.1	5	AO
_	Colour	TCU	3	5	AO
	Electrical Conductivity	uS/cm	962	-	-
inics	Total Hardness (as CaCO ₃)	mg/L	395	80-100	OG
lorga	рН	pH units	7.8	6.5-8.5	OG
ral Ir	Phenols	mg/L	<0.001	-	-
General Inorganics	Total Dissolved Solids (TDS)	mg/L	660	500	AO
	Sulphide (S ₂)	mg/L	<0.02	0.05	AO
	Tannins and Lignins	mg phenol/L	0.1	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.2	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	-	0.15	OG
	Turbidity	NTU	12.8	5	AO
	Chloride (Cl)	mg/L	86	250	AO
10	Fluoride (F)	mg/L	<0.1	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.1	10	MAC
A	Nitrite as N (NO ₂)	mg/L	<0.05	0.1	MAC
	Sulphate (SO ₄)	mg/L	74	500	AO
	Calcium (Ca)	mg/L	111	-	-
	Iron (Fe)	mg/L	1	0.3	AO
Metals	Magnesium (Mg)	mg/L	28.3	-	-
Met	Manganese (Mn)	mg/L	0.096	0.05	AO
	Potassium (K)	mg/L	3.1	-	-
	Sodium (Na)	mg/L	38.8	200	AO

MAC = Maximum acceptable concentration AO = Aesthetic objective ND = Not Detectable * Sample retaken November 8, 2017 (well chlorinated November 7, 2017)

NR = Not Reportable

Consulting Engineers and Scientists

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

	Summary of Laborato	Tab ry Parameter		(TW 2; Mar 22, 2	2003)
	Parameter	Units	6Hr	Ontario Drinking Water Standard	Type of Standard
ical s	Escherichia coli	CFU/100mL	0/0*	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	0/0*	0	MAC
	Total coliforms	CFU/100mL	NDOGN / 0*	0	MAC
	Heterotrophic Plate Count	CFU/1mL	- / 5*	-	-
	Alkalinity (as CaCO ₃)	mg/L	238	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.02	-	-
S	Dissolved Organic Carbon (DOC)	mg/L	2.5	5	AO
	Colour	TCU	<2	5	AO
	Electrical Conductivity	uS/cm	593	-	-
nics	Total Hardness (as CaC0 ₃)	mg/L	253	80-100	OG
lorga	рН	pH units	7.72	6.5-8.5	OG
- ral Ir	Phenols	mg/L	<0.001	-	-
General Inorganics	Total Dissolved Solids (TDS)	mg/L	385	500	AO
	Sulphide (S ₂)	mg/L	0.16	0.05	AO
	Tannins and Lignins	mg phenol/L	<0.1	-	-
-	Total Kjeldahl Nitrogen (TKN)	mg/L	0.12	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.10	0.15	OG
-	Turbidity	NTU	4.7	5	AO
	Chloride (Cl)	mg/L	43	250	AO
-	Fluoride (F)	mg/L	0.43	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.10	10	MAC
Ā	Nitrite as N (NO ₂)	mg/L	<0.10	0.1	MAC
-	Sulphate (SO ₄)	mg/L	17	500	AO
	Calcium (Ca)	mg/L	83	-	-
	Iron (Fe)	mg/L	0.39	0.3	AO
tals	Magnesium (Mg)	mg/L	11	-	-
Metals	Manganese (Mn)	mg/L	0.014	0.05	AO
	Potassium (K)	mg/L	1	-	-
	Sodium (Na)	mg/L	33	200	AO

MAC = Maximum acceptable concentrationNR = Not ReportableAO = Aesthetic objectiveND = Not Detectable* Sample retaken August 21, 2003 (well chlorinated August 20, 2003)

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

Table 5Summary of Laboratory Parameters Analyzed (TW 3; Mar 17, 2003)

	Summary of Laboratory 1 a	a unice et s i un		e, 11111 17, 2	000)
	Parameter	Units	6Hr	Ontario Drinking Water Standard	Type of Standard
s s	Escherichia coli	CFU/100mL	0	0	MAC
ologi neter	Fecal Coliform	CFU/100mL	0	0	MAC
Microbiological Parameters	Total coliforms	CFU/100mL	0	0	MAC
	Heterotrophic Plate Count	CFU/1mL	-	-	-
	Alkalinity (as CaCO ₃)	mg/L	260	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.21	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.4	5	AO
	Colour	TCU	5	5	AO
	Electrical Conductivity	uS/cm	564	-	-
nics	Total Hardness (as CaCO ₃)	mg/L	201	80-100	OG
General Inorganics	рН	pH units	7.80	6.5-8.5	OG
	Phenols	mg/L	0.003	-	-
	Total Dissolved Solids (TDS)	mg/L	367	500	AO
-	Sulphide (S ₂)	mg/L	3.70	0.05	AO
	Tannins and Lignins	mg phenol/L	0.2	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.35	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.14	0.15	OG
	Turbidity	NTU	50.2/<1.0*	5	AO
	Chloride (Cl)	mg/L	30	250	AO
	Fluoride (F)	mg/L	0.83	1.5	MAC
Anions	Nitrate as N (NO₃)	mg/L	<0.10	10	MAC
A .	Nitrite as N (NO ₂)	mg/L	<0.10	0.1	MAC
	Sulphate (SO ₄)	mg/L	11	500	AO
	Calcium (Ca)	mg/L	41	-	-
	Iron (Fe)	mg/L	0.63	0.3	AO
Metals	Magnesium (Mg)	mg/L	24	-	-
Me	Manganese (Mn)	mg/L	0.018	0.05	AO
	Potassium (K)	mg/L	9	-	-
	Sodium (Na)	mg/L	42		

NOTES:

MAC = Maximum acceptable concentration NR = AO = Aesthetic objective ND

NR = Not Reportable ND = Not Detectable OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

* Field measurement on August 25, 2003 following 7 hours of pumping

Date: November 2017

	Summary of Laboratory	Table 6 Parameters A		TW 4; Mar 19, 2	003)
	Parameter	Units	6Hr	Ontario Drinking Water Standard	Type of Standard
ical s	Escherichia coli	CFU/100mL	0	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	0	0	MAC
crobi aran	Total coliforms	CFU/100mL	0	0	MAC
Σď	Heterotrophic Plate Count	CFU/1mL	0	-	-
	Alkalinity (as CaCO ₃)	mg/L	237	30-500	OG
_	Ammonia as N (NH ₃)	mg/L	0.16	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.2	5	AO
	Colour	тси	4	5	AO
	Electrical Conductivity	uS/cm	651	-	-
inics	Total Hardness (as CaCO ₃)	mg/L	275	80-100	OG
lorga	рН	pH units	7.98	6.5-8.5	OG
- ral Ir	Phenols	mg/L	<0.001	-	-
General Inorganics	Total Dissolved Solids (TDS)	mg/L	423	500	AO
	Sulphide (S ₂)	mg/L	0.01	0.05	AO
	Tannins and Lignins	mg phenol/L	<0.1	-	-
-	Total Kjeldahl Nitrogen (TKN)	mg/L	0.24	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.08	0.15	OG
-	Turbidity	NTU	6.6	5	AO
	Chloride (Cl)	mg/L	49	250	AO
-	Fluoride (F)	mg/L	0.70	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.10	10	MAC
4	Nitrite as N (NO ₂)	mg/L	<0.10	0.1	MAC
_	Sulphate (SO ₄)	mg/L	32	500	AO
	Calcium (Ca)	mg/L	74	-	-
	Iron (Fe)	mg/L	0.47	0.3	AO
tals	Magnesium (Mg)	mg/L	22	-	-
Metals	Manganese (Mn)	mg/L	0.040	0.05	AO
-	Potassium (K)	mg/L	3	-	-
	Sodium (Na)	mg/L	32	200	AO

MAC = Maximum acceptable concentration AO = Aesthetic objective

NR = Not Reportable ND = Not Detectable OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017 Project: 61318.15

	Summary of Labo	ratory Para	Table ' meters A		May 10, 2010	5)
	Parameter	Units	4 Hr	8 Hr	Ontario Drinking Water Standard	Type of Standard
ical s	Escherichia coli	CFU/100mL	NDOGN	NDOGN / ND* & ND**	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	ND	ND / ND* & ND**	0	MAC
crobi 'aran	Total coliforms	CFU/100mL	NDOGN	NDOGN / ND* & ND**	0	MAC
Ξ d	Heterotrophic Plate Count	CFU/1mL	600	NDOGN / 20* & 55**	-	-
	Alkalinity (as CaCO ₃)	mg/L	246	247	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.10	0.10	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.0	2.1	5	AO
-	Colour	TCU	<5	<5	5	AO
	Electrical Conductivity	uS/cm	936	929	-	-
General Inorganics	Total Hardness (as CaCO ₃)	mg/L	342	336	80-100	OG
	рН	pH units	8.10	8.22	6.5-8.5	OG
	Phenols	mg/L	<0.001	<0.001	-	-
Gene	Total Dissolved Solids (TDS)	mg/L	516	512	500	AO
0	Sulphide (S ₂)	mg/L	<0.05	<0.05	0.05	AO
	Tannins and Lignins	mg phenol/L	<0.1	<0.1	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.11	0.14	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.01	0.04	0.15	OG
	Turbidity	NTU	3.7	5.0	5	AO
	Chloride (Cl)	mg/L	137	133	250	AO
-	Fluoride (F)	mg/L	0.26	0.23	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.05	<0.05	10	MAC
Ar -	Nitrite as N (NO ₂)	mg/L	<0.05	<0.05	0.1	MAC
-	Sulphate (SO ₄)	mg/L	48.6	50.6	500	AO
	Calcium (Ca)	mg/L	92.8	91.5	-	-
	Iron (Fe)	mg/L	0.515	0.458	0.3	AO
als	Magnesium (Mg)	mg/L	26.7	26.2	-	-
Metals	Manganese (Mn)	mg/L	0.047	0.045	0.05	AO
	Potassium (K)	mg/L	3.75	3.74	-	-
	Sodium (Na)	mg/L	58.0	56.7	200	AO

MAC = Maximum acceptable concentration

tion NR = Not Reportable

OG = Operational guideline

AO = Aesthetic objective ND = Not Detectable NDOGN = No Data; Overgrown with Nontarget

* / ** Samples retaken on May 20, 2016 after 8 hours of pumping (well chlorinated May 19, 2016)

Date: November 2017

Table 8Summary of Laboratory Parameters Analyzed (TW 4; May 16, 2016) - Metals							
Parameter	Units	8 Hr	Ontario Drinking Water Standard	Type of Standa			
Antimony	ug/L	<1.0	6	MAC			
Arsenic	ug/L	<1.0	25	MAC			
Barium	ug/L	283	1000	MAC			
Beryllium	ug/L	<0.5	-	-			
Boron	ug/L	44.1	5000	MAC			
Cadmium	ug/L	<0.2	5	MAC			
Chromium	ug/L	4.8	50	MAC			
Cobalt	ug/L	<0.5	-	-			
Copper	ug/L	<1.0	1000	AO			
Lead	ug/L	<0.5	10	MAC			
Molybdenum	ug/L	<0.5	-	-			
Nickel	ug/L	<1.0	-	-			
Selenium	ug/L	<1.0	10	MAC			
Silver	ug/L	<0.2	-	-			
Thallium	ug/L	<0.3	-	-			
Uranium	ug/L	<0.5	20	MAC			
Vanadium	ug/L	0.4	-	-			
Zinc	ug/L	<5.0	5000	AO			

MAC = Maximum acceptable concentration NR = Not Reportable AO = Aesthetic objective

ND = Not Detectable

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

_	Summary of Labora					
	Parameter	Units	3 Hr	6 Hr	Ontario Drinking Water Standard	Type of Standard
ical s	Escherichia coli	CFU/100mL	ND	ND	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	ND	ND	0	MAC
crobi aran	Total coliforms	CFU/100mL	ND	ND	0	MAC
Ξ Δ	Heterotrophic Plate Count	CFU/1mL	<10	<10	-	-
	Alkalinity (as CaC0 ₃)	mg/L	294	292	30-500	OG
-	Ammonia as N (NH ₃)	mg/L	0.11	0.10	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.8	2.4	5	AO
-	Colour	TCU	9	5	5	AO
	Electrical Conductivity	uS/cm	733	710	-	-
nics	Total Hardness (as CaC0 ₃)	mg/L	332	332	80-100	OG
General Inorganics	рН	pH units	8.0	8.0	6.5-8.5	OG
- ral In	Phenols	mg/L	<0.001	<0.001	-	-
Bene	Total Dissolved Solids (TDS)	mg/L	480	502	500	AO
0	Sulphide (S ₂)	mg/L	0.25	0.39	0.05	AO
	Tannins and Lignins	mg phenol/L	<0.1	<0.1	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.2	0.2	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.09	0.1	0.15	OG
	Turbidity	NTU	14.2	3.9	5	AO
	Chloride (Cl)	mg/L	56	57	250	AO
	Fluoride (F)	mg/L	0.5	0.5	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.1	<0.1	10	MAC
- A	Nitrite as N (NO ₂)	mg/L	<0.05	<0.05	0.1	MAC
-	Sulphate (SO ₄)	mg/L	44	44	500	AO
	Calcium (Ca)	mg/L	93.8	93.6	-	-
	Iron (Fe)	mg/L	1	0.3	0.3	AO
als -	Magnesium (Mg)	mg/L	23.7	23.8	-	-
Metals	Manganese (Mn)	mg/L	0.057	0.057	0.05	AO
	Potassium (K)	mg/L	3.0	3.0	-	-
	Sodium (Na)	mg/L	19.2	19.9	200	AO

MAC = Maximum acceptable concentration NR = Not Reportable AO = Aesthetic objective

ND = Not Detectable

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

Summary of Labora	tory Paramete	Table 10rs Analyzed (TV)	W 6; October 19,	2017) - Metal
Parameter	Units	6 Hr	Ontario Drinking Water Standard	Type of Standard
Mercury	mg/L	ND (0.0001)	0.001	MAC
Aluminum	mg/L	0.030	0.1	MAC
Antimony	mg/L	ND (0.0005)	0.006	MAC
Arsenic	mg/L	ND (0.001)	0.025	MAC
Barium	mg/L	0.332	1	MAC
Beryllium	mg/L	ND (0.0005)	-	-
Boron	mg/L	0.03	5	MAC
Cadmium	mg/L	ND (0.0001)	0.005	MAC
Chromium	mg/L	ND (0.001)	0.05	MAC
Chromium (VI)	mg/L	ND (0.010)	-	-
Cobalt	mg/L	ND (0.0005)	-	-
Copper	mg/L	ND (0.0005)	1	AO
Lead	mg/L	ND (0.0001)	0.01	MAC
Molybdenum	mg/L	ND (0.0005)	-	-
Nickel	mg/L	ND (0.001)	-	-
Selenium	mg/L	ND (0.001)	0.05	MAC
Silicon	mg/L	10.0	-	-
Silver	mg/L	ND (0.0001)	-	-
Strontium	mg/L	0.73	-	-
Thallium	mg/L	ND (0.001)	-	-
Tin	mg/L	ND (0.01)	-	-
Titanium	mg/L	ND (0.005)	-	-
Tungsten	mg/L	ND (0.01)	-	-
Uranium	mg/L	0.0001	0.02	MAC
Vanadium	mg/L	ND (0.0005)	-	-
Zinc	mg/L	ND (0.005)	5	AO

MAC = Maximum acceptable concentration NR = Not Reportable AO = Aesthetic objective ND = Not Detectable

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

	Summary of Labora	tory Param	Table 11 eters Ana		October 18, 20	17)
	Parameter	Units	3 Hr	6 Hr	Ontario Drinking Water Standard	Type of Standard
ical s	Escherichia coli	CFU/100mL	ND	ND	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	ND	ND	0	MAC
crobi 'aran	Total coliforms	CFU/100mL	ND	ND	0	MAC
Σ Δ	Heterotrophic Plate Count	CFU/1mL	<10	<10	-	-
	Alkalinity (as CaC0 ₃)	mg/L	293	294	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.42	0.42	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.0	2.1	5	AO
-	Colour	TCU	4	3	5	AO
	Electrical Conductivity	uS/cm	722	724	-	-
nics	Total Hardness (as CaC0 ₃)	mg/L	228	233	80-100	OG
orga	рН	pH units	7.9	8.0	6.5-8.5	OG
ral In	Phenols	mg/L	<0.001	<0.001	-	-
General Inorganics	Total Dissolved Solids (TDS)	mg/L	434	426	500	AO
0	Sulphide (S ₂)	mg/L	7.00	0.30	0.05	AO
	Tannins and Lignins	mg phenol/L	0.8	0.2	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.5	0.5	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.08	0.1	0.15	OG
	Turbidity	NTU	4.1	12.9	5	AO
	Chloride (Cl)	mg/L	65	69	250	AO
-	Fluoride (F)	mg/L	0.7	0.7	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.1	<0.1	10	MAC
- A	Nitrite as N (NO ₂)	mg/L	<0.05	<0.05	0.1	MAC
-	Sulphate (SO ₄)	mg/L	21	20	500	AO
	Calcium (Ca)	mg/L	46.1	48.7	-	-
	Iron (Fe)	mg/L	<0.1	<0.1	0.3	AO
tals	Magnesium (Mg)	mg/L	27.4	27.0	-	-
Metals	Manganese (Mn)	mg/L	0.006	0.006	0.05	AO
-	Potassium (K)	mg/L	8.5	8.0	-	-
	Sodium (Na)	mg/L	57.0	54.0	200	AO

MAC = Maximum acceptable concentration NR = Not Reportable AO = Aesthetic objective

ND = Not Detectable

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

Summary of Labora	atory Paramete	Table 12rs Analyzed (T)	W 7; October 18,	2017) - Metals
Parameter	Units	6 Hr	Ontario Drinking Water Standard	Type of Standard
Mercury	mg/L	ND (0.0001)	0.001	MAC
Aluminum	mg/L	0.036	0.1	MAC
Antimony	mg/L	ND (0.0005)	0.006	MAC
Arsenic	mg/L	ND (0.001)	0.025	MAC
Barium	mg/L	0.136	1	MAC
Beryllium	mg/L	ND (0.0005)	-	-
Boron	mg/L	0.14	5	MAC
Cadmium	mg/L	ND (0.0001)	0.005	MAC
Chromium	mg/L	ND (0.001)	0.05	MAC
Chromium (VI)	mg/L	ND (0.010)	-	-
Cobalt	mg/L	ND (0.0005)	-	-
Copper	mg/L	0.0007	1	AO
Lead	mg/L	ND (0.0001)	0.01	MAC
Molybdenum	mg/L	ND (0.0005)	-	-
Nickel	mg/L	ND (0.001)	-	-
Selenium	mg/L	0.006	0.05	MAC
Silicon	mg/L	6.87	-	-
Silver	mg/L	ND (0.0001)	-	-
Strontium	mg/L	2.59	-	-
Thallium	mg/L	ND (0.001)	-	-
Tin	mg/L	ND (0.01)	-	-
Titanium	mg/L	ND (0.005)	-	-
Tungsten	mg/L	ND (0.01)	-	-
Uranium	mg/L	ND (0.0001)	0.02	MAC
Vanadium	mg/L	ND (0.0005)	-	-
Zinc	mg/L	0.006	5	AO
	•			

MAC = Maximum acceptable concentration NR = Not Reportable AO = Aesthetic objective ND = Not Detectable

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

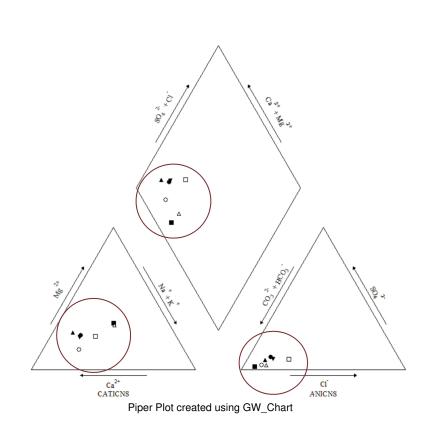
	Summary of Labora	tory Param	Table 13 eters Ana		October 17, 20	17)
	Parameter	Units	3 Hr	6 Hr	Ontario Drinking Water Standard	Type of Standard
ical 's	Escherichia coli	CFU/100mL	ND	ND	0	MAC
Microbiological Parameters	Fecal Coliform	CFU/100mL	ND	ND	0	MAC
crobi aran	Total coliforms	CFU/100mL	ND	ND	0	MAC
Σď	Heterotrophic Plate Count	CFU/1mL	<10	<10	-	-
	Alkalinity (as CaC0 ₃)	mg/L	278	278	30-500	OG
	Ammonia as N (NH ₃)	mg/L	0.11	0.11	-	-
	Dissolved Organic Carbon (DOC)	mg/L	2.5	2.3	5	AO
_	Colour	TCU	<2	<2	5	AO
	Electrical Conductivity	uS/cm	794	799	-	-
nics	Total Hardness (as CaC0 ₃)	mg/L	322	324	80-100	OG
lorga	рН	pH units	7.7	7.7	6.5-8.5	OG
- ral In	Phenols	mg/L	<0.001	<0.001	-	-
General Inorganics	Total Dissolved Solids (TDS)	mg/L	416	452	500	AO
0	Sulphide (S ₂)	mg/L	<0.02	<0.02	0.05	AO
	Tannins and Lignins	mg phenol/L	<0.1	<0.1	-	-
	Total Kjeldahl Nitrogen (TKN)	mg/L	0.3	0.3	-	-
	Organic Nitrogen (TKN - NH3)	mg/L	0.2	0.2	0.15	OG
	Turbidity	NTU	3.3	3.0	5	AO
	Chloride (Cl)	mg/L	79	79	250	AO
	Fluoride (F)	mg/L	0.2	0.2	1.5	MAC
Anions	Nitrate as N (NO ₃)	mg/L	<0.1	<0.1	10	MAC
A -	Nitrite as N (NO ₂)	mg/L	<0.05	<0.05	0.1	MAC
_	Sulphate (SO ₄)	mg/L	57	57	500	AO
	Calcium (Ca)	mg/L	92.5	93.1	-	-
	Iron (Fe)	mg/L	0.9	0.9	0.3	AO
tals -	Magnesium (Mg)	mg/L	22.0	22.2	-	-
Metals	Manganese (Mn)	mg/L	0.191	0.191	0.05	AO
-	Potassium (K)	mg/L	1.5	1.5	-	-
	Sodium (Na)	mg/L	31.7	32.1	200	AO

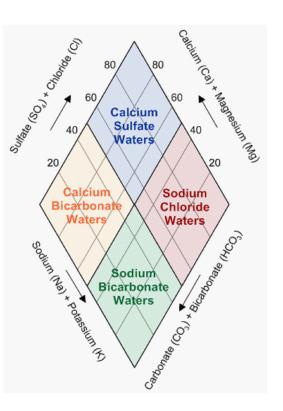
MAC = Maximum acceptable concentration NR = N AO = Aesthetic objective ND = N

NR = Not Reportable ND = Not Detectable OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

Summary of Labora	tory Paramete	Table 14rs Analyzed (TV)	W 8; October 17,	2017) - Metals
Parameter	Units	6 Hr	Ontario Drinking Water Standard	Type of Standard
Mercury	mg/L	ND (0.0001)	0.001	MAC
Aluminum	mg/L	ND (0.001)	0.1	MAC
Antimony	mg/L	ND (0.0005)	0.006	MAC
Arsenic	mg/L	ND (0.001)	0.025	MAC
Barium	mg/L	0.109	1	MAC
Beryllium	mg/L	ND (0.0005)	-	-
Boron	mg/L	0.01	5	MAC
Cadmium	mg/L	ND (0.0001)	0.005	MAC
Chromium	mg/L	ND (0.001)	0.05	MAC
Chromium (VI)	mg/L	ND (0.010)	-	-
Cobalt	mg/L	ND (0.0005)	-	-
Copper	mg/L	ND (0.0005)	1	AO
Lead	mg/L	ND (0.0001)	0.01	MAC
Molybdenum	mg/L	0.0023	-	-
Nickel	mg/L	ND (0.001)	-	-
Selenium	mg/L	ND (0.001)	0.05	MAC
Silicon	mg/L	8.00	-	-
Silver	mg/L	ND (0.0001)	-	-
Strontium	mg/L	0.24	-	-
Thallium	mg/L	ND (0.001)	-	-
Tin	mg/L	ND (0.01)	-	-
Titanium	mg/L	ND (0.005)	-	-
Tungsten	mg/L	ND (0.01)	-	-
Uranium	mg/L	0.0009	0.02	MAC
Vanadium	mg/L	ND (0.0005)	-	-
Zinc	mg/L	ND (0.005)	5	AO


MAC = Maximum acceptable concentration NR = Not Reportable AO = Aesthetic objective


ND = Not Detectable

OG = Operational guideline NDOGN = No Data; Overgrown with Nontarget

Date: November 2017

	TW1	TW2	TW3	TW4	TW6	TW7	TW8	
Ca	111	83	41	91.5	93.6	48.7	93.1	
Mg	28.3	11	24	26.2	23.8	27	22.2	
Na	38.8	33	42	56.7	19.9	54	32.1	
к	3.1	1	9	3.74	3	8	1.5	
CO ₃	208.2	142.8	156	148.2	175.2	176.4	166.8	
HCO₃	423.3	290.4	317.2	301.3	356.2	358.7	339.2	
Cl	86	43	30	133	57	69	79	
SO ₄	74	17	11	50.6	44	20	57	
TDS	660	385	367	512	502	426	452	
Symbol	Circle	Open Circle	Square	Open Square	Triangle	Open Triangle	Inverted Triangle	
Note:	CO_3 = alkalinity * 0.6 and HCO_3 = alkalinity * 1.22							

GEMTEC Consulting Engineers and Scientists

32 Steacie Drive, Ottawa, ON K2K 2A9 T: (613) 836-1422 | www.gemtec.ca | ottawa@gemtec.ca

Project HYDROGEOLOGICAL INVESTIGATION

2727 CARP ROAD, OTTAWA, ONTARIO

PIPE DIAGRAM - BEDROCK TEST WELLS

Project No. 61318.15

P:\0. Files\61300\61318.15\HydroG Update 2019\Drafting\Drawings\61318.15_FG-K1_V01_2019-08-14.dwg, FIGURE K1, 19/08/14 4:26:01 PM

APPENDIX L

Laboratory Certificates of Analysis - Onsite Test and Monitoring Wells

2	
	•
22	
2	
L20C1	
-	Į
1	
-	I
)	I
>	
>	I
	ł

viteric: Morey Houle Chevrier Engineering 28 Clothier St E., Unit B, Box 910 Kemptville, ON					Report Number:	per:	2313096	
							0600107	
							14 40 0000	
					Date D		2003-08-25	
Attentions and a second at the					Vate Submitted:	ted:	2003-08-22	
HIGH MICHAY MICHAY					Project:		031-040	
					P.O. Number:	1.		
		1 40 40-	CV		Matrix:		Water	
	- une	CAB (D:	2000 01 00				GUIDELINE	
	San	Sample ID:	ZUU3-UB-ZZ TW1			ž	MOE REG 170/03	03
PARAMETER	INITS				 			
Total Coliforms						TYPE	LIMIT	(INITS
Escherichtia Coli Heterotrophic Plate Count Faecal Coliforms	ct/100mL ct/100mL ct/1mL		0050			MAC MAC	0 0 200	cu100mL cu100mL cu100mL
Faecal Streptococcus	ct/100mL		00			WAC	0	ct/100mL

APPROVAL: Krista Johns Microbiology Analyst

1 01 1

8-146 Colosinade Road, Ottawa, ON, K2E 7Y1 608 Norris Court, Kingston, ON, K7P 2R9

IES
TOR
ORA
PB
2
3
5
A
ł

Citent: Morey Houle Chevrier Engineering 28 Giothier SI E., Unit B, Box 910 Kemptwille, ON K0G 1J0 Attention: Mr. Randy Morey							
Kemptwile, ON KDG 1.J0 Attention: Mr. Randy Morey				Report Number:		2312997	
Attention: Mr. Randy Morey				Date: Date Submitted:		2003-08-25 2003-08-25	
						7-00-000	
				Project:	0	031-040	
				P.O. Number:			
		267397	 	matrix:		Water	
		2003-08-21				GUIDELINE	
	Sample ID:	TW2 031-040			OM	MOE DEC 17000	S
			 				2
PARAMETER Total Coliforms	UNITS MDL						
Fechalichia Coli	ct/100mL	0			IVPE	LIMIT	UNITS
Heterotronhic Plate Count	ct/100mf.	0			MAC	0	ct/100mL
Faecal Coliforms	cd/1mL	ŝ			DEM D	•	ct/100mL
Faecal Streptococcus	ct/100mL	0					d/1mL
	ct/100mL	0			NAM	5	d/100mL

APPROVAL: Peter Hauliena Analytical Services Manager

1 of 1

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1 608 Nom's Court, Kingston, ON, K7P 2R9

Client: Morey Houle Chevrier Engineering

ATT: Dean Tataryn

Report Number:	2303909
Date:	2003-04-01
Date Submitted:	2003-03-22

031-040

P.O. Number:

Project:

	Real			Matrix:		Water	
		LAB ID:	239667				
		le Date:	2003-03-21				
	Sar	nple ID:	TW#1				
PARAMETER	UNITS	MDL					
Alkalinity as CaCO3	mg/L	5	251				
Са	mg/L	1	53				
CI	mg/L	1	66				
Conductivity	uS/cm	5	700				
Colour	TCU	2	3		1		
DOC	mg/L	0.5	1.7				
F	mg/L	0.10	0.23				
Fe	mg/L	0.01	0.18				
H2S	mg/L	0.01	0.01				
Hardness as CaCO3	mg/L	1	248				
ion Balance	5 -	0.01	0.99				
Mg	mg/L	1	28				
Mn	mg/L	0.005	0.016				
N-NH3	mg/L	0.02	0.25				
N-NO2	mg/L	0.10	<0.10				
N-NO3	mg/L	0.10	<0.10				
pH	11.5.0		7.99				
Phenois	mg/L	0.001	< 0.001				
K	mg/L	1	8				
Na	mg/L	2	47				
SO4	mg/L	1	19				
Tannin & Lignin	mg/L	0.1	<0.1				
Total Kjeldahl Nitrogen	mg/L	0.05	0.35				
Turbidity	NTU	0.1	6.3				
TD\$ (COND - CALC)	mg/L	5	455				
	, and the second s						
					<u> </u>		
MDL = Method Detection Limit	INC	= Incomp	olete	Method referen	ices available i	upon request.	
Comment:							

APPROVAL:

Ewan McRobbie Inorganic Lab Sugervisor

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1

608 Norris Court, Kingston, ON, K7P 2R9

Report Number:

2303940

2003-04-01 Date: Date Submitted: 2003-03-24 ATT: Dean Tataryn 031-040 Project: P.O. Number: Water Matrix: LAB ID: 239708 Sample Date: 2003-03-22 TW 2 Sample ID: PARAMETER UNITS MDL Alkalinity as CaCO3 238 mg/L 5 **Background Colonies** ct/100mL >200 Ca mg/L 1 83 CI 1 43 mg/L 5 593 Conductivity uS/cm Colour TCU 2 <2 DOC 0.5 2.5 mg/L Escherichia Coli ct/100mL 0 0.10 0.43 mg/L Faecal Coliforms ct/100mL 0 Faecal Streptococcus ct/100mL 0 0.01 0.39 Fe mg/L H2S 0.01 mg/L 0.16 Hardness as CaCO3 mg/L 1 253 Ion Balance 0.01 1.03 Mg mg/L 11 1 0.005 0.014 Мп mg/L mg/L 0.02 N-NH3 0.02 0.10 N-NO2 mg/L < 0.10 N-NO3 mg/L 0.10 < 0.10 pH 7.72 Phenols 0.001 < 0.001 mg/L mg/L 1 1 Na 33 mg/L 1 Heterotrophic Plate Count ct/1mL 14 SO4 17 mg/L 1 <0.1 Tannin & Lignin mg/L 0.1 Total Coliforms ct/100mL ÓG Total Kjeldahl Nitrogen mg/L 0.05 0.12 Turbidity NTU 0.1 4.7 INC = Incomplete

MDL = Method Detection Limit Comment:

Κ

Client: Morey Houle Chevrier Engineering

Method references available upon request.

APPROVAL:

Ewan McRobbie Inorganic Lab Supervisor

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1

608 Norris Court, Kingston, ON, K7P 2R9

Client: Morey Houle Chevrier Engineering

ATT: Dean Tataryn

2003-04-01
2003-03-24

031-040

P.O. Number:

Project:

			****	Matrix:		Water	
		LAB ID:	239708				1
	Samp	le Date:	2003-03-22			1	1
	Sar	nple ID:	TW 2			1	1
PARAMETER	UNITS	MDL				T	
TDS (COND - CALC)	mg/L	5	385				1
							1
							2
						л	
				5. S.			
		1					
MDL = Method Detection Limit	INC	= Incomple	ete L	Method reference:	s available up		
Comment:					s available up		

APPROVAL: Ewan McRobbie

Inorganic Leb Supervisor

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1

608 Norris Court, Kingston, ON, K7P 2R9

Client: Morey Houle Chevrler Engineering

ATT: Dean Tataryn

Report Number:	2303535
Date:	2003-03-19
Date Submitted:	2003 - 03-17

Project:

031-040

P.O. Number:

				Matrix:		Water	
A CONTRACTOR OF		LAB ID:	238148		Ner	(Valei	1
	Samo	le Date:	2003-03-15			+	
		nple ID:	TW3				
	• u	np.0 10.	1.000			1	
							3
PARAMETER	UNITS	MDL	1				
Alkalinity as CaCO3	mg/L	5	260				
Са	mg/L	1	41				
CI	mg/L	1	30				
Conductivity	uS/cm	5	564				
Colour	TCU	2	5				
DOC	mġ/L	0.5					
	:t/100mL	0.5	2.4				
F	and the state of the second se	0.10	0				
	mg/L t/100mL	0.10	0.83	7			
-			0				
Fe	:t/100mL		0				
H2S	mg/L	0.01	0.63				
Hardness as CaCO3	mg/L	0.01	3.70				
	mg/L	1	201				. a
on Balance		0.01	0.96				
Mg	mg/L	1	24				
Mn	mġ/L	0.005	0.018				
N-NH3	mg/L	0.02	0.21				
N-NO2	mg/L	0.10	<0.10				
N-NO3	mg/L	0.10	<0.10				
bH and a second s			7.80				
Phenols	mg/L	0.001	0.003				
<	mg/L	1	9				
Va	mg/L	2	42				
Heterotrophic Plate Count	ct/1mL	_	0				
SO4	mg/L	1	11	а. *			
annin & Lignin	mg/L	0.1	0.2	· .			
	/100mL	.	0				
otal Kjeldahl Nitrogen	mg/L	0.05	0.35				
urbidity	NTU	0.05					
	mg/L		50.2				
ADL = Method Detection Limit		5	367		1		
Comment:	INC -	= Incompl	iere	Method references ava	ailable upo	on request.	

Comment;

APPROVAL:

Ewan McRobbie Inorganic Lab Supervisor

Client: Morey Houle Chevrier Engineering

ATT: Dean Tataryn

Report Number: 2303813 Date: 2003-03-31 Date Submitted: 2003-03-19 Project: 031-040

P.O. Number:

	·····	1.40./-		Matrix:		Water	
	-	LAB ID:					1
		ole Date:					
	Sa	mple ID:	TW#4				
PARAMETER	UNITS						
Alkalinity as CaCO3	mg/L	MDL	1				
Са		5	237				
CI	mg/L	1	74				
Conductivity	mg/L	1	49				
Colour	uS/cm	5	651				
DOC	TCU	2	4				
	mg/L	0.5	2.2				
Escherichia Coli F	ct/100mL		0				
	mg/L	0.10	0.70				
Faecal Coliforms	ct/100mL		0			8	
Faecal Streptococcus	ct/100mL		0				
Fe	mg/L	0.01	0.47			5	
H2S	mg/L	0.01	0.01				
Hardness as CaCO3	mg/L	1	275				
оп Balance		0.01	1.02				
Иg	mg/L	1	22				
Vin	mg/L	0.005	0.040				
N-NH3	mg/L	0.02					
1-NO2	mg/L	0.02	0.16				
V-NO3			<0.10				
H	mg/L	0.10	<0.10				
henois			7.98				
	mg/L	0.001	<0.001				
la	mg/L	1	3				
	mg/L	2	32				
leterotrophic Plate Count 04	ct/1mL		0	10	[
	mg/L	1	32				
annin & Lignin	mg/L	0.1	<0.1				
otal Coliforms	ct/100mL		0		*		
otal Kjeldahl Nitrogen	mg/L	0.05	0.24				
urbidity	NTU	0.1	6.6				1
DS (COND - CALC)	mg/L	5	423				
DL = Method Detection Limit		= Incomp		Method referen		1	

Comment:

Incomplete

Method references available upon request.

APPROVAL

Ewan McRobbie Inorganic Lab Superiso

Client: Morey Houle Chevrier Engineering 28 Clothier St E., Unit B. Box 910 Kemptville, ON KOG 1.10								
\mathbf{U}					Report Number: Date: Date Submitted:	50 55 50	2420554 2004-11-11 2004-10-26	
Autenicon: iver, kandy morey					Project:	03	031-040	
					P.O. Number			
			350540		Matrix:	≩ (Water	
			2004-10-23			9	GUIDELINE	
			TW #3					
PARAMETER	UNITS	MDL				TVDE		TILLITC
	ugiL	5	<5				+-	CINIC
CARBAMATES								
	Jugu	Ø	6>					
th the second	מפֿיר	2	<2					
	VBn	s	<5					
Carboran TPIATARE & DELATED LEGDICIDES	ug/L	ۍ ۲	<5					
7		_				_		
	ug/L	5.0	0.0V					
ated atrazine	ugr.	N N N				·		
ed metabolites	-1.55	0.00					-	
5		1 +						
Metofachlor		0.5	<0.5	-				
		Ş	55					
J.		0.25	<0.25					
		-	^ 1					
URGANOPHOSPHOROUS PESTICIDES								
jinyi A		5	<2		_			••••••
33		-	<u>v</u>					
		-	2					
		0.9	6 ⁻ 0-8				-	
		5.5	<2.5				•••	
		ç	\$					
	•		2					••
	ngr	0.5	<0.5					
ŝ	ugali Mire	10	<10					
		0.4	<0.4					
	ng/L	-			-			
l rilluratin	ng/L	-			-			

11/11/04 THU 12:32 FAX 613 727 5222 ACCUTEST LABS

<u>អ</u>ពីកំកំ*ង*

11

APPROVAL:

Client: Morey Houle Chevrier Engineering					Bonort Mumbor		
23 Clothier St E., Unit B. Box 910						FCC0242	
Kemptvitte ON				Uate:		2004-11-11	~
KOG 130				Date	Date Submitted.	2004-10-26	10
Attention: Mr. Randy Morey				Broinct	ţ	011 010	
				P.0.4	P.O. Number:		
		LAB ID:	350540	MAGN	X: 1	. Water	
	Sam	Sample Date:	2004-10-23			· GUIDELINE	VE
	ŭ	Sample ID:	TVV #3				
PARAMETER	TINITS						
Organochlorine Pesticidae (OCPst & PCRs					3d/1	E LIMIT	UNITS
Aldrin	מסיור	0.006	<0.005				
Dieldrin	ug/L	0.006	<0.006				
Aldrin + Dieldrin	ngil	0.012	<0.012				
a-chlordane	1/6n	0.006	<0.006	2		486	
g-chkerdane	Jugu	0.006	<0.006			-	-2008
Oxychlordane	ng/L	0.006	<0.006			- 10000 10.	
Chlordane (Totaf)	JBn	0.018	<0.018		~~~		
60-00T	ngu	0.006	<0.006			-	
	חפֿור	0.006	<0.006			·	- and Ro -
pp-UUE	Jugu	0.006	<0.005				
	ngvL	0.006	<0.006				
(UUI) + Metabolites	ng/L	0.024	<0.024				
Heplachlor	-ligu	0.006	<0.006				
Heptachtor epoxide	T/Brn	0.006	<0.006				
Heptachlor + Heptachlor Epoxide	ug/L	0.012	<0.012				
Lindane	l ug/L	0.006	<0.006				
Methorychkor	ngr	0.024	<0.024				
Polychiorunated Biphenyls (PCBs)	T/6n	01	<01	0			•
CHLOROPHENOLS							
z.3.4.6-tetrachlorophenol	ng/L	0.5	50 v 20 v				
2,4,6-frichloroptienal	מפיור	0.5	<0.5				
2,4-dichtorophenof	VBN	0.5	<0.5				
Pentachlorophenol	J/6n	0.5	<0.5			- George a	
PHENOXYACID HERBICIDES							
2.4.5-trichlorophenoxyacetic acid (2,4,5-T)	ugit		V				
2.4-dichlorephenoxyacetic acid (2.4-D)	ng/L	-	V			-	
Bramaxyniil	J'bn	0.5	<0.5				
Dicamba	, uoli	¥	5				
Dinoseb	1807		5				
					-	***	

REPORT OF ANALYSIS

3

APPROVALL

					RE	PORT 0	REPORT OF ANALYSIS	VSIS
Client. Morey Houle Chevrier Engineering 28 Clothier St E., Unit B, Box 910						lber.	2420554	
Kemptwille, ON KOG 1J0					Date: Oate Submitted:	tted:	2004-11-11 2004-11-11	
Attention: Mr. Randy Morey							02-01-0207	
					Project:		031-040	
					P.O. Number:	2		
		LAB ID:	350540		Matrix:		Water	
	Sam	Sample Date: Sample ID:	20034-10-23 TW #3				GUIDELINE	
DADANTES								
DIURON & GLYPHOSATE	UNITS	MDL						
Diuron	מפֿיר	10	<10 <10			TYPE	LIMIT	STINU
Gigduat & Paraquat	Y Sin	10	012					
Diquat	מסעך	7						
Paraquat RENZO (s) DVDEME	ngil		v v					
Benzaka (a) FIKENE								
	1/6n	10,01	<0.01		-and a scalar de la			
		ы						
								
			4					
					•			
					CA		L	5
MDL = Method Detection Limit INC = Incomplete AO = Aestheftic (Invertional CV	- Onordan							
Comment	~ - Uperations	il Guideline	MAC = Maximum Altowable	Concentration IMAC = Interira	Maximum Allowable Cono	entration		

11/11/04 THE INCOMENTS OF

ал Ф

Ł APPROVALY

-	
2	
1	
5	
ш.	
2	
G	
\mathcal{O}	
-	
3	
RO	
BC	
0	
4	
_	
Luca	
10	ł
0)	
UTEST	I
-	
-	
-	
U	
S	
-	
4	

5
S
~
-
\geq
2
G
~
POF
2
2
-

Int: Work Houst Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting Amount of Each (Mork) Amount of Each (Mork) Amount of Each (Mork) Amount of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting of Chonce Expecting of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting of Chonce Expecting of Chonce Expecting Amount of Chonce Expecting								L L L L L L L L L L L L L L L L L L L	ORT OF	- ANA	
Ψ.	lient: Morey Houle Chevrier Engineering										
ų	28 Clothier St E., Unit B, Box 910							Report Numbe		2420554	
	Kemptville, ON							Date:	ä	2004-11-11	
ш д									5	2004-10-59	
	renuur: Mr. Kandy Morey							Project		031-040	
ų d								P.O. Number:			
W d								Matrix		Water	
ш а		Samp	le Date:	350534 2004-10-23	350535 2004-10-23	350536 2004-10-23	350537 2004-10-23	350538		GUIDELINE	
Ψ		San	npte (D:	TW #1 Deep	TW #1 Shallow	TW#2 Deep	TW#2 Stiallow	TW #3 Deep			
		UNITS	MOL						TYPE	L LEDIT	114170
			Q Q	ς Σ	4	Ç V	0 [×]	0 0 0			
IL = Method Detection I imit INC = Inversion of a contract of the contract of	= Method Detection Limit _ IVC = LowenciesAO = Acceleration							- and the state			

09/12 2004 11:18 FAX 613 727 5222 ACCUTEST LABS + Morey Houle Rand Ø001/002

APPROVAL Furn Internet

10
5
S
RIE
R
10
F
OR
ŝ
<u> </u>
-
EST
S
LU I
T
-
CC
0
3
a
-

S
-
S
2
-
-
7
-
A
\mathbf{O}
0
2
O
n
t t T
LU
N

.

Client: Morey Houle Chevrier Engineering										
28 Clothier St E., Unit B, Box 910							Report Number		2420554	
Kemptville, ON							Date:		2004-11-11	
K0G 1J0							Date Submitted		2004-10-26	
Attention: Mr. Randy Morey										
							Project		031-040	
							P.O. Number			
			350539	3505.63	160643	of the so	Matrix:		Water	
			2004-10-23	3004-10-20	24CDE	350543			GUIDELINE	
		.	TW #3	TW #4 Deep	ZUM-10-23	ZUU4-10-23				
			Shallow		Shallow	Shallow				
PARAMETER	UNITS	ND								
N-NO3 (Nitrate)	Ъл	0.10	<0.10	576	175	01.02		TYPE	LIMIT	UNITS
MDL = Method Detection Limit INC = incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowaske Concentration IMAC = Interent Maximum Allowaske Concentration	3 = Operationa	al Guideline	MAC = Maximun	n Allowable Conce	entration IMAC =	Jaletan Makinun	n Allowatke Concentr	ation		

APPROVAL

CLIENT NAME: HOULE CHEVRIER 32 STEACIE DRIVE OTTAWA, ON K2K2A9 (613) 836-1422

ATTENTION TO: James Mcewen

PROJECT: 63978.96

AGAT WORK ORDER: 16Z093547

MICROBIOLOGY ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

WATER ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

DATE REPORTED: May 18, 2016

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 12

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

Microbiological Analysis (water) SAMPLE TYPE: Water SAMPLE ID: 7549793 DATE RECEIVED: May 11, 2016 DATE SAMPLED: May 10, 2016 DATE REPORTED: May 18, 2016 SAMPLE DESCRIPTION: Set 1 - 4 hr												
SAMPLE TYPE: Water	SAMPLE I	D: 7549793		DAT	E RECEIVED: May 1	1, 2016						
DATE SAMPLED: May 10, 2016				DAT	E REPORTED: May	18, 2016						
SAMPLE DESCRIPTION: Set 1 - 4 hr												
PARAMETER	UNIT	RESULT	G / S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED					
Escherichia coli	CFU/100mL	NDOGN	0	1	May 13, 2016	СТ	May 12, 2016					
Total Coliforms	CFU/100mL	NDOGN	0	1	May 13, 2016	СТ	May 12, 2016					
Fecal Coliform	CFU/100mL	ND		1	May 13, 2016	СТ	May 12, 2016					
Heterotrophic Plate Count	CFU/1mL	600		10	May 14, 2016	NB	May 12, 2016					
COMMENTS:												
RDL - Reported Detection Limit; G / S NDOGN – No Data; Overgrown with no												

ND - Not Detected

NDOGHPC- No Data; HPC Plate Overgrown with Target.

Certified By:

Page 2 of 12

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

....

...

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

		Subdiv. We	I Water Su	pply			
SAMPLE TYPE: Water	SAMPLE	D: 7549793		DATI	E RECEIVED: May 1	1, 2016	
DATE SAMPLED: May 10, 2016				DAT	E REPORTED: May	18, 2016	
SAMPLE DESCRIPTION: Set 1 - 4 h	r						
PARAMETER	UNIT	RESULT	G / S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Electrical Conductivity	uS/cm	936		2	May 13, 2016	PB	May 13, 2016
pН	pH Units	8.10		NA	May 13, 2016	PB	May 13, 2016
Total Hardness (as CaCO3)	mg/L	342		0.5	May 16, 2016	SYS	May 16, 2016
Total Dissolved Solids	mg/L	516		20	May 17, 2016	PB	May 16, 2016
Alkalinity (as CaCO3)	mg/L	246		5	May 13, 2016	PB	May 13, 2016
Fluoride	mg/L	0.26		0.05	May 16, 2016	MM	May 16, 2016
Chloride	mg/L	137		0.50	May 16, 2016	MM	May 16, 2016
Nitrate as N	mg/L	<0.05		0.05	May 16, 2016	MM	May 16, 2016
Nitrite as N	mg/L	<0.05		0.05	May 16, 2016	MM	May 16, 2016
Sulphate	mg/L	48.6		0.10	May 16, 2016	MM	May 16, 2016
Tannins and Lignins	mg phenol/L	<0.1		0.1	May 17, 2016	ME	May 17, 2016
Ammonia as N	mg/L	0.10		0.02	May 16, 2016	SS	May 16, 2016
Total Kjeldahl Nitrogen	mg/L	0.11		0.10	May 16, 2016	OD	May 16, 2016
Dissolved Organic Carbon	mg/L	2.0		0.5	May 13, 2016	ND	May 13, 2016
Phenols	mg/L	<0.001		0.001	May 13, 2016	SN	May 13, 2016
Hydrogen Sulphide	mg/L	<0.05		0.05	May 13, 2016	SN	May 13, 2016
Colour	TCU	<5		5	May 12, 2016	ME	May 12, 2016
Turbidity	NTU	3.7		0.5	May 12, 2016	ME	May 12, 2016
Calcium	mg/L	92.8		0.05	May 16, 2016	AA	May 16, 2016
Magnesium	mg/L	26.7		0.05	May 16, 2016	AA	May 16, 2016
Sodium	mg/L	58.0		0.05	May 16, 2016	AA	May 16, 2016
Potassium	mg/L	3.75		0.05	May 16, 2016	AA	May 16, 2016
Iron	mg/L	0.515		0.010	May 13, 2016	CR	May 13, 2016
Manganese	mg/L	0.047		0.002	May 13, 2016	CR	May 13, 2016
% Difference/ Ion Balance	%	1.85		NA	May 16, 2016	SYS	May 16, 2016

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Sodium: Please note that the analytical results have been confirmed by re-analysis.

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 3 of 12

Certificate of Analysis

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

	Μ	icrobiologica	al Analysis	(water)			
SAMPLE TYPE: Water	SAMPLE	ID: 7549796		DATI	E RECEIVED: May 1	1, 2016	
DATE SAMPLED: May 10, 2016				DATI	E REPORTED: May	18, 2016	
SAMPLE DESCRIPTION: Set 2 - 8 hi							
PARAMETER	UNIT	RESULT	G / S	INITIAL	DATE PREPARED		
Escherichia coli	CFU/100mL	NDOGN	0	1	May 13, 2016	СТ	May 12, 2016
Total Coliforms	CFU/100mL	NDOGN	0	1	May 13, 2016	СТ	May 12, 2016
Fecal Coliform	CFU/100mL	ND		1	May 13, 2016	СТ	May 12, 2016
Heterotrophic Plate Count	CFU/1mL	NDOGHPC		10	May 14, 2016	NB	May 12, 2016
COMMENTS:							
RDL - Reported Detection Limit; G / 3 NDOGN – No Data; Overgrown with no							

ND - Not Detected

NDOGHPC- No Data; HPC Plate Overgrown with Target.

Certified By:

Page 4 of 12

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

	O. Reg. 15	53(511) - Meta	ls (Compre	ehensive)	(Water)		
SAMPLE TYPE: Water	SAMPLE	ID: 7549796		DATI	E RECEIVED: May 1	1, 2016	
DATE SAMPLED: May 10, 2016				DATI	E REPORTED: May	18, 2016	
SAMPLE DESCRIPTION: Set 2 - 8 hr						-	
PARAMETER	UNIT	RESULT	G / S	RDL	DATE ANALYZED	INITIAL	DATE PREPARE
Antimony	μg/L	<1.0		1.0	May 13, 2016	CR	May 13, 2016
Arsenic	μg/L	<1.0		1.0	May 13, 2016	CR	May 13, 2016
Barium	μg/L	283		2.0	May 13, 2016	CR	May 13, 2016
Beryllium	μg/L	<0.5		0.5	May 13, 2016	CR	May 13, 2016
Boron	μg/L	44.1		10.0	May 13, 2016	CR	May 13, 2016
Cadmium	μg/L	<0.2		0.2	May 13, 2016	CR	May 13, 2016
Chromium	μg/L	4.8		2.0	May 13, 2016	CR	May 13, 2016
Cobalt	μg/L	<0.5		0.5	May 13, 2016	CR	May 13, 2016
Copper	μg/L	<1.0		1.0	May 13, 2016	CR	May 13, 2016
Lead	μg/L	<0.5		0.5	May 13, 2016	CR	May 13, 2016
Molybdenum	μg/L	<0.5		0.5	May 13, 2016	CR	May 13, 2016
Nickel	μg/L	<1.0		1.0	May 13, 2016	CR	May 13, 2016
Selenium	μg/L	<1.0		1.0	May 13, 2016	CR	May 13, 2016
Silver	μg/L	<0.2		0.2	May 13, 2016	CR	May 13, 2016
Thallium	μg/L	<0.3		0.3	May 13, 2016	CR	May 13, 2016
Uranium	μg/L	<0.5		0.5	May 13, 2016	CR	May 13, 2016
Vanadium	μg/L	0.4		0.4	May 13, 2016	CR	May 13, 2016
Zinc	μg/L	<5.0		5.0	May 13, 2016	CR	May 13, 2016

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to T1(All-GW)

Certified By:

Page 5 of 12

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

....

...

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

		Subdiv. Wel	I Water Su	pply			
SAMPLE TYPE: Water	SAMPLE	D: 7549796		DATI	E RECEIVED: May 1	1, 2016	
DATE SAMPLED: May 10, 2016				DAT	E REPORTED: May	18, 2016	
SAMPLE DESCRIPTION: Set 2 - 8 hr							
PARAMETER	UNIT	RESULT	G / S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Electrical Conductivity	uS/cm	929		2	May 13, 2016	PB	May 13, 2016
рН	pH Units	8.22		NA	May 13, 2016	PB	May 13, 2016
Total Hardness (as CaCO3)	mg/L	336		0.5	May 16, 2016	SYS	May 16, 2016
Total Dissolved Solids	mg/L	512		20	May 17, 2016	PB	May 16, 2016
Alkalinity (as CaCO3)	mg/L	247		5	May 13, 2016	PB	May 13, 2016
Fluoride	mg/L	0.23		0.05	May 16, 2016	MM	May 16, 2016
Chloride	mg/L	133		0.50	May 16, 2016	MM	May 16, 2016
Nitrate as N	mg/L	<0.05		0.05	May 16, 2016	MM	May 16, 2016
Nitrite as N	mg/L	<0.05		0.05	May 16, 2016	MM	May 16, 2016
Sulphate	mg/L	50.6		0.10	May 16, 2016	MM	May 16, 2016
Tannins and Lignins	mg phenol/L	<0.1		0.1	May 17, 2016	ME	May 17, 2016
Ammonia as N	mg/L	0.10		0.02	May 16, 2016	SS	May 16, 2016
Total Kjeldahl Nitrogen	mg/L	0.14		0.10	May 16, 2016	OD	May 16, 2016
Dissolved Organic Carbon	mg/L	2.1		0.5	May 13, 2016	ND	May 13, 2016
Phenols	mg/L	<0.001		0.001	May 13, 2016	SN	May 13, 2016
Hydrogen Sulphide	mg/L	<0.05		0.05	May 13, 2016	SN	May 13, 2016
Colour	TCU	<5		5	May 12, 2016	ME	May 12, 2016
Turbidity	NTU	5.0		0.5	May 12, 2016	ME	May 12, 2016
Calcium	mg/L	91.5		0.05	May 16, 2016	AA	May 16, 2016
Magnesium	mg/L	26.2		0.05	May 16, 2016	AA	May 16, 2016
Sodium	mg/L	56.7		0.05	May 16, 2016	AA	May 16, 2016
Potassium	mg/L	3.74		0.05	May 16, 2016	AA	May 16, 2016
Iron	mg/L	0.458		0.010	May 13, 2016	CR	May 13, 2016
Manganese	mg/L	0.045		0.002	May 13, 2016	CR	May 13, 2016
% Difference/ Ion Balance	%	2.45		NA	May 16, 2016	SYS	May 16, 2016

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Sodium: Please note that the analytical results have been confirmed by re-analysis.

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 12

Quality Assurance

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547

ATTENTION TO: James Mcewen

SAMPLED BY:

Microbiology Analysis

						-	-								
RPT Date: May 18, 2016			C	UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Microbiological Analysis (water)															
Escherichia coli	7549793	7549793	NDOGN	NDOGN	NA	< 1									
Total Coliforms	7549793	7549793	NDOGN	NDOGN	NA	< 1									

Fecal Coliform	7549796 7549796	ND	ND	NA	< 1
Heterotrophic Plate Count	7549793 7549793	600	595	0.8%	< 10

Comments: NDOGN - No Data; Overgrown with nontarget, refers to over-crowding microbial growth;

ND - Not Detected

NA - % RPD Not Applicable

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 7 of 12

Page 8 of 12

Quality Assurance

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

Water Analysis

						-								
RPT Date: May 18, 2016			UPLICATI	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK		МАТ	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.10	ptable nits	Recovery		ptable nits
						value	Lower	Upper		Lower	Upper		Lower	Upper
Subdiv. Well Water Supply														
Electrical Conductivity	7548296	2210	2210	0.0%	< 2	103%	80%	120%	NA			NA		
рН	7548296	8.28	8.26	0.2%	NA	100%	90%	110%	NA			NA		
Total Dissolved Solids	7548281	1010	1020	1.0%	< 20	98%	80%	120%	NA			NA		
Alkalinity (as CaCO3)	7548296	855	849	0.7%	< 5	99%	80%	120%	NA			NA		
Fluoride	7551821	<0.25	<0.25	NA	< 0.05	101%	90%	110%	103%	90%	110%	92%	80%	120%
Chloride	7551821	12.9	13.3	3.1%	< 0.10	99%	90%	110%	109%	90%	110%	110%	80%	120%
Nitrate as N	7551821	<0.25	<0.25	NA	< 0.05	91%	90%	110%	108%	90%	110%	108%	80%	120%
Nitrite as N	7551821	<0.25	<0.25	NA	< 0.05	NA	90%	110%	104%	90%	110%	107%	80%	120%
Sulphate	7551821	17.5	17.8	1.7%	< 0.10	97%	90%	110%	108%	90%	110%	109%	80%	120%
Tannins and Lignins	7549793 7549793	<0.1	<0.1	NA	< 0.1	89%	80%	120%	95%	85%	115%	85%	70%	130%
Ammonia as N	7547451	<0.02	<0.02	NA	< 0.02	90%	90%	110%	93%	90%	110%	105%	80%	120%
Total Kjeldahl Nitrogen	7547464	0.44	0.52	NA	< 0.10	100%	80%	120%	104%	80%	120%	99%	70%	130%
Dissolved Organic Carbon	7549793 7549793	2.0	2.0	NA	< 0.5	102%	90%	110%	100%	90%	110%	97%	80%	120%
Phenols	7547622	<0.001	<0.001	NA	< 0.001	98%	90%	110%	97%	90%	110%	93%	80%	120%
Sulphide	7552576	<0.05	<0.05	NA	< 0.05	99%	80%	120%	101%	85%	115%	102%	70%	130%
Hydrogen Sulphide	7552576	<0.05	<0.05	NA	< 0.05	99%	90%	110%	101%	90%	110%	102%	80%	120%
Colour	7546818	39	40	2.5%	< 5	100%	90%	110%	NA			NA		
Turbidity	7549020	<0.5	<0.5	NA	< 0.5	103%	90%	110%	NA			NA		
Calcium	7550688	98.6	100	1.4%	< 0.05	101%	90%	110%	102%	90%	110%	101%	70%	130%
Magnesium	7550688	41.8	42.0	0.5%	< 0.05	102%	90%	110%	102%	90%	110%	105%	70%	130%
Sodium	7550688	23.6	23.0	2.6%	< 0.05	94%	90%	110%	94%	90%	110%	98%	70%	130%
Potassium	7550688	2.03	2.04	0.5%	< 0.05	95%	90%	110%	94%	90%	110%	97%	70%	130%
Iron	7550206	0.390	0.415	6.2%	< 0.010	100%	90%	110%	100%	90%	110%	100%	70%	130%
Manganese	7550206	0.004	0.005	NA	< 0.002	101%	90%	110%	100%	90%	110%	103%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

O. Reg. 153(511) - Metals (C	omprehensive) (Water)													
Antimony	7550206	<1.0	<1.0	NA	< 1.0	99%	70%	130%	101%	80%	120%	104%	70%	130%
Arsenic	7550206	<1.0	<1.0	NA	< 1.0	100%	70%	130%	96%	80%	120%	104%	70%	130%
Barium	7550206	10.5	10.9	3.7%	< 2.0	99%	70%	130%	99%	80%	120%	97%	70%	130%
Beryllium	7550206	<0.5	<0.5	NA	< 0.5	109%	70%	130%	106%	80%	120%	112%	70%	130%
Boron	7550206	<10.0	<10.0	NA	< 10.0	97%	70%	130%	99%	80%	120%	100%	70%	130%
Cadmium	7550206	<0.2	<0.2	NA	< 0.2	100%	70%	130%	100%	80%	120%	104%	70%	130%
Chromium	7550206	<2.0	<2.0	NA	< 2.0	100%	70%	130%	100%	80%	120%	97%	70%	130%
Cobalt	7550206	<0.5	<0.5	NA	< 0.5	103%	70%	130%	101%	80%	120%	102%	70%	130%
Copper	7550206	24.5	26.3	7.1%	< 1.0	101%	70%	130%	101%	80%	120%	96%	70%	130%
Lead	7550206	<0.5	<0.5	NA	< 0.5	103%	70%	130%	101%	80%	120%	102%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z093547 ATTENTION TO: James Mcewen SAMPLED BY:

Water Analysis (Continued)

RPT Date: May 18, 2016			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank		Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		ld	•					Upper		Lower	Upper			Upper	
Molybdenum	7550206		<0.5	<0.5	NA	< 0.5	99%	70%	130%	96%	80%	120%	99%	70%	130%
Nickel	7550206		<1.0	<1.0	NA	< 1.0	102%	70%	130%	100%	80%	120%	99%	70%	130%
Selenium	7550206		<1.0	<1.0	NA	< 1.0	99%	70%	130%	96%	80%	120%	113%	70%	130%
Silver	7550206		<0.2	<0.2	NA	< 0.2	95%	70%	130%	104%	80%	120%	106%	70%	130%
Thallium	7550206		<0.3	<0.3	NA	< 0.3	104%	70%	130%	101%	80%	120%	103%	70%	130%
Uranium	7550206		<0.5	<0.5	NA	< 0.5	100%	70%	130%	101%	80%	120%	100%	70%	130%
Vanadium	7550206		<0.4	<0.4	NA	< 0.4	98%	70%	130%	98%	80%	120%	101%	70%	130%
Zinc	7550206		<5.0	<5.0	NA	< 5.0	100%	70%	130%	101%	80%	120%	113%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 12

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 16Z093547

ATTENTION TO: James Mcewen

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Microbiology Analysis	L	·									
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration								
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration								
Fecal Coliform	MIC-93-7000	SM 9222 D	MF/INCUBATOR								
Heterotrophic Plate Count	MIC-93-7020	SM 9215C	MF/INCUBATOR								

Method Summary

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

AGAT WORK ORDER: 16Z093547 **ATTENTION TO: James Mcewen**

FIIOULC1. 03570.50		ATTENTION TO. James Meewen									
SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Water Analysis											
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE								
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE								
Total Hardness (as CaCO3)	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES								
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE								
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE								
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH								
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH								
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH								
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH								
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH								
Tannins and Lignins	INOR-93-6058	SM 550B, 21st Edition	SPECTROPHOTOMETER								
Ammonia as N	INOR-93-6059	QuikChem 10-107-06-1-J & SM 4500 NH3-F	LACHAT FIA								
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA								
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER								
Phenols	INOR-93-6050	MOE ROPHEN-E 3179 & SM 5530 D	TECHNICON AUTO ANALYZER								
Hydrogen Sulphide	INOR-93-6054	SM 4500 S2- D	SPECTROPHOTOMETER								
Colour	INOR-93-6046	SM 2120 B	SPECTROPHOTOMETER								
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER								
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES								
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES								
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES								
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES								
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
% Difference/ Ion Balance		SM 1030 E	CALCULATION								

CLIENT NAME: HOULE CHEVRIER 32 STEACIE DRIVE OTTAWA, ON K2K2A9 (613) 836-1422

ATTENTION TO: James Mcewen

PROJECT: 63978.96

AGAT WORK ORDER: 16Z097017

MICROBIOLOGY ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

DATE REPORTED: May 31, 2016

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

 Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)
 A

 Western Enviro-Agricultural Laboratory Association (WEALA)
 ss

 Environmental Services Association of Alberta (ESAA)
 A

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 16Z097017 PROJECT: 63978.96

CLIENT NAME: HOULE CHEVRIER

SAMPLING SITE:

ATTENTION TO: James Mcewen

SAMPLED BY:

Microbiological Analysis (water)									
DATE RECEIVED: 2016-05-20						DATE REPORTED: 2016-05-			
	SA	MPLE DES	CRIPTION:	R-1(1-2)	R-2(1-2)				
		SAM	PLE TYPE:	Water	Water				
		DATE	SAMPLED:	5/20/2016	5/20/2016				
Parameter	Unit	G / S	RDL	7573859	7573866				
Escherichia coli	CFU/100mL	0	1	ND	ND				
Fotal Coliforms	CFU/100mL	0	1	ND	ND				
ecal Coliform	CFU/100mL		1	ND	ND				
Heterotrophic Plate Count	CFU/1mL		10	20	55				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to SDWA - Microbiology

7573859-7573866 ND - Not Detected.

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

Heterotrophic Plate Count

SAMPLING SITE:

AGAT WORK ORDER: 16Z097017 ATTENTION TO: James Mcewen

SAMPLED BY:

Microbiology Analysis

							-										
RPT Date: May 31, 2016	DUPLICATE				REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		KE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Dup #2 RPD	Method Blank		Measured		ptable nits			ptable nits	Recovery	Acceptab Limits	
		Value	Lower	Upper		Lower	Upper		Lower	Upper							
Microbiological Analysis (water)																	
Escherichia coli	7572225		ND	ND	NA	< 1											
Total Coliforms	7572225		ND	ND	NA	< 1											
Fecal Coliform	7573859 7	573859	ND	ND	NA	< 1											

NA

< 10

Comments: ND - Not Detected, NA - % RPD Not Applicable

7573859 7573859

ND

ND

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 3 of 5

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 16Z097017

ATTENTION TO: James Mcewen

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Microbiology Analysis											
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration								
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration								
Fecal Coliform	MIC-93-7000	SM 9222 D	MF/INCUBATOR								
Heterotrophic Plate Count	MIC-93-7020	SM 9215C	MF/INCUBATOR								

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Houle Chevrier

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 6642

Report Date: 12-Jul-2017 Order Date: 6-Jul-2017

Order #: 1727266

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID TW1-6 1727266-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 12-Jul-2017 Order Date: 6-Jul-2017 Project Description: 61318.15

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	6-Jul-17	6-Jul-17
Ammonia, as N	EPA 351.2 - Auto Colour	11-Jul-17	11-Jul-17
Anions	EPA 300.1 - IC	7-Jul-17	7-Jul-17
Colour	SM2120 - Spectrophotometric	6-Jul-17	6-Jul-17
Conductivity	EPA 9050A- probe @25 °C	6-Jul-17	6-Jul-17
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	12-Jul-17	12-Jul-17
E. coli	MOE E3407	6-Jul-17	6-Jul-17
Fecal Coliform	SM 9222D	6-Jul-17	6-Jul-17
Heterotrophic Plate Count	SM 9215C	6-Jul-17	6-Jul-17
Metals, ICP-MS	EPA 200.8 - ICP-MS	7-Jul-17	7-Jul-17
рН	EPA 150.1 - pH probe @25 °C	6-Jul-17	6-Jul-17
Phenolics	EPA 420.2 - Auto Colour, 4AAP	7-Jul-17	11-Jul-17
Subdivision Package	Hardness as CaCO3	7-Jul-17	7-Jul-17
Sulphide	SM 4500SE - Colourimetric	11-Jul-17	11-Jul-17
Tannin/Lignin	SM 5550B - Colourimetric	7-Jul-17	7-Jul-17
Total Coliform	MOE E3407	6-Jul-17	6-Jul-17
Total Dissolved Solids	SM 2540C - gravimetric, filtration	6-Jul-17	7-Jul-17
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	11-Jul-17	12-Jul-17
Turbidity	SM 2130B - Turbidity meter	6-Jul-17	7-Jul-17

Report Date: 12-Jul-2017

Order Date: 6-Jul-2017

	Client ID:	TW1-6	- 1		
	Sample Date:	05-Jul-17	-	-	-
	Sample ID:	1727266-01	-	-	-
	MDL/Units	Drinking Water	-	-	-
Microbiological Parameters					
E. coli	1 CFU/100 mL	ND	-	-	-
Fecal Coliforms	1 CFU/100 mL	ND	-	-	-
Total Coliforms	1 CFU/100 mL	7	-	-	-
Heterotrophic Plate Count	10 CFU/mL	30	-	-	-
General Inorganics			• • •		
Alkalinity, total	5 mg/L	347	-	-	-
Ammonia as N	0.01 mg/L	0.16	-	-	-
Dissolved Organic Carbon	0.5 mg/L	2.1	-	-	-
Colour	2 TCU	3	-	-	-
Conductivity	5 uS/cm	962	-	-	-
Hardness	mg/L	395	-	-	-
рН	0.1 pH Units	7.8	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-
Total Dissolved Solids	10 mg/L	660	-	-	-
Sulphide	0.02 mg/L	<0.02	-	-	-
Tannin & Lignin	0.1 mg/L	0.1	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.2	-	-	-
Turbidity	0.1 NTU	12.8	-	-	-
Anions	•		•		
Chloride	1 mg/L	86	-	-	-
Fluoride	0.1 mg/L	<0.1	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-
Sulphate	1 mg/L	74	-	-	-
Metals	•				
Calcium	0.1 mg/L	111	-	-	-
Iron	0.1 mg/L	1	-	-	-
Magnesium	0.2 mg/L	28.3	-	-	-
Manganese	0.005 mg/L	0.096	-	-	-
Potassium	0.1 mg/L	3.1	-	-	-
Sodium	0.2 mg/L	38.8	-	-	-

Order #: 1727266

Report Date: 12-Jul-2017

Order Date: 6-Jul-2017

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TČU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND ND	10 0.02	mg/L						
Sulphide Tannin & Lignin	ND	0.02	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L mg/L						
Turbidity	ND	0.1	NTU						
Metals		011							
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters			U U						
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						

Order #: 1727266

Report Date: 12-Jul-2017

Order Date: 6-Jul-2017

Project Description: 61318.15

Method Quality Control: Duplicate

Anions Chloride Fluoride	86.1 ND ND	1 0.1	mg/L					
Chloride	ND ND		mg/L					
Fluoride	ND	01		86.1		0.1	10	
			mg/L	ND			10	
Nitrate as N		0.1	mg/L	ND			20	
Nitrite as N	ND	0.05	mg/L	ND			20	
Sulphate	72.5	1	mg/L	73.7		1.6	10	
General Inorganics								
Alkalinity, total	240	5	mg/L	243		1.2	14	
Ammonia as N	0.141	0.01	mg/L	0.155		9.6	8	QR-05
Dissolved Organic Carbon	2.9	0.5	mg/L	3.3		11.6	37	
Colour	3	2	TĈU	3		0.0	12	
Conductivity	566	5	uS/cm	582		2.8	11	
pH	7.5	0.1	pH Units	7.5		0.1	10	
Phenolics	ND	0.001	mg/L	ND			10	
Total Dissolved Solids	628	10	mg/L	660		5.0	10	
Sulphide	ND	0.02	mg/L	ND			10	
Tannin & Lignin	ND	0.1	mg/L	ND		0.0	11	
Total Kjeldahl Nitrogen	ND	0.1	mg/L	0.23		0.0	10	
	0.2	0.1	NTU	0.2		0.0	10	
Metals								
Calcium	10.4	0.1	mg/L	10.4		0.2	20	
Iron	ND	0.1	mg/L	ND		0.0	20	
Magnesium	2.7	0.2	mg/L	2.7		2.0	20	
Manganese	ND	0.005	mg/L	ND		0.0	20	
Potassium	0.7	0.1	mg/L	0.7		0.7	20	
Sodium	21.0	0.2	mg/L	20.6		1.8	20	
Microbiological Parameters								
E. coli	ND	1	CFU/100 mL	ND			30	
Fecal Coliforms	ND	1	CFU/100 mL	ND			30	
Total Coliforms	7	1	CFU/100 mL	7		0.0	30	
Heterotrophic Plate Count	ND	10	CFU/mL	30		0.0	30	

Method Quality Control: Spike

Project Description: 6
Order Date: 6-J
Report Date: 12-J

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	96.1	1	mg/L	86.1	101	78-112			
Fluoride	0.95	0.1	mg/L	ND	95.5	73-113			
Nitrate as N	0.88	0.1	mg/L	ND	88.2	81-112			
Nitrite as N	1.02	0.05	mg/L	ND	102	76-107			
Sulphate	82.7	1	mg/L	73.7	89.9	75-111			
General Inorganics									
Ammonia as N	0.413	0.01	mg/L	0.155	103	81-124			
Dissolved Organic Carbon	11.7	0.5	mg/L	3.3	84.0	60-133			
Phenolics	0.028	0.001	mg/L	ND	112	69-132			
Total Dissolved Solids	102	10	mg/L		102	75-125			
Sulphide	0.48	0.02	mg/L	ND	85.5	79-115			
Tannin & Lignin	0.9	0.1	mg/L	ND	88.3	71-113			
Total Kjeldahl Nitrogen	2.12	0.1	mg/L		106	81-126			
Metals									
Calcium	958		ug/L		95.8	80-120			
Iron	948		ug/L	6	94.2	80-120			
Magnesium	3420		ug/L	2690	73.5	80-120		Q	M-07
Manganese	53.1		ug/L	2.83	101	80-120			
Potassium	1550		ug/L	721	82.5	80-120			
Sodium	1190		ug/L		119	80-120			

Qualifier Notes:

Sample Qualifiers :

QC Qualifiers :

- QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QR-05 : Duplicate RPDs higher than normally accepted. Remaing batch QA\QC was acceptable. May be sample effect.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. Order #: 1727266

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Houle Chevrier

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 6676

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

Order #: 1742284

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1742284-01 NTW3-3hr 1742284-02 NTW3-6hr

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	18-Oct-17	18-Oct-17
Ammonia, as N	EPA 351.2 - Auto Colour	19-Oct-17	19-Oct-17
Anions	EPA 300.1 - IC	19-Oct-17	19-Oct-17
Chromium, hexavalent - water	MOE E3056 - colourimetric	18-Oct-17	18-Oct-17
Colour	SM2120 - Spectrophotometric	19-Oct-17	19-Oct-17
Conductivity	EPA 9050A- probe @25 °C	18-Oct-17	18-Oct-17
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	19-Oct-17	19-Oct-17
E. coli	MOE E3407	18-Oct-17	18-Oct-17
Fecal Coliform	SM 9222D	18-Oct-17	18-Oct-17
Heterotrophic Plate Count	SM 9215C	18-Oct-17	18-Oct-17
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	23-Oct-17	23-Oct-17
Metals, ICP-MS	EPA 200.8 - ICP-MS	18-Oct-17	18-Oct-17
рН	EPA 150.1 - pH probe @25 °C	18-Oct-17	18-Oct-17
Phenolics	EPA 420.2 - Auto Colour, 4AAP	18-Oct-17	18-Oct-17
Subdivision Package	Hardness as CaCO3	18-Oct-17	18-Oct-17
Sulphide	SM 4500SE - Colourimetric	18-Oct-17	18-Oct-17
Tannin/Lignin	SM 5550B - Colourimetric	20-Oct-17	23-Oct-17
Total Coliform	MOE E3407	18-Oct-17	18-Oct-17
Total Dissolved Solids	SM 2540C - gravimetric, filtration	19-Oct-17	20-Oct-17
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	18-Oct-17	23-Oct-17
Turbidity	SM 2130B - Turbidity meter	19-Oct-17	19-Oct-17

Order #: 1742284

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

	Client ID: Sample Date:	NTW3-3hr 17-Oct-17	NTW3-6hr 17-Oct-17 1742284-02	-	-
	Sample ID: MDL/Units	1742284-01 Drinking Water	Drinking Water	-	-
Microbiological Parameters	MDL/Offits	Drinking Water	Drinking Water		
E. coli	1 CFU/100 mL	ND	ND	-	_
Fecal Coliforms	1 CFU/100 mL	ND	ND	-	-
Total Coliforms	1 CFU/100 mL	ND	ND	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	<10	-	-
General Inorganics			• •		
Alkalinity, total	5 mg/L	278	278	-	-
Ammonia as N	0.01 mg/L	0.11	0.11	-	-
Dissolved Organic Carbon	0.5 mg/L	2.5	2.3	-	-
Colour	2 TCU	<2	<2	-	-
Conductivity	5 uS/cm	794	799	-	-
Hardness	mg/L	322	324	-	-
рН	0.1 pH Units	7.7	7.7	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-
Total Dissolved Solids	10 mg/L	416	452	-	-
Sulphide	0.02 mg/L	<0.02	<0.02	-	-
Tannin & Lignin	0.1 mg/L	<0.1	<0.1	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.3	0.3	-	-
Turbidity	0.1 NTU	3.3	3.0	-	-
Anions					
Chloride	1 mg/L	79	79	-	-
Fluoride	0.1 mg/L	0.2	0.2	-	-
Nitrate as N	0.1 mg/L	<0.1	<0.1	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-
Sulphate	1 mg/L	57	57	-	-
Metals			-		
Mercury	0.0001 mg/L	-	<0.0001	-	-
Aluminum	0.001 mg/L	-	<0.001	-	-
Antimony	0.0005 mg/L	-	<0.0005	-	-
Arsenic	0.001 mg/L	-	<0.001	-	-
Barium	0.001 mg/L	-	0.109	-	-
Beryllium	0.0005 mg/L	-	<0.0005	-	-
Boron	0.01 mg/L	-	0.01	-	-
Cadmium	0.0001 mg/L	-	<0.0001	-	-
Calcium	0.1 mg/L	92.5	93.1	-	-
Chromium	0.001 mg/L	-	<0.001	-	-

Order #: 1742284

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

	ан н л Г				
	Client ID:	NTW3-3hr 17-Oct-17	NTW3-6hr 17-Oct-17	-	-
	Sample Date: Sample ID:	1742284-01	1742284-02	-	-
	MDL/Units	Drinking Water	Drinking Water	-	-
Chromium (VI)	0.010 mg/L	-	<0.010	-	-
Cobalt	0.0005 mg/L	-	<0.0005	-	-
Copper	0.0005 mg/L	-	<0.0005	-	-
Iron	0.1 mg/L	0.9	0.9	-	-
Lead	0.0001 mg/L	-	<0.0001	-	-
Magnesium	0.2 mg/L	22.0	22.2	-	-
Manganese	0.005 mg/L	0.191	0.191	-	-
Molybdenum	0.0005 mg/L	-	0.0023	-	-
Nickel	0.001 mg/L	-	<0.001	-	-
Potassium	0.1 mg/L	1.5	1.5	-	-
Selenium	0.001 mg/L	-	<0.001	-	-
Silicon	0.01 mg/L	-	8.00	-	-
Silver	0.0001 mg/L	-	<0.0001	-	-
Sodium	0.2 mg/L	31.7	32.1	-	-
Strontium	0.01 mg/L	-	0.24	-	-
Thallium	0.001 mg/L	-	<0.001	-	-
Tin	0.01 mg/L	-	<0.01	-	-
Titanium	0.005 mg/L	-	<0.005	-	-
Tungsten	0.01 mg/L	-	<0.01	-	-
Uranium	0.0001 mg/L	-	0.0009	-	-
Vanadium	0.0005 mg/L	-	<0.0005	-	-
Zinc	0.005 mg/L	-	<0.005	-	-

Order #: 1742284

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics			g , _						
	ND	5	ma/l						
Alkalinity, total Ammonia as N	ND	0.01	mg/L mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NŤU						
Metals									
Mercury	ND	0.0001	mg/L						
Aluminum	ND	0.0001	mg/L						
Antimony	ND	0.0005	mg/L						
Arsenic	ND	0.0003	mg/L						
Barium	ND	0.001	mg/L						
Beryllium	ND	0.0005	mg/L						
Boron	ND	0.01	mg/L						
Cadmium	ND	0.0001	mg/L						
Calcium	ND	0.1	mg/L						
Chromium (VI)	ND	0.010	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Iron	ND	0.1	mg/L						
Lead	ND	0.0001	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Molybdenum	ND	0.0005	mg/L						
Nickel	ND	0.001 0.1	mg/L						
Potassium Selenium	ND ND	0.001	mg/L						
Silicon	ND	0.001	mg/L mg/L						
Silver	ND	0.0001	mg/L						
Sodium	ND	0.2	mg/L						
Strontium	ND	0.01	mg/L						
Thallium	ND	0.001	mg/L						
Tin	ND	0.01	mg/L						
Titanium	ND	0.005	mg/L						
Tungsten	ND	0.01	mg/L						
Uranium	ND	0.0001	mg/L						
Vanadium	ND	0.0005	mg/L						
Zinc	ND	0.005	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						
-									

Order #: 1742284

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

Project Description: 61318.15

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	237	1	mg/L	237			0.1	10	
Fluoride	0.23	0.1	mg/L	0.23			0.3	10	
Nitrate as N	0.81	0.1	mg/L	0.81			0.0	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	99.4	1	mg/L	99.3			0.1	10	
General Inorganics	••••								
Alkalinity, total	276	5	mg/L	278			0.8	14	
Ammonia as N	0.535	0.01	mg/L	0.545			1.8	17.7	
Dissolved Organic Carbon	1.1	0.5	mg/L	1.0			6.9	37	
Colour	ND	2	ΤČU	ND				12	
Conductivity	774	5	uS/cm	794			2.5	11	
pH	7.8	0.1	pH Units	7.7			0.6	10	
Phenolics	ND	0.004	' mg/L	ND				10	GEN02
Total Dissolved Solids	436	10	mg/L	416			4.7	10	
Sulphide	ND	0.02	mg/L	ND				10	
Tannin & Lignin	ND	0.1	mg/L	ND			0.0	11	
Total Kjeldahl Nitrogen	0.33	0.1	mg/L	0.38			14.2	10	QR-01
Turbidity	3.2	0.1	NTU	3.3			0.6	10	
Metals									
Mercury	ND	0.0001	mg/L	ND			0.0	20	
Aluminum	ND	0.001	mg/L	ND				20	
Antimony	0.0006	0.0005	mg/L	ND			0.0	20	
Arsenic	ND	0.001	mg/L	ND			0.0	20	
Barium	0.054	0.001	mg/L	0.057			4.1	20	
Beryllium	ND	0.0005	mg/L	ND			0.0	20	
Boron	0.08	0.01	mg/L	0.08			6.1	20	
Cadmium	ND	0.0001	mg/L	ND			0.0	20	
Calcium	110	0.1	mg/L	108			2.6	20	
Chromium (VI)	ND	0.010	mg/L	ND				20	
Chromium	ND	0.001	mg/L	ND			0.0	20	
Cobalt	ND	0.0005	mg/L	ND			0.0	20	
Copper	0.0008	0.0005	mg/L	0.0007			4.5	20	
Iron	ND	0.1	mg/L	ND			0.0	20	
Lead	0.0001	0.0001	mg/L	ND			0.0	20	
Magnesium	89.0	0.2	mg/L	88.5			0.6	20	
Manganese	ND	0.005	mg/L	ND			0.0	20	
Molybdenum	0.0014	0.0005	mg/L	0.0012			15.7	20	
Nickel	ND	0.001	mg/L	ND			0.0	20	
Potassium	4.2	0.1	mg/L	4.3			1.3	20	
Selenium	0.001	0.001	mg/L	0.001			1.0	20	
Silicon	6.52	0.01	mg/L	5.86			10.6	20	
Silver	ND	0.0001	mg/L	ND			0.0	20	
Sodium	56.4	0.2	mg/L	56.2			0.4	20	
Thallium	ND	0.001	mg/L	ND			0.0	20	
Tin	ND	0.01	mg/L	ND			0.0	20	
Titanium	ND	0.005	mg/L	ND			0.0	50	
Tungsten	ND	0.01	mg/L	ND			0.0	20	
Uranium	0.0055	0.0001	mg/L	0.0051			7.0	20	
Vanadium	ND	0.0005	mg/L	ND			0.0	20	
	0.012	0.005	mg/L	0.013			3.8	20	
Microbiological Parameters								~~	
E. coli	ND	1	CFU/100 mL	ND				30	
Fecal Coliforms	ND	1	CFU/100 mL	ND				30	
Total Coliforms	ND	1	CFU/100 mL	ND			0.0	30	
Heterotrophic Plate Count	10	10	CFU/mL	10			0.0	30	

Method Quality Control: Spike

		Limit	Units	Result	%REC	Limit	RPD	Limit Notes
Anions								
Chloride	9.84	1	mg/L		98.4	78-112		
Fluoride	1.25	0.1	mg/L	0.23	102	73-113		
Nitrate as N	1.81	0.1	mg/L	0.81	101	81-112		
Nitrite as N	0.964	0.05	mg/L	ND	96.4	76-107		
Sulphate	108	1	mg/L	99.3	89.9	75-111		
General Inorganics								
Ammonia as N	0.804	0.01	mg/L	0.545	104	81-124		
Dissolved Organic Carbon	11.7	0.5	mg/L	1.0	107	60-133		
Phenolics	0.024	0.001	mg/L		97.0	69-132		
Total Dissolved Solids	92.0	10	mg/L		92.0	75-125		
Sulphide	0.53	0.02	mg/L	ND	106	79-115		
Tannin & Lignin	1.0	0.1	mg/L	ND	97.8	71-113		
Total Kjeldahl Nitrogen	2.32	0.1	mg/L	0.38	97.2	81-126		
Metals								
Mercury	0.0030	0.0001	mg/L	ND	99.0	70-130		
Aluminum	65.9		ug/L	ND	132	80-120		QM-07
Antimony	58.9		ug/L	0.0294	118	80-120		
Arsenic	68.1		ug/L	0.278	136	80-120		QM-07
Barium	102		ug/L	56.6	90.3	80-120		
Beryllium	52.5		ug/L	0.0022	105	80-120		
Boron	122		ug/L	80.7	83.2	80-120		
Cadmium	53.2		ug/L		106	80-120		
Calcium	924		ug/L		92.4	80-120		
Chromium (VI)	0.185	0.010	mg/L	ND	92.5	70-130		
Chromium	52.6		ug/L		105	80-120		
Cobalt	57.4		ug/L	0.0186	115	80-120		
Copper	56.6		ug/L	0.738	112	80-120		
Iron	1100		ug/L		110	80-120		
Lead	50.2		ug/L	0.0376	100	80-120		
Magnesium	1010		ug/L		101	80-120		
Manganese	53.3		ug/L		107	80-120		
Molybdenum	60.8		ug/L	1.22	119	80-120		
Nickel	56.0		ug/L	0.109	112	80-120		
Potassium	5160		ug/L	4250	90.8	80-120		
Selenium	52.6		ug/L		105	80-120		
Silicon	45.1		ug/L		90.2	80-120		
Silver	48.0		ug/L	ND	96.0	80-120		
Sodium	1040		ug/L		104	80-120		
Thallium	51.9		ug/L	0.011	104	80-120		
Tin	53.3		ug/L		107	80-120		
Titanium	52.5		ug/L		105	70-130		
Tungsten	58.7		ug/L	0.20	117	80-120		
Uranium	50.8		ug/L		102	80-120		
Vanadium	52.8		ug/L		106	80-120		
Zinc	69.5		ug/L	12.6	114	80-120		

Order #: 1742284

Report Date: 23-Oct-2017 Order Date: 17-Oct-2017

Qualifier Notes:

Sample Qualifiers :

QC Qualifiers :

GEN02 : Elevated Reporting Limit due to matrix interference.

- QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Houle Chevrier

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 6677

Report Date: 24-Oct-2017 Order Date: 18-Oct-2017

Order #: 1742435

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** NTW2-3hr 1742435-01 1742435-02 NTW2-6hr

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 24-Oct-2017 Order Date: 18-Oct-2017

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	20-Oct-17	20-Oct-17
Ammonia, as N	EPA 351.2 - Auto Colour	24-Oct-17	24-Oct-17
Anions	EPA 300.1 - IC	23-Oct-17	23-Oct-17
Chromium, hexavalent - water	MOE E3056 - colourimetric	20-Oct-17	20-Oct-17
Colour	SM2120 - Spectrophotometric	20-Oct-17	20-Oct-17
Conductivity	EPA 9050A- probe @25 °C	20-Oct-17	20-Oct-17
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	23-Oct-17	24-Oct-17
E. coli	MOE E3407	19-Oct-17	19-Oct-17
Fecal Coliform	SM 9222D	19-Oct-17	19-Oct-17
Heterotrophic Plate Count	SM 9215C	20-Oct-17	20-Oct-17
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	23-Oct-17	23-Oct-17
Metals, ICP-MS	EPA 200.8 - ICP-MS	19-Oct-17	19-Oct-17
рН	EPA 150.1 - pH probe @25 °C	20-Oct-17	20-Oct-17
Phenolics	EPA 420.2 - Auto Colour, 4AAP	20-Oct-17	23-Oct-17
Subdivision Package	Hardness as CaCO3	19-Oct-17	19-Oct-17
Sulphide	SM 4500SE - Colourimetric	24-Oct-17	24-Oct-17
Tannin/Lignin	SM 5550B - Colourimetric	20-Oct-17	23-Oct-17
Total Coliform	MOE E3407	19-Oct-17	19-Oct-17
Total Dissolved Solids	SM 2540C - gravimetric, filtration	21-Oct-17	24-Oct-17
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	19-Oct-17	23-Oct-17
Turbidity	SM 2130B - Turbidity meter	19-Oct-17	19-Oct-17

Order #: 1742435

Report Date: 24-Oct-2017 Order Date: 18-Oct-2017

	Client ID: Sample Date:	NTW2- 3hr 18-Oct-17	NTW2- 6hr 18-Oct-17	-	-
	Sample Date: Sample ID:	1742435-01	1742435-02	-	-
	MDL/Units	Drinking Water	Drinking Water	-	-
Microbiological Parameters					
E. coli	1 CFU/100 mL	ND	ND	-	-
Fecal Coliforms	1 CFU/100 mL	ND	ND	-	-
Total Coliforms	1 CFU/100 mL	ND	ND	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	<10	-	-
General Inorganics	-		-		
Alkalinity, total	5 mg/L	293	294	-	-
Ammonia as N	0.01 mg/L	0.42	0.42	-	-
Dissolved Organic Carbon	0.5 mg/L	2.0	2.1	-	-
Colour	2 TCU	4	3	-	-
Conductivity	5 uS/cm	722	724	-	-
Hardness	mg/L	228	233	-	-
рН	0.1 pH Units	7.9	8.0	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-
Total Dissolved Solids	10 mg/L	434	426	-	-
Sulphide	0.02 mg/L	7.00	0.30	-	-
Tannin & Lignin	0.1 mg/L	0.8	0.2	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.5	0.5	-	-
Turbidity	0.1 NTU	4.1	12.9	-	-
Anions					
Chloride	1 mg/L	65	69	-	-
Fluoride	0.1 mg/L	0.7	0.7	-	-
Nitrate as N	0.1 mg/L	<0.1	<0.1	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-
Sulphate	1 mg/L	21	20	-	-
Metals			-		
Mercury	0.0001 mg/L	-	<0.0001	-	-
Aluminum	0.001 mg/L	-	0.036	-	-
Antimony	0.0005 mg/L	-	<0.0005	-	-
Arsenic	0.001 mg/L	-	<0.001	-	-
Barium	0.001 mg/L	-	0.136	-	-
Beryllium	0.0005 mg/L	-	<0.0005	-	-
Boron	0.01 mg/L	-	0.14	-	-
Cadmium	0.0001 mg/L	-	<0.0001	-	-
Calcium	0.1 mg/L	46.1	48.7	-	-
Chromium	0.001 mg/L	-	<0.001	-	-

Order #: 1742435

Report Date: 24-Oct-2017 Order Date: 18-Oct-2017

	Client ID: Sample Date:	NTW2- 3hr 18-Oct-17	NTW2- 6hr 18-Oct-17	-	-
	Sample Date: Sample ID:	1742435-01	1742435-02	-	-
	MDL/Units	Drinking Water	Drinking Water	-	-
Chromium (VI)	0.010 mg/L	-	<0.010	-	_
Cobalt	0.0005 mg/L	-	<0.0005	-	-
Copper	0.0005 mg/L	-	0.0007	-	-
Iron	0.1 mg/L	<0.1	<0.1	-	-
Lead	0.0001 mg/L	-	<0.0001	-	-
Magnesium	0.2 mg/L	27.4	27.0	-	-
Manganese	0.005 mg/L	0.006	0.006	-	-
Molybdenum	0.0005 mg/L	-	<0.0005	-	-
Nickel	0.001 mg/L	-	<0.001	-	-
Potassium	0.1 mg/L	8.5	8.0	-	-
Selenium	0.001 mg/L	-	0.006	-	-
Silicon	0.01 mg/L	-	6.87	-	-
Silver	0.0001 mg/L	-	<0.0001	-	-
Sodium	0.2 mg/L	57.0	54.0	-	-
Strontium	0.01 mg/L	-	2.59	-	-
Thallium	0.001 mg/L	-	<0.001	-	-
Tin	0.01 mg/L	-	<0.01	-	-
Titanium	0.005 mg/L	-	<0.005	-	-
Tungsten	0.01 mg/L	-	<0.01	-	-
Uranium	0.0001 mg/L	-	<0.0001	-	-
Vanadium	0.0005 mg/L	-	<0.0005	-	-
Zinc	0.005 mg/L	-	0.006	-	-

Order #: 1742435

Report Date: 24-Oct-2017 Order Date: 18-Oct-2017

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics			-						
Alkalinity, total	ND	5	ma/l						
Ammonia as N	ND	0.01	mg/L mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.02	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
-	ND	0.1	NIO						
Metals									
Mercury	ND	0.0001	mg/L						
Aluminum	ND	0.001	mg/L						
Antimony	ND	0.0005	mg/L						
Arsenic	ND	0.001	mg/L						
Barium	ND	0.001	mg/L						
Beryllium	ND	0.0005	mg/L						
Boron	ND	0.01	mg/L						
Cadmium	ND	0.0001	mg/L						
Calcium	ND	0.1	mg/L						
Chromium (VI)	ND	0.010	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Iron	ND	0.1	mg/L						
Lead	ND	0.0001	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Molybdenum	ND	0.0005	mg/L						
Nickel Potassium	ND ND	0.001 0.1	mg/L						
Selenium	ND	0.001	mg/L mg/l						
Silicon	ND	0.001	mg/L mg/L						
Silver	ND	0.001	mg/L						
Sodium	ND	0.0001	mg/L						
Strontium	ND	0.2	mg/L						
Thallium	ND	0.001	mg/L						
Tin	ND	0.001	mg/L						
Titanium	ND	0.005	mg/L						
Tungsten	ND	0.005	mg/L						
Uranium	ND	0.0001	mg/L						
Vanadium	ND	0.0005	mg/L						
Zinc	ND	0.005	mg/L						
		0.000	g, _						
Microbiological Parameters	ND		0511/400						
			1 L 1/100 ml						
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						

Order #: 1742435

Report Date: 24-Oct-2017 Order Date: 18-Oct-2017

Project Description: 61318.15

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	50.8	1	mg/L	50.7			0.2	10	
Fluoride	3.50	0.1	mg/L	3.54			1.1	10	
Nitrate as N	ND	0.1	mg/L	ND			0.0	20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	50.5	1	mg/L	50.5			0.0	10	
General Inorganics			U						
Alkalinity, total	287	5	mg/L	293			2.2	14	
Ammonia as N	0.078	0.01	mg/L	0.072			7.5	17.7	
Dissolved Organic Carbon	2.9	0.5	mg/L	3.1			4.8	37	
Colour	4	2	TČU	4			0.0	12	
Conductivity	709	5	uS/cm	722			1.9	11	
pH	7.9	0.1	pH Units	7.9			0.1	10	
Phenolics	ND	0.001	mg/L	ND				10	
Total Dissolved Solids	104	10	mg/L	100			3.9	10	
Sulphide	0.29	0.02	mg/L	0.30			2.7	10	
Tannin & Lignin	ND	0.1	mg/L	ND			0.0	11	
Total Kjeldahl Nitrogen	0.51	0.1	mg/L	0.54			4.3	10	
Turbidity	4.1	0.1	NŤU	4.1			0.5	10	
Metals									
Mercury	ND	0.0001	mg/L	ND			0.0	20	
Aluminum	ND	0.001	mg/L	ND			0.0	20	
Antimony	0.0007	0.0005	mg/L	ND			0.0	20	
Arsenic	ND	0.001	mg/L	ND			0.0	20	
Barium	0.083	0.001	mg/L	0.084			0.7	20	
Beryllium	ND	0.0005	mg/L	ND			0.0	20	
Boron	0.05	0.01	mg/L	0.05			1.2	20	
Cadmium	ND	0.0001	mg/L	ND			0.0	20	
Calcium	84.3	0.1	mg/L	84.6			0.3	20	
Chromium (VI)	ND	0.010	mg/L	ND				20	
Chromium	ND	0.001	mg/L	ND			0.0	20	
Cobalt	ND	0.0005	mg/L	ND			0.0	20	
Copper	0.0363	0.0005	mg/L	0.0362			0.1	20	
Iron	0.2	0.1	mg/L	0.2			1.0	20	
Lead	0.0001	0.0001	mg/L	ND			0.0	20	
Magnesium	11.3	0.2	mg/L	11.3			0.1	20	
Manganese	0.068	0.005	mg/L	0.068			0.2	20	
Molybdenum	0.0014	0.0005	mg/L	0.0013			9.0	20	
Nickel	ND	0.001	mg/L	ND			0.0	20	
Potassium	9.0	0.1	mg/L	9.1			0.5	20	
Selenium	0.002	0.001	mg/L	0.002			4.3	20	
Silicon	3.37	1.00	mg/L	3.23			4.5	20	
Silver	ND	0.0001	mg/L	ND			0.4	20	
Sodium	10.8	0.2	mg/L	10.7			0.4	20	
Thallium	ND	0.001	mg/L	ND			0.0	20	
Tin Titonium	ND	0.01	mg/L	ND			0.0	20	
Titanium	ND	0.005	mg/L	ND			0.0 0.0	50 20	
Tungsten Uranium	ND 0.0051	0.01 0.0001	mg/L mg/L	ND 0.0048			0.0 6.1	20 20	
Vanadium	0.0051 ND	0.0001		0.0048 ND			0.0	20 20	
Zinc	0.014	0.0005	mg/L mg/L	0.015			0.0 9.3	20 20	
Microbiological Parameters	0.014	0.000		0.010			0.0	20	
E. coli	ND	1	CFU/100 mL	ND				30	
Fecal Coliforms	ND	1	CFU/100 mL	ND				30	
Total Coliforms	ND	1	CFU/100 mL	ND				30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND				30	
	UN	10		ND				50	

Zinc

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	60.2	1	mg/L	50.7	94.9	78-112			
Fluoride	4.52	0.1	mg/L	3.54	97.3	73-113			
Nitrate as N	1.03	0.1	mg/L	ND	103	81-112			
Nitrite as N	0.975	0.05	mg/L	ND	97.5	76-107			
Sulphate	59.6	1	mg/L	50.5	91.8	75-111			
General Inorganics									
Ammonia as N	0.348	0.01	mg/L	0.072	110	81-124			
Dissolved Organic Carbon	13.5	0.5	mg/L	2.9	106	60-133			
Phenolics	0.024	0.001	mg/L	ND	97.3	69-132			
Total Dissolved Solids	106	10	mg/L		106	75-125			
Sulphide	0.73	0.02	mg/L	0.30	85.6	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	97.8	71-113			
Total Kjeldahl Nitrogen	2.57	0.1	mg/L	0.54	102	81-126			
Metals			-						
Mercury	0.0030	0.0001	mg/L	ND	99.0	70-130			
Aluminum	61.2		ug/L	0.042	122	80-120		Q	M-07
Antimony	56.0		ug/L	0.491	111	80-120			
Arsenic	65.8		ug/L	0.665	130	80-120		Q	M-07
Barium	134		ug/L	83.6	102	80-120			-
Beryllium	57.3		ug/L	0.0167	115	80-120			
Boron	105		ug/L	54.5	101	80-120			
Cadmium	58.9		ug/L	0.0024	118	80-120			
Calcium	942		ug/L		94.2	80-120			
Chromium (VI)	0.175	0.010	mg/L	ND	87.5	70-130			
Chromium	60.2		ug/L	0.294	120	80-120			
Cobalt	57.1		ug/L	0.0967	114	80-120			
Copper	90.4		ug/L	36.2	108	80-120			
Iron	1450		ug/L	223	122	80-120		Q	M-07
Lead	54.3		ug/L	0.0871	108	80-120			
Magnesium	964		ug/L	0.007	96.4	80-120			
Manganese	124		ug/L	68.0	111	80-120			
Molybdenum	57.6		ug/L	1.28	113	80-120			
Nickel	57.1		ug/L	0.664	113	80-120			
Potassium	9730		ug/L	9060	67.0	80-120		0	M-07
Selenium	47.9		ug/L		95.7	80-120			
Silicon	47.1		ug/L		94.1	80-120			
Silver	56.3		ug/L	ND	113	80-120			
Sodium	942		ug/L		94.2	80-120			
Thallium	57.2		ug/L	0.009	114	80-120			
Tin	58.4		ug/L	ND	117	80-120			
Titanium	48.5		ug/L		97.0	70-130			
Tungsten	57.3		ug/L	0.03	115	80-120			
Uranium	48.4		ug/L	0.00	96.8	80-120			
Vanadium	61.4		ug/L	0.324	122	80-120		0	M-07
Zino	72.7		ug/L	15.2	117	00-120		G	

Report Date: 24-Oct-2017

Order Date: 18-Oct-2017

Project Description: 61318.15

ug/L

73.7

117

80-120

15.3

Qualifier Notes:

Sample Qualifiers :

QC Qualifiers :

QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Houle Chevrier

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 6678

Report Date: 26-Oct-2017 Order Date: 19-Oct-2017

Order #: 1742503

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1742503-01	NTW1-3 hr
1742503-02	NTW1-6 hr

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 26-Oct-2017 Order Date: 19-Oct-2017

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	20-Oct-17	20-Oct-17
Ammonia, as N	EPA 351.2 - Auto Colour	24-Oct-17	24-Oct-17
Anions	EPA 300.1 - IC	23-Oct-17	23-Oct-17
Chromium, hexavalent - water	MOE E3056 - colourimetric	20-Oct-17	20-Oct-17
Colour	SM2120 - Spectrophotometric	20-Oct-17	20-Oct-17
Conductivity	EPA 9050A- probe @25 ℃	20-Oct-17	20-Oct-17
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	23-Oct-17	24-Oct-17
E. coli	MOE E3407	19-Oct-17	19-Oct-17
Fecal Coliform	SM 9222D	19-Oct-17	19-Oct-17
Heterotrophic Plate Count	SM 9215C	20-Oct-17	20-Oct-17
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	23-Oct-17	23-Oct-17
Metals, ICP-MS	EPA 200.8 - ICP-MS	24-Oct-17	24-Oct-17
рН	EPA 150.1 - pH probe @25 ℃	20-Oct-17	20-Oct-17
Phenolics	EPA 420.2 - Auto Colour, 4AAP	20-Oct-17	23-Oct-17
Subdivision Package	Hardness as CaCO3	24-Oct-17	24-Oct-17
Sulphide	SM 4500SE - Colourimetric	24-Oct-17	24-Oct-17
Tannin/Lignin	SM 5550B - Colourimetric	20-Oct-17	23-Oct-17
Total Coliform	MOE E3407	19-Oct-17	19-Oct-17
Total Dissolved Solids	SM 2540C - gravimetric, filtration	21-Oct-17	24-Oct-17
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	19-Oct-17	23-Oct-17
Turbidity	SM 2130B - Turbidity meter	19-Oct-17	19-Oct-17

Order #: 1742503

Report Date: 26-Oct-2017 Order Date: 19-Oct-2017

				•	-
	Client ID: Sample Date: Sample ID:	NTW1-3 hr 19-Oct-17 1742503-01	NTW1-6 hr 19-Oct-17 1742503-02	- - -	- - -
Ministration in the second second	MDL/Units	Drinking Water	Drinking Water	-	-
Microbiological Parameters			<u>г</u>		
E. coli	1 CFU/100 mL	ND	ND	-	-
Fecal Coliforms	1 CFU/100 mL	ND	ND	-	-
Total Coliforms	1 CFU/100 mL	ND	ND	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	10	-	-
General Inorganics					
Alkalinity, total	5 mg/L	294	292	-	-
Ammonia as N	0.01 mg/L	0.11	0.10	-	-
Dissolved Organic Carbon	0.5 mg/L	2.8	2.4	-	-
Colour	2 TCU	9	5	-	-
Conductivity	5 uS/cm	733	710	-	-
Hardness	mg/L	332	332	-	-
рН	0.1 pH Units	8.0	8.0	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-
Total Dissolved Solids	10 mg/L	480	502	-	-
Sulphide	0.02 mg/L	0.25	0.39	-	-
Tannin & Lignin	0.1 mg/L	<0.1	<0.1	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.2	0.2	-	-
Turbidity	0.1 NTU	14.2	3.9	-	-
Anions					
Chloride	1 mg/L	56	57	-	-
Fluoride	0.1 mg/L	0.5	0.5	-	-
Nitrate as N	0.1 mg/L	<0.1	<0.1	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-
Sulphate	1 mg/L	44	44	-	-
Metals	· ·		-	-	
Mercury	0.0001 mg/L	-	<0.0001	-	-
Aluminum	0.001 mg/L	-	0.030	-	-
Antimony	0.0005 mg/L	-	<0.0005	-	-
Arsenic	0.001 mg/L	-	<0.001	-	-
Barium	0.001 mg/L	-	0.332	-	-
Beryllium	0.0005 mg/L	-	<0.0005	-	-
Boron	0.01 mg/L	-	0.03	-	-
Cadmium	0.0001 mg/L	-	<0.0001	-	-
Calcium	0.1 mg/L	93.8	93.6	-	-
Chromium	0.001 mg/L	-	<0.001	-	-

Order #: 1742503

Report Date: 26-Oct-2017 Order Date: 19-Oct-2017

	ан			i	
	Client ID:	NTW1-3 hr	NTW1-6 hr	-	-
	Sample Date: Sample ID:	19-Oct-17 1742503-01	19-Oct-17 1742503-02	-	-
	MDL/Units	Drinking Water	Drinking Water	-	-
	0.010 mg/L	-	-	-	-
Chromium (VI)	-	-	<0.010	-	-
Cobalt	0.0005 mg/L	-	<0.0005	-	-
Copper	0.0005 mg/L	-	<0.0005	-	-
Iron	0.1 mg/L	1	0.3	-	-
Lead	0.0001 mg/L	-	<0.0001	-	-
Magnesium	0.2 mg/L	23.7	23.8	-	-
Manganese	0.005 mg/L	0.057	0.057	-	-
Molybdenum	0.0005 mg/L	-	<0.0005	-	-
Nickel	0.001 mg/L	-	<0.001	-	-
Potassium	0.1 mg/L	3.0	3.0	-	-
Selenium	0.001 mg/L	-	<0.001	-	-
Silicon	0.01 mg/L	-	10.0	-	-
Silver	0.0001 mg/L	-	<0.0001	-	-
Sodium	0.2 mg/L	19.2	19.9	-	-
Strontium	0.01 mg/L	-	0.73	-	-
Thallium	0.001 mg/L	-	<0.001	-	-
Tin	0.01 mg/L	-	<0.01	-	-
Titanium	0.005 mg/L	-	<0.005	-	-
Tungsten	0.01 mg/L	-	<0.01	-	-
Uranium	0.0001 mg/L	-	0.0001	-	-
Vanadium	0.0005 mg/L	-	<0.0005	-	-
Zinc	0.005 mg/L	-	<0.005	-	-

Order #: 1742503

Report Date: 26-Oct-2017 Order Date: 19-Oct-2017

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
-		I I	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Mercury	ND	0.0001	mg/L						
Aluminum	ND	0.0001	mg/L						
Antimony	ND	0.0005	mg/L						
Arsenic	ND	0.0003	mg/L						
Barium	ND	0.001	mg/L						
Beryllium	ND	0.0005	mg/L						
Boron	ND	0.0005	mg/L						
Cadmium	ND	0.0001	mg/L						
Calcium	ND	0.1	mg/L						
Chromium (VI)	ND	0.010	mg/L						
Chromium	ND	0.001	mg/L						
Cobalt	ND	0.0005	mg/L						
Copper	ND	0.0005	mg/L						
Iron	ND	0.1	mg/L						
Lead	ND	0.0001	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Molybdenum	ND	0.0005	mg/L						
Nickel	ND	0.001	mg/L						
Potassium	ND	0.1	mg/L						
Selenium	ND	0.001	mg/L						
Silicon	ND	0.01	mg/L						
Silver	ND	0.0001	mg/L						
Sodium	ND	0.2	mg/L						
Strontium	ND	0.01	mg/L						
Thallium	ND	0.001	mg/L						
Tin	ND	0.01	mg/L						
Titanium	ND	0.005	mg/L						
Tungsten	ND	0.01	mg/L						
Uranium	ND	0.0001	mg/L						
Vanadium	ND	0.0005	mg/L						
Zinc	ND	0.005	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						
		10	OF O/IIIL						

Order #: 1742503

Report Date: 26-Oct-2017 Order Date: 19-Oct-2017

Project Description: 61318.15

Method Quality Control: Duplicate

Anions Chloride Fluoride Nitrate as N Nitrite as N Sulphate General Inorganics Alkalinity, total Ammonia as N Dissolved Organic Carbon	50.8 3.50 ND 50.5 287 0.078 2.9	1 0.1 0.05 1 5 0.01	mg/L mg/L mg/L mg/L mg/L	50.7 3.54 ND ND 50.5		0.2 1.1 0.0	10 10 20	
Chloride Fluoride Nitrate as N Nitrite as N Sulphate General Inorganics Alkalinity, total Ammonia as N	3.50 ND ND 50.5 287 0.078 2.9	0.1 0.1 0.05 1 5	mg/L mg/L mg/L	3.54 ND ND		1.1	10	
Fluoride Nitrate as N Nitrite as N Sulphate General Inorganics Alkalinity, total Ammonia as N	3.50 ND ND 50.5 287 0.078 2.9	0.1 0.1 0.05 1 5	mg/L mg/L mg/L	3.54 ND ND		1.1	10	
Nitrate as N Nitrite as N Sulphate General Inorganics Alkalinity, total Ammonia as N	ND ND 50.5 287 0.078 2.9	0.1 0.05 1 5	mg/L mg/L	ND ND				
Nitrite as N Sulphate General Inorganics Alkalinity, total Ammonia as N	ND 50.5 287 0.078 2.9	0.05 1 5	mg/L	ND		0.0		
Sulphate General Inorganics Alkalinity, total Ammonia as N	50.5 287 0.078 2.9	1 5					20	
General Inorganics Alkalinity, total Ammonia as N	287 0.078 2.9	5	<u>9</u> , E	00.0		0.0	10	
Alkalinity, total Ammonia as N	0.078 2.9					0.0	10	
Ammonia as N	0.078 2.9		mg/L	293		2.2	14	
	2.9	0.01	mg/L	0.072		2.2 7.5	17.7	
Dissolved Organic Carbon		0.5		3.1		4.8	37	
Colour	4	2	mg/L TCU	4		0.0	12	
	4 709	2 5	uS/cm	722			12	
Conductivity						1.9		
pH Phonelies	7.9	0.1	pH Units	7.9		0.1	10	
Phenolics Total Dissolved Solids	ND	0.001	mg/L	ND		3.9	10 10	
Total Dissolved Solids	104	10	mg/L	100				
	0.29	0.02	mg/L	0.30		2.7	10	
Tannin & Lignin	ND	0.1	mg/L	ND		0.0	11	
Total Kjeldahl Nitrogen	0.51	0.1	mg/L	0.54		4.3	10	
	0.3	0.1	NTU	0.3		3.8	10	
Metals		0.0004					00	
Mercury	ND	0.0001	mg/L	ND		0.0	20	
Aluminum	0.023	0.001	mg/L	0.024		2.1	20	
Antimony	ND	0.0005	mg/L	ND		0.0	20	
Arsenic	ND	0.001	mg/L	ND		0.0	20	
Barium	0.015	0.001	mg/L	0.015		1.7	20	
Beryllium	ND	0.0005	mg/L	ND		0.0	20	
Boron	ND	0.01	mg/L	ND		0.0	20	
Cadmium	ND	0.0001	mg/L	ND		0.0	20	
Calcium	9.0	0.1	mg/L	9.4		4.1	20	
Chromium (VI)	ND	0.010	mg/L	ND			20	
Chromium	ND	0.001	mg/L	ND		0.0	20	
Cobalt	ND	0.0005	mg/L	ND		0.0	20	
Copper	0.0429	0.0005	mg/L	0.0425		0.8	20	
Iron	ND	0.1	mg/L	ND		0.0	20	
Lead	0.0100	0.0001	mg/L	0.0104		3.4	20	
Magnesium	2.2	0.2	mg/L	2.1		1.3	20	
Manganese	ND	0.005	mg/L	ND		0.0	20	
Molybdenum	0.0007	0.0005	mg/L	0.0011		48.7	20	QR-01
Nickel	ND	0.001	mg/L	ND		0.0	20	
Potassium	0.7	0.1	mg/L	0.7		0.5	20	
Selenium	ND	0.001	mg/L	ND		0.0	20	
Silicon	2.11	0.01	mg/L	2.28		7.8	20	
Silver	0.0001	0.0001	mg/L	ND		0.0	20	
Sodium	10.4	0.2	mg/L	10.3		1.6	20	
Thallium	ND	0.001	mg/L	ND		0.0	20	
Tin	ND	0.01	mg/L	ND		0.0	20	
Titanium	ND	0.005	mg/L	ND		0.0	50	
Tungsten	ND	0.01	mg/L	ND		0.0	20	
Uranium	ND	0.0001	mg/L	ND		0.0	20	
Vanadium	ND	0.0005	mg/L	ND		0.0	20	
Zinc	0.022	0.005	mg/L	0.023		1.0	20	
Microbiological Parameters								
E. coli	ND	1	CFU/100 mL	ND			30	
Fecal Coliforms	ND	1	CFU/100 mL	ND			30	
Total Coliforms	ND	1	CFU/100 mL	ND			30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND			30	

Zinc

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	60.2	1	mg/L	50.7	94.9	78-112			
Fluoride	4.52	0.1	mg/L	3.54	97.3	73-113			
Nitrate as N	1.03	0.1	mg/L	ND	103	81-112			
Nitrite as N	0.975	0.05	mg/L	ND	97.5	76-107			
Sulphate	59.6	1	mg/L	50.5	91.8	75-111			
General Inorganics									
Ammonia as N	0.348	0.01	mg/L	0.072	110	81-124			
Dissolved Organic Carbon	13.5	0.5	mg/L	2.9	106	60-133			
Phenolics	0.024	0.001	mg/L	ND	97.3	69-132			
Total Dissolved Solids	106	10	mg/L		106	75-125			
Sulphide	0.73	0.02	mg/L	0.30	85.6	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	97.8	71-113			
Total Kjeldahl Nitrogen	2.57	0.1	mg/L	0.54	102	81-126			
Metals									
Mercury	0.0030	0.0001	mg/L	ND	99.0	70-130			
Aluminum	80.4		ug/L	23.9	113	80-120			
Antimony	56.7		ug/L	0.119	113	80-120			
Arsenic	58.3		ug/L	0.269	116	80-120			
Barium	67.4		ug/L	15.0	105	80-120			
Beryllium	57.0		ug/L	0.0455	114	80-120			
Boron	61.7		ug/L	5.27	113	80-120			
Cadmium	53.8		ug/L	0.0281	108	80-120			
Calcium	1820		ug/L	663	116	80-120			
Chromium (VI)	0.175	0.010	mg/L	ND	87.5	70-130			
Chromium	55.0		ug/L	0.241	110	80-120			
Cobalt	53.3		ug/L	0.0433	106	80-120			
Copper	92.2		ug/L	42.5	99.4	80-120			
Iron	1100		ug/L	34	107	80-120			
Lead	62.5		ug/L	10.4	104	80-120			
Magnesium	3130		ug/L	2150	97.8	80-120			
Manganese	58.9		ug/L	3.12	112	80-120			
Molybdenum	50.0		ug/L	1.10	97.7	80-120			
Nickel	52.5		ug/L	0.247	105	80-120			
Potassium	1800		ug/L	747	105	80-120			
Selenium	58.0		ug/L	0.235	116	80-120			
Silicon	47.2		ug/L		94.4	80-120			
Silver	51.1		ug/L	0.0499	102	80-120			
Sodium	11100		ug/L	10300	88.2	80-120			
Thallium	53.7		ug/L	0.063	107	80-120			
Tin	52.6		ug/L	0.74	104	80-120			
Titanium	45.5		ug/L		91.0	70-130			
Tungsten	52.8		ug/L	0.49	105	80-120			
Uranium	55.4		ug/L	ND	111	80-120			
Vanadium	55.8		ug/L	0.105	111	80-120			
7						00 100			

Report Date: 26-Oct-2017

Order Date: 19-Oct-2017 Project Description: 61318.15

80-120

ug/L

22.7

110

77.7

Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match - Bottle reads as NTW1- 6 hr instead of NTW2- 6 hr. Applies to samples: NTW1-6 hr

Sample Qualifiers :

QC Qualifiers :

- QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 7612

Report Date: 10-Nov-2017 Order Date: 8-Nov-2017

Order #: 1745366

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1745366-01 TW1-R1

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1745366

Report Date: 10-Nov-2017 Order Date: 8-Nov-2017

Project Description: 61318.15

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
E. coli	MOE E3407	9-Nov-17 9-Nov-17
Fecal Coliform	SM 9222D	9-Nov-17 9-Nov-17
Heterotrophic Plate Count	SM 9215C	8-Nov-17 8-Nov-17
Total Coliform	MOE E3407	9-Nov-17 9-Nov-17

Report Date: 10-Nov-2017

Order Date: 8-Nov-2017

Project Description: 61318.15

Certificate of Analysis **Client: GEMTEC Consulting Engineers and Scientists Limited Client PO:**

	Client ID:	TW1-R1	-	-	-
	Sample Date:	08-Nov-17	-	-	-
	Sample ID:	1745366-01	-	-	-
	MDL/Units	Drinking Water	-	-	-
Microbiological Parameters					
E. coli	1 CFU/100 mL	ND	-	-	-
Fecal Coliforms	1 CFU/100 mL	ND	-	-	-
Total Coliforms	1 CFU/100 mL	ND	-	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	-	-	-

Report Date: 10-Nov-2017 Order Date: 8-Nov-2017

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						

Order #: 1745366

Report Date: 10-Nov-2017 Order Date: 8-Nov-2017

Project Description: 61318.15

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL	ND				30	
Fecal Coliforms	ND	1	CFU/100 mL	ND				30	
Total Coliforms	ND	1	CFU/100 mL	ND				30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND				30	

Report Date: 10-Nov-2017 Order Date: 8-Nov-2017 Project Description: 61318.15

Qualifier Notes:

Sample Qualifiers :

QC Qualifiers :

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Client: Morey Houle Chevrier Engineering 28 Clothier St E., Unit B. Box 910 Kemptville, ON KOG 1.10							
\mathbf{U}				Report Number: Date: Date Submitted:	50 55 50	2420554 2004-11-11 2004-10-26	
Autenicon: iver, kanay morey				Project:	03	031-040	
				P.O. Number			
			350540	Matrix:	≩ (Water	
			2004-10-23		9	GUIDELINE	
			TW #3				
PARAMETER	UNITS	MDL			TVDE		TILLITC
	ugiL	5	<5			+-	CINIC
CARBAMATES				 			
	Jugu	Ø	6>				
th the second	מפֿיר	2	<2				
	VBn	s	<5	 			
Carboran TPIATARE & DELATED LEODINDES	ug/L	ۍ ۲	<5				
7		_			_		
	ug/L	5.0	0.0V				
ated atrazine	ugr.			 	·		
ed metabolites	-1.55	0.00				-	
5		1 +		 			
Metofachlor		0.5	<0.5				
		Ş	55	 			
J.		0.25	<0.25	 			
		-	^ 1				
URGANOPHOSPHOROUS PESTICIDES				 			
jinyi		5	<2	 _			••••••
33		-	<u>v</u>				
		-	2				
		0.9	6 ⁻ 0 ⁻			-	
		5.5	<2.5			•••	
	-	ç	\$				
	•		2				••
	ngr	0.5	<0.5				
ŝ	ugali Mire	10	<10				
		0.4	<0.4				
	ng/L	-					
i rithuratin	ng/L	-	~1 	 -			

11/11/04 THU 12:32 FAX 613 727 5222 ACCUTEST LABS

<u>អ</u>ពីកំកំខ

11

APPROVAL:

Client: Morey Houle Chevrier Engineering					Bonort Mumbor		
23 Clothier St E., Unit B. Box 910						FCC0242	
Kemptvitte ON				Uate:		2004-11-11	~
KOG 130				Date	Date Submitted.	2004-10-26	10
Attention: Mr. Randy Morey				Broinct	ţ	011 010	
				P.0.4	P.O. Number:		
		LAB ID:	350540	MAGN	X: 1	. Water	
	Sam	Sample Date:	2004-10-23			· GUIDELINE	VE
	ŭ	Sample ID:	TVV #3				
PARAMETER	TINITS						
Organochlorine Pesticidae (OCPst & PCRs					3d/1	E LIMIT	UNITS
Aldrin	מסיור	0.006	<0.005				
Dieldrin	ug/L	0.006	<0.006				
Aldrin + Dieldrin	ngil	0.012	<0.012				
a-chlordane	1/6n	0.006	<0.006	2		486	
g-chkerdane	Jugu	0.006	<0.006			-	-2008
Oxychlordane	ng/L	0.006	<0.006			- 10000 10.	
Chlordane (Totaf)	JBn	0.018	<0.018				
60-00T	ngu	0.006	<0.006			-	
	חפֿער	0.006	<0.006			·	- and Ro -
pp-UUE	Jugu	0.006	<0.005				
	ngvL	0.006	<0.006				
(UUI) + Metabolites	ng/L	0.024	<0.024				
Heplachlor	-ligu	0.006	<0.006				
Heptachtor epoxide	T/Brn	0.006	<0.006	L			
Heptachlor + Heptachlor Epoxide	ug/L	0.012	<0.012				
Lindane	l ug/L	0.006	<0.006				
Methorychkor	ngr	0.024	<0.024				
Polychiorunated Biphenyls (PCBs)	T/6n	01	<01	0			•
CHLOROPHENOLS							
z.3.4.6-tetrachlorophenol	ng/L	0.5	50 v 20 v				
2,4,6-trichloroptienal	מפיור	0.5	<0.5				
2,4-dichtorophenof	VBN	0.5	<0.5				
Pentachlorophenol	J/6n	0.5	<0.5			- torol a	
PHENOXYACID HERBICIDES							
2.4.5-trichlorophenoxyacetic acid (2,4,5-T)	ugit		V				
2.4-dichlorephenoxyacetic acid (2.4-D)	ng/L	-	V			-	
Bramaxyniil	J'bn	0.5	<0.5				
Dicamba	, uoli	¥	5				
Dinoseb	1807		5				
					-	***	

REPORT OF ANALYSIS

3

APPROVALL

					RE	PORT 0	REPORT OF ANALYSIS	VSIS
Client. Morey Houle Chevrier Engineering 28 Clothier St E., Unit B, Box 910						lber.	2420554	
Kemptwille, ON KOG 1J0					Date: Oate Submitted:	tted:	2004-11-11 2004-11-11	
Attention: Mr. Randy Morey							02-01-0207	
					Project:		031-040	
					P.O. Number:	2		
		LAB ID:	350540		Matrix:		Water	
	Sam	Sample Date: Sample ID:	20034-10-23 TW #3				GUIDELINE	
DADANTES								
DIURON & GLYPHOSATE	UNITS	MDL						
Diuron	מפֿיר	10	<10 <10			TYPE	LIMIT	STINU
Gigduat & Paraquat	Y Sin	10	012					
Diquat	מסעך	7						
Paraquat RENZO (s) DVDEME	ngil		v v					
Benzakana Benzakana								
	1/6n	10,01	<0.01		-and a scalar de la			
		ы						
					_			
								
			4					
					CA		L	5
MDL = Method Detection Limit INC = Incomplete AO = Aestheftic (Invertional CV	- Onordan							
Comment	~ - Uperations	il Guideline	MAC = Maximum Altowable	Concentration IMAC = Interira	Maximum Allowable Cono	entration		

11/11/04 THE INCOMENTS OF

ал Ф

Ł APPROVALY

-	
2	
1	
5	
ш.	
2	
G	
\mathcal{O}	
-	
3	
RO	
BC	
0	
4	
_	
Luca	
10	ł
0)	
UTEST	I
-	
-	
-	
U	
S	
-	
4	

5
S
~
-
\geq
2
G
~
~
POF
2
2
-

Int: Work Houst Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting Amount of Each (Mork) Amount of Each (Mork) Amount of Each (Mork) Amount of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting of Chonce Expecting of Chonce Expecting Amount of Chonce Expecting Amount of Chonce Expecting of Chonce Expecting of Chonce Expecting Amount of Chonce Expecting								L L L L L L L L L L L L L L L L L L L	ORT OF	- ANA	
Ψ.	lient: Morey Houle Chevrier Engineering										
ų	28 Clothier St E., Unit B, Box 910							Report Numbe		2420554	
	Kemptville, ON							Date:	ä	2004-11-11	
ш д									5	2004-10-59	
	renuur: Mr. Kandy Morey							Project		031-040	
ų d								P.O. Number:			
W d								Matrix		Water	
ш а		Samp	le Date:	350534 2004-10-23	350535 2004-10-23	350536 2004-10-23	350537 2004-10-23	350538		GUIDELINE	
Ψ		San	npte (D:	TW #1 Deep	TW #1 Shallow	TW#2 Deep	TW#2 Stiallow	TW #3 Deep			
		UNITS	MOL						TYPE	L LEDIT	114170
			Q Q	ς Σ	4	Ç V	0 [×]	0 0 0			
IL = Method Detection I imit INC = Inversion of a contract of the contract of	= Method Detection Limit INC = Inventicials AO - Acceleration Oct-							- and the state			

09/12 2004 11:18 FAX 613 727 5222 ACCUTEST LABS + Morey Houle Rand Ø001/002

APPROVAL Furn Internet

10
5
S
RIE
R
10
F
OR
ŝ
<u> </u>
-
EST
S
LU I
T
-
CC
0
3
a
-

S
-
S
2
-
-
7
-
A
\mathbf{O}
0
2
O
n
t t T
LU
N

.

Client: Morey Houle Chevrier Engineering										
28 Clothier St E., Unit B, Box 910							Report Number		2420554	
Kemptville, ON							Date:		2004-11-11	
K0G 1J0							Date Submitted		2004-10-26	
Attention: Mr. Randy Morey										
							Project		031-040	
							P.O. Number			
			350539	3505.63	160643	of the so	Matrix:		Water	
			2004-10-23	3004-10-20	24CDC	350543			GUIDELINE	
		.	TW #3	TW #4 Deep	ZUM-10-23	ZUU4-10-23				
			Shallow		Shallow	Shallow				
PARAMETER	UNITS	ND								
N-NO3 (Nitrate)	Лдт	0.10	<0.10	576	175	01.02		TYPE	LIMIT	UNITS
MDL = Method Detection Limit INC = incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowaske Concentration IMAC = Interent Maximum Allowaske Concentration	3 = Operationa	al Guideline	MAC = Maximun	n Allowable Conce	entration IMAC =	Jaletan Makinun	n Allowatke Concentr	ation		

APPROVAL

CLIENT NAME: HOULE CHEVRIER 32 STEACIE DRIVE OTTAWA, ON K2K2A9 (613) 836-1422

ATTENTION TO: James Mcewen

PROJECT: 61318.13

AGAT WORK ORDER: 16Z104077

WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Jun 15, 2016

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

 Member of:
 Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)
 AGAT Lab Accreditati

 Western Enviro-Agricultural Laboratory Association (WEALA)
 scope of a Association are location
 Association are location

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 16Z104077 PROJECT: 61318.13 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: HOULE CHEVRIER

SAMPLING SITE:

ATTENTION TO: James Mcewen

SAMPLED BY:

				Inorg	anic Chem	istry (Water	·)				
DATE RECEIVED: 2016-06-10								Γ	DATE REPORTI	ED: 2016-06-15	
		DATES	PLE TYPE: SAMPLED:	MW1S Water 6/9/2016	MW1D Water 6/9/2016	MW2S Water 6/9/2016	MW2D Water 6/9/2016	MW3S Water 6/9/2016	MW3D Water 6/9/2016	MW4S Water 6/9/2016	MW4D Water 6/9/2016
Parameter	Unit	G / S	RDL	7622716	7622747	7622759	7622761	7622763	7622765	7622766	7622767
Nitrate as N	mg/L		0.05	2.56	7.86	<0.05	<0.05	<0.05	<0.05	5.75	3.02
Nitrite as N	mg/L		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ammonia as N	mg/L		0.02	<0.02	<0.02	0.07	0.04	<0.02	0.07	<0.02	<0.02
Fotal Kjeldahl Nitrogen	mg/L		0.10	0.14	0.18	0.16	0.18	0.46	0.16	0.23	<0.10
		-	CRIPTION: PLE TYPE: SAMPLED:	MW5S Water 6/9/2016	MW6D Water 6/9/2016	MW6S Water 6/9/2016					
Parameter	Unit	G / S	RDL	7622769	7622770	7622771					
Nitrate as N	mg/L		0.05	<0.05	2.17	1.32					
Nitrite as N	mg/L		0.05	<0.05	<0.05	<0.05					
Ammonia as N	mg/L		0.02	<0.02	<0.02	<0.02					
Fotal Kjeldahl Nitrogen	mg/L		0.10	<0.10	0.18	0.18					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: HOULE CHEVRIER

PROJECT: 61318.13

SAMPLING SITE:

AGAT WORK ORDER: 16Z104077 ATTENTION TO: James Mcewen

SAMPLED BY:

Water Analysis

						-									
RPT Date: Jun 15, 2016			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	eptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Inorganic Chemistry (Water)															
Nitrate as N	7624586		<0.5	<0.5	NA	< 0.05	95%	90%	110%	102%	90%	110%	109%	80%	120%
Nitrite as N	7624586		<0.5	<0.5	NA	< 0.05	NA	90%	110%	98%	90%	110%	96%	80%	120%
Ammonia as N	7622761 7	622761	0.04	0.03	NA	< 0.02	97%	90%	110%	97%	90%	110%	98%	80%	120%
Total Kjeldahl Nitrogen	7618516		2.86	3.04	6.1%	< 0.10	100%	80%	120%	104%	80%	120%	99%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

CLIENT NAME: HOULE CHEVRIER

PROJECT: 61318.13

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 16Z104077

ATTENTION TO: James Mcewen

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	L	·	L.
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	QuikChem 10-107-06-1-J & SM 4500 NH3-F	LACHAT FIA
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA

CLIENT NAME: HOULE CHEVRIER 32 STEACIE DRIVE OTTAWA, ON K2K2A9 (613) 836-1422

ATTENTION TO: Shaun Pelkey

PROJECT: 63978.96

AGAT WORK ORDER: 16Z111851

WATER ANALYSIS REVIEWED BY: Sofka Pehlyova, Senior Analyst

DATE REPORTED: Jul 07, 2016

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Accred Western Enviro-Agricultural Laboratory Association (WEALA) scope e Environmental Services Association of Alberta (ESAA) Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 16Z111851 **PROJECT: 63978.96**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: HOULE CHEVRIER

SAMPLING SITE:

ATTENTION TO: Shaun Pelkey

SAMPLED BY: Andrius Paznekas

Inorganic Chemistry (Water)									
DATE RECEIVED: 2016-07-04 DATE REPORTED: 2016-07-07									
	:	SAMPLE DES	CRIPTION:	SW-1	SW-2				
		SAM	PLE TYPE:	Water	Water				
		DATES	SAMPLED:	6/30/2016	6/30/2016				
Parameter	Unit	G / S	RDL	7679403	7679416				
Nitrate as N	mg/L		0.05	<0.05	0.34				
Nitrite as N	mg/L		0.05	<0.05	<0.05				
(Nitrate + Nitrite) as N	mg/L		0.07	<0.07	0.34				
Ammonia as N	mg/L		0.02	0.02	<0.02				
Total Kjeldahl Nitrogen	mg/L		0.10	1.23	0.38				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Sofrea Pehlyora

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

SAMPLING SITE:

AGAT WORK ORDER: 16Z111851 ATTENTION TO: Shaun Pelkey

SAMPLED BY: Andrius Paznekas

Water Analysis

					-									
RPT Date: Jul 07, 2016			DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch Sam	ple Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv	Acceptable Limits		Recoverv	Acceptable Limits	
	ld					Value	Lower			Lower	Upper		Lower	Upper
Inorganic Chemistry (Water)														
Nitrate as N	7674259	<0.25	<0.25	NA	< 0.05	101%	90%	110%	108%	90%	110%	103%	80%	120%
Nitrite as N	7674259	<0.25	<0.25	NA	< 0.05	NA	90%	110%	96%	90%	110%	97%	80%	120%
Ammonia as N	7681819	18.1	19.0	4.9%	< 0.02	103%	90%	110%	105%	90%	110%	99%	80%	120%
Total Kjeldahl Nitrogen	7679403 767940	03 1.23	1.15	6.7%	< 0.10	101%	80%	120%	94%	80%	120%	95%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Sofiéa Pehlyora

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: HOULE CHEVRIER

PROJECT: 63978.96

AGAT WORK ORDER: 16Z111851 **ATTENTION TO: Shaun Pelkey**

SAMPLED BY: Andrius Paznekas

SAMPLING SITE:		SAMPLED BY:An	drius Paznekas		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Water Analysis					
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
(Nitrate + Nitrite) as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH		
Ammonia as N	INOR-93-6059	QuikChem 10-107-06-1-J & SM 4500 NH3-F	LACHAT FIA		
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA		

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Houle Chevrier

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 61318.15 Custody: 37861

Report Date: 26-Jul-2017 Order Date: 21-Jul-2017

Order #: 1729552

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1729552-01	MW1-S
1729552-02	MW1-D
1729552-03	MW2-S
1729552-04	MW2-D
1729552-05	MW3-S
1729552-06	MW3-D
1729552-07	MW5-S
1729552-08	MW6-S
1729552-09	MW6-D

MW 3S and 3D MISLABELLED! Switch

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1729552

Report Date: 26-Jul-2017 Order Date: 21-Jul-2017 Project Description: 61318.15

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Anions	EPA 300.1 - IC	24-Jul-17 24-Jul-17
Metals, ICP-MS	EPA 200.8 - ICP-MS	25-Jul-17 25-Jul-17

Order #: 1729552

Report Date: 26-Jul-2017 Order Date: 21-Jul-2017

Project Description: 61318.15

	Client ID:	MW1-S	MW1-D	MW2-S	MW2-D
	Sample Date:	21-Jul-17	21-Jul-17	21-Jul-17	21-Jul-17
	Sample ID:	1729552-01	1729552-02	1729552-03	1729552-04
	MDL/Units	Water	Water	Water	Water
Anions					
Chloride	1 mg/L	<1	36	-	-
Fluoride	0.1 mg/L	<0.1	<0.1	-	-
Nitrate as N	0.1 mg/L	2.1	7.3	<0.1	<0.1
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05
Sulphate	1 mg/L	4	38	-	-
Metals					
Calcium	100 ug/L	40600	93600	-	-
Magnesium	200 ug/L	6980	17800	-	-
Sodium	200 ug/L	11400	28800	-	-
	Client ID: Sample Date:	MW3-S 21-Jul-17	MW3-D 21-Jul-17	MW5-S 21-Jul-17	MW6-S 21-Jul-17
	Sample ID: MDL/Units	1729552-05 Water	1729552-06 Water	1729552-07 Water	1729552-08 Water
Anions	WDE/Onits				
Nitrate as N	0.1 mg/L	<0.1	<0.1	<0.1	<0.1
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05
	Client ID: Sample Date: Sample ID:	MW6-D 21-Jul-17 1729552-09			
	MDL/Units	Water	-	-	-
Anions			-	-	-
Nitrate as N	0.1 mg/L	0.5	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-

Order #: 1729552

Report Date: 26-Jul-2017 Order Date: 21-Jul-2017

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
Metals									
Calcium	ND	100	ug/L						
Magnesium	ND	200	ug/L						
Sodium	ND	200	ug/L						

Order #: 1729552

Report Date: 26-Jul-2017

Order Date: 21-Jul-2017

Project Description: 61318.15

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	328	5	mg/L	323			1.7	10	
Fluoride	ND	0.1	mg/L	ND				10	
Nitrate as N	ND	0.1	mg/L	ND				20	
Nitrite as N	ND	0.05	mg/L	ND				20	
Sulphate	62.3	1	mg/L	64.1			2.9	10	
Metals									
Calcium	ND	100	ug/L	ND				20	
Magnesium	ND	200	ug/L	ND				20	
Sodium	ND	200	ug/L	203			0.0	20	

Order #: 1729552

Report Date: 26-Jul-2017

Order Date: 21-Jul-2017

Project Description: 61318.15

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	8.78	1	mg/L		87.8	78-112			
Fluoride	0.96	0.1	mg/L	ND	96.1	73-113			
Nitrate as N	0.92	0.1	mg/L	ND	91.8	81-112			
Nitrite as N	1.03	0.05	mg/L		103	76-117			
Sulphate	73.6	1	mg/L	64.1	94.4	75-111			
Metals									
Calcium	925		ug/L	ND	92.5	80-120			
Magnesium	1050		ug/L	ND	105	80-120			
Sodium	1290		ug/L	203	109	80-120			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 36351

Report Date: 3-Jul-2019 Order Date: 28-Jun-2019

Order #: 1926694

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID 1926694-01 MW4S 1926694-02 MW4D

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 03-Jul-2019 Order Date: 28-Jun-2019

Project Description: 61318.15

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	29-Jun-19	29-Jun-19

Client: GEMTEC Consulting Engineers and Scientists Limited

Certificate of Analysis

Order #: 1926694

Report Date: 03-Jul-2019 Order Date: 28-Jun-2019

Project Description: 61318.15

Client PO:				Proj	ect Description: 61318.
		1.0.1.10		1	- 1
	Client ID:	MW4S	MW4D	-	-
	Sample Date:	28-Jun-19 10:30	28-Jun-19 11:10	-	-
	Sample ID:	1926694-01	1926694-02	-	-
	MDL/Units	Water	Water	-	-
Anions					

Nitrate as N	0.1 mg/L	4.3	7.8	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-

Report Date: 03-Jul-2019 Order Date: 28-Jun-2019

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	ND ND	0.1 0.05	mg/L mg/L						

Order #: 1926694

Report Date: 03-Jul-2019 Order Date: 28-Jun-2019

Project Description: 61318.15

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	7.89 ND	0.1 0.05	mg/L mg/L	7.80 ND			1.2 0.0	10 10	

Report Date: 03-Jul-2019 Order Date: 28-Jun-2019

Project Description: 61318.15

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Nitrate as N Nitrite as N	8.71 0.981	0.1 0.05	mg/L mg/L	7.80 ND	91.1 98.1	79-120 84-117			

Report Date: 03-Jul-2019 Order Date: 28-Jun-2019 Project Description: 61318.15

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

APPENDIX M

Langelier Saturation Index (LSI) Calculations

Langelier Saturation Index Calculation

Project 61318.15 Test Well: TW1 - 6hr Date: July 5, 2017

Inputs

pH =	7.8	
Total Dissolved Solids =	660	
Calcium (as $CaCO_3$) =	395	Note: Ca (as CaCO3) = 2.5 x Ca
Alkalinity (as $CaCO_3$) =	347	
Temperature (°C) =	8.9	(field measured)

Where Langelier Saturation Index (LSI) is defined as: $LSI = pH - pH_s$

Where:
$$pH_s = (9.3 + A + B) - (C + D)$$

And:

$$A = \frac{(\log_{10}[TDS] - 1)}{10}$$

$$B = -13.12 \cdot \log_{10}[Temp + 273] + 34.55$$

$$C = \log_{10}[Calcium] - 0.4$$

$$D = \log_{10}[Alkalinity]$$

<u>Output:</u>

LSI =	0.65
pH _s =	7.15
D =	2.54
C =	2.20
B =	2.40
A =	0.18

LSI Value	Indication
-2.0 to -0.5	Serious corrosion
-0.5 to 0.0	Slight corrosion but non-scale forming
LSI = 0	Balanced but corrosion possible
0.0 to 0.5	Slightly scale forming and corrosive
0.5 to 2	Scale forming but non corrosive

Langelier Saturation Index Calculation

Project 61318.15 Test Well: TW4 - 8hr Date: May 10, 2016

Inputs

pH =	8.22	
Total Dissolved Solids =	512	
Calcium (as $CaCO_3$) =	336	Note: Ca (as CaCO3) = 2.5 x Ca
Alkalinity (as $CaCO_3$) =	247	
Temperature (^o C) =	12.7	(field measured)

Where Langelier Saturation Index (LSI) is defined as: $LSI = pH - pH_s$

Where:
$$pH_s = (9.3 + A + B) - (C + D)$$

And:

$$A = \frac{(\log_{10}[TDS] - 1)}{10}$$

$$B = -13.12 \cdot \log_{10}[Temp + 273] + 34.55$$

$$C = \log_{10}[Calcium] - 0.4$$

$$D = \log_{10}[Alkalinity]$$

<u>Output:</u>

LSI =	0.94
pH _s =	7.28
D =	2.39
C =	2.13
B =	2.33
A =	0.17

LSI Value	Indication
-2.0 to -0.5	Serious corrosion
-0.5 to 0.0	Slight corrosion but non-scale forming
LSI = 0	Balanced but corrosion possible
0.0 to 0.5	Slightly scale forming and corrosive
0.5 to 2	Scale forming but non corrosive

Langelier Saturation Index Calculation

Test Well: TW6 - 6hr

Inputs

pH =	8	
Total Dissolved Solids =	502	
Calcium (as $CaCO_3$) =	332	Note: Ca (as CaCO3) = 2.5 x Ca
Alkalinity (as CaCO ₃) =	294	
Temperature (°C) =	11.2	(field measured)

Where Langelier Saturation Index (LSI) is defined as: $LSI = pH - pH_s$

Where:
$$pH_s = (9.3 + A + B) - (C + D)$$

And:

$$A = \frac{(\log_{10}[TDS] - 1)}{10}$$

$$B = -13.12 \cdot \log_{10}[Temp + 273] + 34.55$$

$$C = \log_{10}[Calcium] - 0.4$$

$$D = \log_{10}[Alkalinity]$$

<u>Output:</u>

LSI =	0.76
pH _s =	7.24
D =	2.47
C =	2.12
B =	2.36
A =	0.17

LSI Value	Indication
-2.0 to -0.5	Serious corrosion
-0.5 to 0.0	Slight corrosion but non-scale forming
LSI = 0	Balanced but corrosion possible
0.0 to 0.5	Slightly scale forming and corrosive
0.5 to 2	Scale forming but non corrosive

APPENDIX N

Laboratory Certificates of Analysis - Private Wells

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Andrius Paznekas

Client PO: Project: 61318.15 Custody: 10164

Report Date: 5-Jun-2019 Order Date: 30-May-2019

Order #: 1922529

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1922529-01	PW1
1922529-02	PW2

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 05-Jun-2019 Order Date: 30-May-2019

Page 2 of 7

Project Description: 61318.15

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	31-May-19	31-May-19
Ammonia, as N	EPA 351.2 - Auto Colour	3-Jun-19	3-Jun-19
Anions	EPA 300.1 - IC	1-Jun-19	1-Jun-19
Colour	SM2120 - Spectrophotometric	31-May-19	31-May-19
Conductivity	EPA 9050A- probe @25 °C	31-May-19	31-May-19
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	5-Jun-19	5-Jun-19
E. coli	MOE E3407	31-May-19	31-May-19
Fecal Coliform	SM 9222D	31-May-19	1-Jun-19
Heterotrophic Plate Count	SM 9215C	31-May-19	31-May-19
Metals, ICP-MS	EPA 200.8 - ICP-MS	31-May-19	31-May-19
pH	EPA 150.1 - pH probe @25 °C	31-May-19	31-May-19
Phenolics	EPA 420.2 - Auto Colour, 4AAP	4-Jun-19	4-Jun-19
Subdivision Package	Hardness as CaCO3	31-May-19	31-May-19
Sulphide	SM 4500SE - Colourimetric	5-Jun-19	5-Jun-19
Tannin/Lignin	SM 5550B - Colourimetric	31-May-19	31-May-19
Total Coliform	MOE E3407	31-May-19	31-May-19
Total Dissolved Solids	SM 2540C - gravimetric, filtration	3-Jun-19	4-Jun-19
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	4-Jun-19	5-Jun-19
Turbidity	SM 2130B - Turbidity meter	31-May-19	31-May-19

Client: GEMTEC Consulting Engineers and Scientists Limited

Certificate of Analysis

Client PO:

Order #: 1922529

Report Date: 05-Jun-2019

Order Date: 30-May-2019

Project Description: 61318.15

PW2 Client ID: PW1 -30-May-19 12:00 30-May-19 12:00 Sample Date: 1922529-01 1922529-02 Sample ID: **Drinking Water Drinking Water MDL/Units** _ _ **Microbiological Parameters** 1 CFU/100 mL E. coli ND ND _ _ 1 CFU/100 mL **Fecal Coliforms** ND ND _ _ 1 CFU/100 mL **Total Coliforms** ND ND _ _ 10 CFU/mL Heterotrophic Plate Count <10 [2] <10 [2] --General Inorganics 5 mg/L Alkalinity, total 235 253 _ _ 0.01 mg/L Ammonia as N 0.03 0.03 -_ 0.5 mg/L **Dissolved Organic Carbon** 1.5 0.6 --2 TCU Colour 3 <2 _ -5 uS/cm Conductivity 481 712 _ _ mg/L Hardness 258 285 -_ 0.1 pH Units 7.7 pН 7.7 _ _ 0.001 mg/L Phenolics < 0.001 < 0.001 --10 mg/L Total Dissolved Solids 426 288 --0.02 mg/L Sulphide < 0.02 < 0.02 --0.1 mg/L Tannin & Lignin <0.1 <0.1 --0.1 mg/L Total Kjeldahl Nitrogen <0.1 <0.1 --0.1 NTU Turbidity 4.0 0.2 --Anions 1 mg/L Chloride 8 74 -_ 0.1 mg/L Fluoride <0.1 <0.1 -_ 0.1 mg/L Nitrate as N <0.1 < 0.1 --0.05 mg/L Nitrite as N < 0.05 < 0.05 --1 mg/L Sulphate 26 19 --Metals 0.1 mg/L Calcium 72.3 99.6 --0.1 mg/L Iron 0.6 < 0.1 -_ 0.2 mg/L Magnesium 18.9 8.9 _ _ 0.005 mg/L Manganese 0.022 0.009 --0.1 mg/L Potassium 1.5 1.0 _ _ 0.2 mg/L Sodium 8.1 44.6 --

Order #: 1922529

Report Date: 05-Jun-2019 Order Date: 30-May-2019

Project Description: 61318.15

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						

Order #: 1922529

Report Date: 05-Jun-2019

Order Date: 30-May-2019

Project Description: 61318.15

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
				- Count					
Anions									
Chloride	7.14	1	mg/L	7.52			5.1	10	
Fluoride	ND	0.1	mg/L	ND				10	
Nitrate as N	ND	0.1	mg/L	ND				10	
Nitrite as N	ND	0.05	mg/L	ND				10	
Sulphate	26.2	1	mg/L	26.3			0.4	10	
General Inorganics									
Alkalinity, total	235	5	mg/L	235			0.1	14	
Ammonia as N	0.012	0.01	mg/L	0.025			71.6	17.7	QR-01
Dissolved Organic Carbon	ND	0.5	mg/L	ND			0.0	37	
Colour	3	2	TČU	3			0.0	12	
Conductivity	473	5	uS/cm	481			1.7	5	
pH	7.7	0.1	pH Units	7.7			0.0	10	
Phenolics	ND	0.001	mg/L	ND				10	
Total Dissolved Solids	400	10	mg/L	426			6.3	10	
Sulphide	ND	0.02	mg/L	ND				10	
Tannin & Lignin	ND	0.1	mg/L	ND			0.0	11	
Total Kjeldahl Nitrogen	ND	0.1	mg/L	ND				16	
Turbidity	1.4	0.1	NŤU	1.3			7.4	10	
Metals									
Calcium	22.6	0.1	mg/L	22.5			0.6	20	
Iron	0.6	0.1	mg/L	0.6			1.1	20	
Magnesium	22.5	0.2	mg/L	22.7			0.7	20	
Manganese	0.022	0.005	mg/L	0.021			2.5	20	
Potassium	3.8	0.1	mg/L	3.9			2.3	20	
Sodium	207	0.2	mg/L	209			1.0	20	
Microbiological Parameters			-						
E. coli	ND	1	CFU/100 mL	ND				30	
Fecal Coliforms	ND	1	CFU/100 mL	ND				30	
Total Coliforms	ND	1	CFU/100 mL	2			0.0	30	

Order #: 1922529

Report Date: 05-Jun-2019 Order Date: 30-May-2019

Project Description: 61318.15

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	17.6	1	mg/L	7.52	101	77-123			
Fluoride	0.93	0.1	mg/L	ND	93.3	79-121			
Nitrate as N	1.06	0.1	mg/L		106	86-114			
Nitrite as N	0.947	0.05	mg/L	ND	94.7	84-117			
Sulphate	36.9	1	mg/L	26.3	106	74-126			
General Inorganics									
Ammonia as N	0.307	0.01	mg/L	0.025	113	81-124			
Dissolved Organic Carbon	9.4	0.5	mg/L	ND	94.0	60-133			
Phenolics	0.024	0.001	mg/L	ND	96.4	69-132			
Total Dissolved Solids	104	10	mg/L		104	75-125			
Sulphide	0.50	0.02	mg/L	ND	101	79-115			
Tannin & Lignin	0.8	0.1	mg/L	ND	84.1	71-113			
Total Kjeldahl Nitrogen	2.01	0.1	mg/L	ND	100	81-126			
Metals									
Calcium	34100		ug/L	22500	116	80-120			
Iron	3530		ug/L	635	116	80-120			
Magnesium	9700		ug/L		97.0	80-120			
Manganese	77.0		ug/L	21.3	112	80-120			
Potassium	15600		ug/L	3860	118	80-120			
Sodium	9800		ug/L		98.0	80-120			

Sample Qualifiers :

2: Subcontracted analysis - Caduceon

QC Qualifiers :

QR-01: Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. Order #: 1922529

Project Description: 61318.15

LTD	
ATORIES	
LABORATO	
JTEST	
ACCU	THE R. P. LEWIS CO., LANSING MICH.

REPORT OF ANALYSIS

.

Attention: Mr. Randy Morey						Project:			
						P.O. Nurmber: Matrix:		Water	
		LAB IO:	378025	378026				GUIDELINE	
	Sam	Sample Date:	2005-04-07	2005-04-07					
	Sa	Sample ID:	Turcotte	KOHLI			М	MOE REG. 170/03	50
PARAMETER	UNITS	MDL			-		TYPE	LIMIT	UNITS
Alkalinity as CaCO3	mg/L	5	282	235			00	500	ma/l
Chloride	mg/L		70	7			AO	250	malt
Colour	TCU	2	ß	<2			AO	ŝ	TCU
Conductivity	uS/cm	ъ	839	500	•			6	FCU
UISSORVED Urganic Carton	mg/L	0.5	2.9	1.3			AO	ŵ	mg/L
Fluoride	mg/L	0.10	0.27	0.27			MAC	1.5	mg/L
nyurogen ourprise N-NH2 (Ammonia)	_ Ш	0.01	<0.01	<0.01			AO	0.05	mg/L
	, Mg/L	0.02	0.05	0.04					mg/L
N-NO3 (Nitrate)	mg/L	0.10	60.10	<0.10			MAC	1.0	J/bui
DH	u Hirl	V. IU	-0- IN	40.10			MAC	10.0	mg/L
Phenols	mall	0.001	40.001 <001	1.82			AO	6.5-8.5	
Sulphate	ma/L	-	65	30			0	005	1
Tannin & Lignin	mg/L	0.1	0.1	<0.1			2	Pr-	
TDS (COND - CALC)	mg/L	5	545	325			AD	200	
Total Kjeldahl Nitrogen	mg/L	0.05	0.30	<0.05			2	2	l/ban
Turbidity	NTU	0.1	17.8	4.1			AO	1.0	NTU
Hardness as CaCO3	mg/L	-	398	264			90	100	mg/L
		0.01	0.98	1.00					mg/L
calcium	mg/L	-	115	76					mg/L
Magnesium	ոցո	-	27	18		•			mg/L
Potassium	mg/L	-	2	-					ma/
Sodium	mg/L	2	17	6			AO	20	Nuclear Nu
iron	Ling/L	0.01	1.00	0.40			AO	60	, from
Manganese	mg/L	0 .01	0.09	0.02			AO	0.05	ma/L
									5

1~

APPROVAL Evan McRadbie / K Inorganic Lab Supervisor

ر ں

I MUL

•

:

ĩ

!

NOONLE OF LIVE THE CONTROL OF

0 146 Colonnal Dird Climin ON VAL TUI

Ω
S
Ш
R
P
Z
E
В
4
ⁿ
ш́
F
0
S
4

REPORT OF ANALYSIS

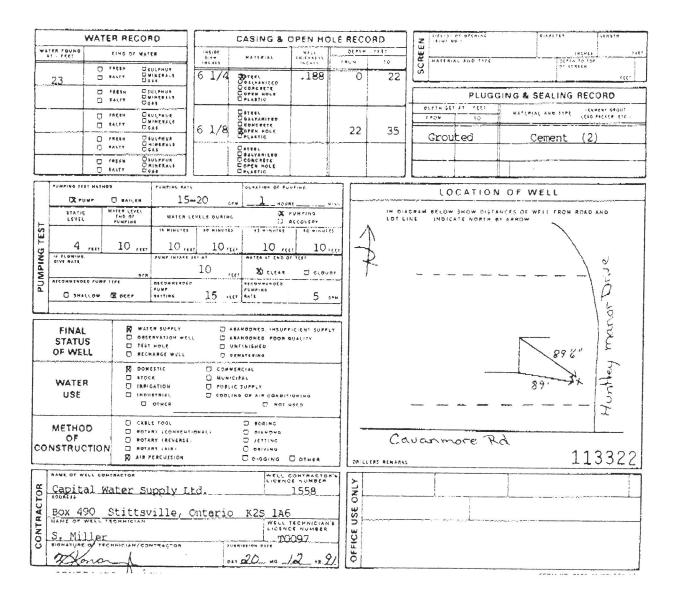
tancj Morey	Client: Morey Houle Chevrier Engineering 28 Clother St E., Unit 8. Box 910 Kemptulte, ON KCG 1.JO						Report Number: Date: Date Submitted:	Sa Da	2005-04-11 2005-04-08	y D
PARAMETER Multi- annia Marcial annia Marcial annin Marcial annia Marcial annin	Attention: Mr. Randy Morey			×			Project:			
Image base 207364 277364 Concenter Cuncenter PAOMETER UNITS 2005-64-07 2005-64-07 A A PAOMETER UNITS A01 C C A A PAOMETER UNITS MO1 C C A A A Image base Sample base Sample base C C C A A A Sample base C C C C C A							P.O. Number: Matrix:		Water	
Rample Late: Zample Late: Zample Late: Zample Late: Zample Late: Activities Activities Activities Activities Zample Late: Zample Late: <thzample late:<="" th=""> <thzample late:<="" th=""></thzample></thzample>			AB ID:	377993	377994				GUIDELINE	
Ammerican Sample U: (100ml Luce the mile KOHL Automatical PAAMETER UNIY MD. 1		Samp	e Dale:	2005-04-07	2005-04-07					
PARAMETER UNITS MOL Image: Constraint of the state of the sta		San	nple iD:	Turcatte	KOHL1			¥?	0E REG. 170	03
and ar/Gmi. 0 0 ar/Gmi. 0 0 0 ar/10m. 0 0 ar/10m.	DARAMETER	INITS	NDI					TYPE	LIMIT	UNITS
		cl/100ml		0	0			MAC	0	ct/100mL
etint. etint. 0 0 0 etint. 0 0	Escherichia Coli	cV100mL		0	0		August	MAC	0	ct/100mL
ortroom. Control of the second secon	Heterolrophic Plate Count	cU1mL		0	D			MAC	200	ct/1mL
	Faecal Streptococcus	ct/100mL ct/100mL		0 2	Q Q			NAC.	•	cV100mL cV100mL

- -. .. .- -. .

> APPROVAL: Tim McCooeye CC Manager CC Manager

1 26 3

NOP OF A MA ANTANA ANA ANA ANA


DI TUT NO ANAMA LAND ADAMANIA DI TUT

Ministry of the Environment

GENERAL COLOUR	RÚ21	OTHER NATERIALS	GENERAL DESCRIPTION	DEPTH -	1661
	CONNON HATERIAL		GUNERAL BUSCHITTEN	FROM	Ç.
Brown	Loon			Q	2
Gray	Clay		Sticky	8	20
Gray	Limestone		Broken	20	35
			· · · · · · · · · · · · · · · · · · ·		
		ar ar 1 yr 1 yw 9 y 1 ar 1 y 1 ar 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 			
			· · · · · · · · · · · · · · · · · · ·		

0506E (12/2007)

V Metric

Well Tag No. (Place Sticker and/or Print Relow) AD82930 A 082931

County/District/Municipality City/Town/Village Postal Code Province Ottawa Carleton Ontario Carp UTM Coordinates Zone Easting NAD 8 3 1 8 42 Northing Municipal Plan and Sublot Number Other 421847 5016418 Overburden and Bedrock Materials/Abandonment Sealing Record (see instructions on the back of this form, Depth (m/ft) General Description General Colour Most Common Material Other Materials From Brown Soi1 Stones Loose & Wet 0 .91 Brown Clay .91 2.43 2.43 3.04 Gray Gravel 3.04 37.48 Gray Limestone **Results of Well Yield Testing** Annular Space Depth Set at (m/n) Volume Placed After test of well yield, water was: Draw Down Type of Sealant Used Recovery From Тο (Material and Type) (m³/ft³) X Clear and sand free Time | Water Level | Time | Water Level Other, specify (min) (四/說) (min) (m/ii) 6.4 0 .986m³ Grouted Bentonite Slurry Static If pumping discontinued, give reason: 1.78 Level 1 1 2.09 2.15 Pump intake set at (m/ft) 2 2 2.14 2.09 9.14 3 3 Pumping rate (I/min / GPM) 2.18 2.06 Method of Construction Well Use 54.6 Public 4 2.21 4 Cable Tool Diamond Not used 2.04 Commercial Duration of pumping Rotary (Conventional) Jetting Dewatering X Domestic Municipal 1 hrs + 5 5 X Rotary (Reverse) Air Driving min 2.23 2.02 Livestock Test Hole Monitoring Final water level end of pumping (nvit) Irrigation 🗌 Diaging Coolina & Air Conditionina 10 10 2.30 1.95 X Air percussion Industrial 2.48 Other, specify Other, specify 15 15 If flowing give rate (I/min / GPM) 2.36 1.91 **Construction Record - Casing** Status of Well 20 20 1.89 2,39 Inside Depth (m/ft) Recommended pump depth (m/ft) Open Hole OR Material Wall X Water Supply (Galvanized, Fibreglass, Concrete, Plastic, Steel) Diameter Thickness Replacement Well From 9.14 25 25 То (cm/in) 2,42 (cm/in) 1.88 Test Hole Recommended pump rate 15.86 Recharge Well 30 30 Steel .48 +.456.40 (I/min / GPM) 2.43 1.87 Dewatering Well 45.5 40 40 Observation and/or 2,44 1.86 Well production (I/min / GPM) Monitoring Hole 50 50 Alteration (Construction) 2.46 1.86 Disinfected? X Yes 🗌 No 60 60 Abandoned, 2.48 .85 1 Insufficient Supply Construction Record - Screen Map of Well Location Abandoned, Poor Outside Water Quality Please provide a map below following instructions on the back Depth (m/ft) Material (Plastic, Galvanized, Steel) Diameter Slot No. Abandoned, other, From То (cm/in) specify ARBOURBROOK Other, specify PHASE I Water Details Hole Diameter Water found at Depth Kind of Water: Fresh X Untested Depth (m/ft) Diameter From 31.08 (m/ft) Gas Other, specify To (cm/in) Water found at Depth Kind of Water: Fresh X Untested 0 6.40 15.86 33.52 (m/ft) Gas Other, specify 6.40 37.48 15.23 Water found at Depth Kind of Water: Fresh Untested (m/ft) Gas Other, specify Well Contractor and Well Technician Information PITLESS ł Business Name of Well Contractor Nell Contractor's Licence No Capital Water Supply Ltd. 1 5 5 8 NO HOUSE Business Address (Street Number/Name) Municipality Comments Box 490 Stittsville Province Postal Code Business E-mail Address Ontario K2S 1A6 Well owner's Date Package Delivered office a capitalwater.ca Ministry Use Only information Bus Telephone No. (inc. area code) Name of Well Technician (Last Name, First Name) package delivered 0090909 01719Works. 613 836 1766 Miller, Stephen Date Work Completed X] Yes Well Technician's Licence No. Signature of Technician and/or Contractor Date Submitted <u>ост 0</u> 6 2009 9 7 No No 200998 0 0 20090911

APPENDIX O

Well Interference Modelling

	LEGEND							
	<u> </u>		SUBJECT	SITE				
	\smile	\frown	CONTOU	R INTERVAL,	0.5m			
and a								
and the second								
Carl								
u succession a service								
Sing ball								
14								
	Scale 1	:5000						
and the second			100	200	300m			
					32 Steacie Drive			
2 Pr			MT NG ENGINE NTISTS		Ottawa, ON Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca			
	Drawing							
A Star	INTERFERENCE MODELLING SCENARIO 1							
	Client 1384341 ONTARIO LTD.							
	Project 61318	3.15	HYDROGEOLOGICAL INVESTIGATION					
	Drwn by S.L.	Chkd by A.P.			RP ROAD ONTARIO			
	Date	CEMBER	2017	Rev. 0	FIGURE O1			

P:\0. Files\61300\61318.15\HydroG Update 2019\Drafting\Drawings\61318.15_HydroG_FG 01-02_V01_2019-08-14.dwg, FIGURE 02, 19/08/15 11:50:23 AM

AN WAY	LEGEND								
			SUBJECT S	SITE					
	\frown		CONTOUR	INTERVAL, C	.2m				
Hill Di									
	Scale 1 0	5000	100	200	300m				
		Consu	EMT ILTING ENGIN CIENTISTS		32 Steacie Drive Ottawa, ON Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca				
	Drawing INTERFERENCE MODELLING SCENERIO 2								
	Client 1384341 ONTARIO LTD.								
×	Project 61318 Drwn by P.C.	3.15 Chkd by A.P.	HYDROGEOLOGICAL INVESTIGATION 2727 CARP ROAD OTTAWA, ONTARIO						
	Date	UGUST 2		Rev. 0	FIGURE 02				

civil geotechnical environmental field services materials testing

civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux

